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ABSTRACT: This paper proposes a methodology for optimizing the reliability of a series-parallel system on 

the basis of multi-objective optimization and multi-state reliability using a hybrid genetic algorithm (HGA) and 

fuzzy function. The considered reliability constraints include the number of selected redundant components, 

total cost, and total weight. First, we describe the modeling of the proposed methodology. Second, we explain 

the formulation of the optimization process and the solution using HGA. Most related studies have focused only 

on single-objective optimization of the redundancy allocation problem (RAP); multi-objective optimization has 

not attracted much attention thus far. This study investigates the multi-objective scenario. Specifically, multi-

objective formulation is considered for maximizing system reliability and minimizing system cost and system 

weight simultaneously in order to solve the RAP. The objective is to determine the system configuration that 

achieves the optimal trade-off between reliability, cost, and weight. Finally, the obtained results show that the 

proposed approach can enable manufacturers to determine the number of redundant components and their 

reliability in a subsystem in order to develop a system that effectively satisfies the reliability, cost, and weight 

criteria. 

Keywords: Multi-objective optimization; multi-state reliability; hybrid metaheuristic genetic algorithm; fuzzy 

function. 
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I. INTRODUCTION 
Optimizing reliability in the design and operation of large- and small-scale systems is an important 

issue for manufacturers. The objective of this study is to optimize the reliability of a series-parallel system on 

the basis of a genetic algorithm (GA) by implementing solutions for the redundancy allocation problem (RAP). 

The problem is to set the redundancy level for each subsystem and component and to select the best redundancy 

strategy in order to maximize the system reliability under multiple objectives and system-level constraints, 

including the cost and weight at the system level.  

This problem is extremely common in the theoretical design of various engineering systems. 

Developing robust solutions to address the issue of system reliability is important because mechanical and 

electrical systems and products have become increasingly complex over the years. It is crucial for systems to 

achieve their objectives under given circumstances and operating conditions in a certain manner. However, the 

level of system reliability is directly related to system cost. Thus, optimization models are required for effective 

decision-making and analysis. This study focuses on optimizing a combinatorial engineering design problem, 

i.e., maximizing the reliability and minimizing the cost and weight of a system that involves a redundant number 

of selected components.The main contribution of this study is that it examines the effectiveness of employing a 

fuzzy function along with a multi-objective genetic algorithm for solving the redundancy allocation problem.   

 

II. LITERATURE REVIEW 
This paper focuses on multi-objective optimization and multi-state reliability of a series-parallel RAP 

in which the subsystems are designed in series and the components in each subsystem are organized in parallel. 

The series-parallel system considered (Figure 2) has M subsystems in series (see Coit et al. [5] and Zhao et al. 

[18]). Further, the i
th

 subsystem consists of Ni active (operating) units organized in parallel. If any subsystem 
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fails, the entire system fails. Each block in the diagram represents a unit. Reliability allocation is an important 

step in the system design because it allows for the determination of the reliability of a vector of subsystems and 

components in order to obtain the desired overall reliability. For a system with identified cost, reliability, 

weight, volume, and other system parameters, the corresponding design problem becomes a combinatorial 

optimization problem (see Coit et al. [6] and Khorshidi et al. [8]). The best identified reliability design problem 

of this type is known as the redundancy allocation problem. This paper proposes multi-objective optimization 

using a hybrid genetic algorithm (HGA)-based optimization methodology for the redundancy allocation problem 

in order to find the number of redundant components that achieve the highest possible reliability while 

maintaining the lowest possible cost and weight under numerous resources. The proposed methodology uses a 

fuzzy function in combination with HGA to find the best possible solution for the redundancy allocation 

problem. The redundancy allocation problem is fundamentally a nonlinear integer programming problem. In 

most cases, it cannot be solved by direct, indirect, or mixed search methods because it involves separate search 

spaces. According to Chern [4], it is often difficult to find feasible solutions for redundancy allocation problems 

with multiple constraints. Such redundancy allocation problems are non-deterministic polynomial-time hard 

(NP-hard), and they have been discussed extensively by Chambari et al. [3], Kuo and Prasad [9], Liang et al. 

[11], Sharifi et al. [14], and Tillman et al. [16]. The penalty function is used in constrained problem 

optimization (see Smith and Coit [15], Kuri-Morales and Gutiérrez-Garcia [10], and Yeniay [17]). Some 

researchers have investigated evolutionary algorithms using statistical analysis (see François and Lavergne [7], 

Mills et al. [12], Castillo-Valdivieso et al. [2], Petrovski et al. [13], and Abatable and Sabuncuoglu [1]). 

Mahaparta and Roy [22] considered a multi-objective reliability optimization problem for system reliability, in 

which reliability enhancement involves several mutually conflicting objectives. In this paper, a new fuzzy multi-

objective optimization method is introduced, and it is used for effective decision-making with regard to the 

reliability optimization of series and complex systems with two objectives. Salazar et al. [23] demonstrated a 

multi-objective optimization technique for solving three types of reliability optimization problems: determining 

the optimal number of redundant components (redundancy allocation problem), determining the reliability of 

components (component reliability problem), and determining both the redundancy and the reliability of 

components (redundancy allocation and component reliability problem) using nondominated sorting genetic 

algorithm II (NSGA-II). These problems were formulated as single objective mixed-integer nonlinear 

programming (MINLP) problems with one or several constraints and solved using mathematical programming 

techniques.  Azaron et al. [24] used a genetic algorithm to solve a multi-objective discrete reliability 

optimization problem involving a non-repairable cold-standby redundant system with k dissimilar units. They 

employed a double string using continuous relaxation based on reference solution updating. Wang et al. [25] 

proposed RAP as a multi-objective optimization problem, in which the reliability of the system and the related 

designing cost are considered as two different objectives. They adopted NSGA-II to solve the multi-objective 

redundancy allocation problem (MORAP) under a number of constraints. Sahoo et al. [26] formulated four 

different multi-objective reliability optimization problems using interval mathematics and proposed order 

relations of interval-valued numbers. Then, these optimization problems were solved using advanced GA and 

the concept of Pareto optimality.  Taboada and Coit [27] proposed a GA-based multi-objective evolutionary 

algorithm for reliability optimization of series-parallel systems. They considered three objective functions, 

namely system reliability, cost, and system weight, to solve RAP; however, they did not use a fuzzy function. In 

the next section, we present our methodology for solving RAP using HGA and a fuzzy function. 

 

III. METHODOLOGY FRAMEWORK  
In our experiments, to implement the proposed optimization methodology, we adopted two penalty 

factors that have been considered by many researchers (Abatable and Sabuncuoglu [1], Castillo-Valdivieso et 

al.[2], François and Lavergne [7], Kuri-Morales and Gutiérrez-Garcia [10], Mills et al.[12], Petrovski et al. [13], 

Smith and Coit [15], and Yeniay [17]). We used a full factorial design with three levels. The fuzzy function 

allows the optimization algorithm to identify the solution of the redundancy problem that achieves the optimal 

trade-off between the optimization objectives from several optimal solutions. We performed 10 simulations for 

every experiment and used the best result of the 10 reliability values obtained. The best configuration of each 

point corresponding to the largest reliability value is given with the corresponding cost and weight values. The 

following assumptions are made in the optimization process: 

 All the components rij have different values, and every branch has a different number of components in 

series and parallel. 

 The failure rate of the components in each subsystem is constant. 

 The failure rate depends on the number of working elements. 

 The components are not repairable; they are changeable only. 

 The subsystems have internal linking costs. 
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 The failed components do not damage the system. 

Figure 1 shows the flowchart of the proposed algorithm. The HGA and fuzzy function procedures 

developed to implement our methodology are illustrated.The proposed method involves the following steps.  

Step 1: Generate a population of random individuals.  

Step 2: Initialize the front counter to 1. 

Step 3: Check the termination condition. If the population is not classified, then identify nondominated 

individuals, assign large dummy fitness values to them, and to maintain diversity in the population, share these 

individuals with their dummy fitness values. After sharing, ignore these nondominated individuals temporarily. 

Then, identify the second nondominated front in the rest of the population and assign a dummy fitness value 

smaller than the minimum shared dummy fitness of the previous front. Then, increment the front counter by 1.  

Step 4: Continue this process until the entire population is classified into several fronts. If the termination 

condition is satisfied, then reproduction occurs according to the dummy fitness.  

Step 5: Use the crossover and mutation genetic operations to generate a new population.  

Step 6: Check the termination condition of the proposed algorithm, i.e., if the current generation number is 

smaller than the maximum generation number, continue the process by going back to the second step until the 

objectives of the problem are met and increment gen by 1. If the current generation number is not smaller than 

the maximum generation number, then terminate the generation process. Otherwise, go to the next generation 

and implement the optimal front and fuzzy function; then, select the solution with the best trade-off and stop.  

The flowchart follows the same steps as classical GAs except for the classification of nondominated 

fronts and the sharing operation. The sharing in each front is achieved by calculating the value of the sharing 

function between two individuals in the same front. This method is based on several layers of classification of 

the individuals. Nondominated individuals are assigned a certain dummy fitness value and are then removed 

from the population, and the process is repeated until the entire population has been classified. To maintain the diversity of 

the population, the classified individuals are shared (in decision variable space) with their dummy fitness values.  
The multi-objective genetic algorithm is implemented using MATLAB

®
 Optimization Toolbox

TM
. 

First, MATLAB code that represents the fitness function and calculates the values of all the objectives 

(reliability, cost, and weight) is generated as an M-file. Because RAP is an integer problem, the creation, 

mutation, and crossover functions of the GA are adapted to generate integer populations that satisfy the problem 

constraints. The GA is implemented in our experimental procedure to determine the initial population size 

considering the following parameters: 

 
Fig. 1.  Flowchart of the proposed algorithm. 
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 The population size in each generation is 1000, and the maximum number of iterations is 10000. 

 We used 20 integers to code our chromosomes (maximum of 5 gear pairs and 4 stages). 

 The value 6 from the configuration implies that this position is empty. 

 We used 4 randomly generated crossover points corresponding to our 4 subsystems to improve our GA 

search. 

 We could obtain better results by increasing the population size in order to enable the GA to search for 

additional points. 

 However, when the population size is large, the GA will take a long time to calculate each generation. 

 Finally, it is important to note that we set the population size to be at least the value of a number of variables 

such that the individuals in each population span the space being searched. 

Optimizing the above-mentioned objective functions using a multi-objective genetic algorithm yields a 

set of solutions that are said to be nondominated or Pareto-optimal. Each of these solutions cannot be improved 

further without degrading one or more of the other objective values. The aim of the fuzzy function is to choose 

the optimal solution (trade-off) from the Pareto-optimal solutions. The corresponding linear fuzzy membership 

function value of the 𝑗𝑡ℎobjective function, 𝜇𝑗 ,  is defined as (Brka et al. [21]) 

 

𝜇𝑗 =  

1                                               𝐹𝑗 ≤ 𝐹𝑗
𝑚𝑖𝑛

 𝐹𝑗
𝑚𝑎𝑥 − 𝐹𝑗   𝐹𝑗

𝑚𝑎𝑥 − 𝐹𝑗
𝑚𝑖𝑛   𝐹𝑗

𝑚𝑖𝑛 < 𝐹𝑗 < 𝐹𝑗
𝑚𝑎𝑥

0                                             𝐹𝑗 ≥ 𝐹𝑗
𝑚𝑎𝑥

                                             (1)  

Here, for the 𝑗𝑡ℎ  objective functions, 𝐹𝑗  , the minimum value is denoted as𝐹𝑗
𝑚𝑖𝑛  and the maximum value is 

denoted as 𝐹𝑗
𝑚𝑎𝑥 , and j takes a value of 1, 2, or 3 because there are three objectives (reliability, cost, and 

weight). The normalized membership function 𝜇𝑘for each non-dominant solution is calculated as 

𝜇𝑘 =   𝜇𝑗
𝑘

𝑁𝑜𝑏𝑗

𝑖=1

  𝜇𝑗                                                                                                                                         
𝑘 (2)

𝑁𝑜𝑏𝑗

𝑗=1

𝑀

𝑘=1

  

where 𝑁𝑜𝑏𝑗  is the number of objective functions and 𝑀 is the number of non-dominated solutions. 

 

IV. PROBLEM MODELING 
We propose HGA-based multi-objective optimization using a fuzzy function for solving multi-state 

reliability and availability optimization design problems. Considering the system design, we require the 

simultaneous optimization of more than one objective function. In this optimization problem, there are three 

objectives: (1) maximizing the system reliability, (2) minimizing the system weight, and (3) minimizing the 

system cost while satisfying the system requirements. All the components and the system considered have a 

range of different states, and the fuzzy function technique is used to obtain the system availability.  The 

notations used in our mathematical model for multi-objective optimization and multi-state reliability of RAP are 

summarized in Table 1. 
 

 

Table 1 Notations used in our mathematical model. 
Abbreviations Details 

Rs Total reliability of the series-parallel system 

Cs Total cost of the series-parallel system 
Ws Total weight of the series-parallel system 

Cmax Limit of the cost constraint of the series-parallel system 

Wmax Limit of the weight constraint of the series-parallel system 
s Number of subsystems in the system 

i Index of subsystem, i (1, 2,…, s) 

j Index of component type in each subsystem 
k Index of redundancy level 

mi Total number of available component types in the ith subsystem 

Pi 
Minimum number of components in parallel required 

for the ith subsystem to function 

PN Maximum number of components in parallel that can be used in the ith subsystem (user-defined) 

Ni Set of component types, Ni = [1, 2,…, mi] 

xki Number of component types assigned at position k of the ith subsystem, xki (1, 2,…, mi,mi+1) 

x System configuration matrix 

ni(x) Total number of redundant components used in the ithsubsystem 
n(x) Set of ni (n1, n2,…, ns) 

rij Reliability of the jth available component type in the ithsubsystem 

cij Cost of the jth available component type in the ithsubsystem 
wij Weight of the jth available component type in the ithsubsystem 
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Ri(x) Reliability components of the ithsubsystem 

Ci(x) Total system cost of the ithsubsystem 

Wi(x) Total weight of the ithsubsystem 

 
 

Based on the notations and basic assumptions, the following performance metrics (namely, system 

reliability, designing cost, and system weight) are defined. 

(1) With regard to the system structure, the reliability of a series-parallel system (Rs) can be calculated as       

 

𝑅𝑠 𝑥 =    (1 −  1 − 𝑟𝑖𝑥𝑘𝑖
)

𝑃𝑁

𝑘=1

 

𝑠

𝑖=1

 3  

where s is the number of subsystems in the system, PN is the maximum number of components that can be used 

in parallel in the i
th

 subsystem, riis the reliability of the j
th

available component in the i
th

 subsystem, and xki is the 

number of component types allocated at position k of the i
th

subsystemxki (1, 2,…,mi,mi+1). 

(2) The probable total system design cost (Cs) can be calculated as 

𝐶𝑠 𝑥 =   𝐶𝑖 𝑥 =   𝐶𝑖𝑥𝑘𝑖

𝑃𝑁

𝑘=1

𝑠

𝑖=1

𝑠

𝑖=1

 4  

where Ciis the cost of each available component in the i
th

subsystem and xki is the number of component types 

allocated at position k of the i
th

subsystem,xki (1, 2,…,mi,mi+1). 

(3) Furthermore, we can calculate the weight of the system (Ws) as 

 

𝑊𝑠 𝑥 =   𝑊𝑖 𝑥 =   𝑊𝑖𝑥𝑘𝑖

𝑃𝑁

𝑘=1

𝑠

𝑖=1

𝑠

𝑖=1

 5  

where Wiis the weight of each available component in the i
th

 subsystem and xki is the number of component types 

allocated at position k of the i
th

 subsystem, xki (1, 2,…,mi,mi+1). Multi-objective optimization refers to the 

solution of problems with two or more objectives to be satisfied simultaneously. Such objectives are often in 

conflict with each other and are expressed in different units. Because of their nature, multi-objective 

optimization problems usually have not one solution but a set of solutions, which are referred to as Pareto-

optimal solutions or nondominated solutions (see Chankong et al. [19] and Hans [20]). When such solutions are 

represented in the objective function space, the graph obtained is called the Pareto front or the Pareto-optimal 

set. A general formulation of a multi-objective optimization problem consists of a number of objectives with a 

number of inequality and equality constraints.  

The mathematical model of the problem studied herein is formulated as a multi-objective optimization 

problem as follows: 

𝑀𝑎𝑥    𝑅𝑠 𝑥  6  

𝑀𝑖𝑛     𝐶𝑠 𝑥  7  

𝑀𝑖𝑛     𝑊𝑠 𝑥  8  

Subject to  

𝐶𝑠 𝑥 ≤   𝐶𝑚𝑎𝑥  9  

𝑊𝑠 𝑥 ≤   𝑊𝑚𝑎𝑥  10  

 𝑃𝑖 ≤ 𝑛𝑖 ≤ 𝑃𝑁  𝑎𝑛𝑑                                                   11  

  ∀𝑖, 𝑖 =  1, 2, … , 𝑠                                                        12  

The first constraint is related to minimizing the system design cost (Cs), while the second constraint is 

related to minimizing the system weight (Ws). Cmaxand Wmaxare the upper bounds of Csand Ws,respectively.  

Figure 2 shows a typical example of a series-parallel system configuration with k-out-of-n subsystem 

reliabilities. The system is separated into s subsystems indicated by the index i (i = 1, 2,…, s), and each 

subsystem consists of one or several components organized in parallel.Further, Pi is the minimum number of 

active components required for the i
th

 subsystem to function, i.e., the lower bound of the level of component 

redundancy for the i
th

 subsystem. The upper bound of the level of component redundancy for the i
th

 subsystem is 

denoted by PN. Thus, the system configuration can be defined as a PN × smatrix. For this matrix, the column 

index i (i = 1, 2,…, s) denotes the i
th

 subsystem, and the row index k (k=1, 2,…, PN) establishes the position 

where a component will be used in the subsystem. RAP involves defining the number of components of each 

type such that the total system reliability will be maximized considering the given constraints, such as cost and 

weight. The content of the case study is shown in Figure 3.  

The objective of this test is to demonstrate the ability of the proposed algorithm in solving RAP as a 

gearbox reliability optimization problem, as shown by Zhao et al.[18], who assumed, in order to apply their 

method to all stages, that the minimum number of components is equal to 2 and the maximum number of 
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components is equal to 5. In their study, the problem is to decide how many gear pairs and what types of gear 

pairs are to be selected for use in each stage, which will give the maximum reliability of the gearbox while 

minimizing both the system cost and the system weight. Because it is assumed that all the gear pairs are active 

components in each stage, the gearbox is analogous to a series-parallel system with k-out-of-n G subsystems. 

 
Fig. 2.  Series-parallel system. 

 

V. GEARBOX CASE STUDY 
Table 2 summarizes the input data of component reliability, cost, and weight characteristics for gear 

pairs in each stage for reliability optimization of the series-parallel systems considered in this problem. The 

study is based on work conducted previously by Zhao et al. [18]; however, they considered only one objective. 

Our system consists of 4 subsystems, and each subsystem has a different design component type with similar or 

dissimilar characteristics, such as reliability, cost, weight, material, dimension, and transmission ratio. Here, we 

set Pi = 2 and PN = 5 in the gearbox for all stages. Each of the subsystems is represented by PN positions, with 

each component listed according to its reliability index. The objective is to maximize the system reliability with 

k-out-of-n subsystems connected in the series-parallel system under the given constraints. Table 3 lists the 

values of Cmax and Wmax. The equivalent scheme of this system is shown in Figure 4. 

 

 
 

Fig. 3.  Modeling of gear train system of series-parallel system.  
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Fig. 4.  Equivalent scheme for gear train system. 

 

Table 2Input data for RAP (Zhao et al. [18]). 

Gear pair 

Stage 

Stage no 1 Stage no 2 Stage no 3 Stage no 4 

r1 c1 w1 r2 c2 w2 r3 c3 w3 r4 c4 w4 

1 

2 
3 

4 

5 

0.855 

0.706 
0.931 

0.737 

0.805 

3 

5 
5 

7 

6 

11 

12 
9 

11 

14 

0.743 

0.882 
0.874 

0.783 

0.9114 

5 

6 
2 

7 

5 

9 

11 
14 

11 

7 

0.828 

0.842 
0.779 

0.911 

0.846 

9 

7 
7 

7 

3 

15 

14 
11 

12 

11 

0.74 

0.922 
0.855 

0.864 

0.816 

6 

5 
11 

9 

9 

10 

10 
15 

13 

12 

 

In Figure 4, let Gl, G2, G3, G4,…, G20 represent the number of teeth of each gear. For each stage, the 

following equations are applicable: 

Gl + G4 = G2 + G5 = G3 + G6 (for stage 1 between input shaft 1 and shaft 2).  

G7 + G10 = G8 + G11 = G9 + G12 (for stage 2 between shaft 2 and shaft 3).  

Gl3 + G17 = G14 + G18 (for stage 3 between shaft 3 and shaft 4).  

Gl5 + G19 = G16 + G20 (for stage 4 between shaft 4 and output shaft). 

GP1: Gear pair [G1-G4], GP2: Gear pair [G2-G5], GP3: Gear pair [G3-G6], GP4: Gear pair [G7-G10], GP5: 

Gear pair [G8-G11], GP6: Gear pair [G9-G12],GP7: Gear pair [G13-G17], GP8: Gear pair [G14-G18], GP9: 

Gear pair [G15-G19], GP10: Gear pair [G16-G20]. 

 

Table 3System constraint values used. 

 Maximum constraint limit of cost and weight 

No. Cmax Wmax  No. Cmax Wmax 

1 40 115  10 65 150 

2 55 125  11 70 120 

3 65 130  12 70 130 

4 60 120  13 70 140 

5 60 130  14 70 150 

6 60 140  15 75 120 

7 60 150  16 75 130 

8 65 120  17 75 140 

9 65 140  18 75 150 

 

VI. RESULTS AND DISCUSSION 
In this study, we perform multi-objective optimizationof a combinatorial redundancy allocation 

problem for a series-parallel system to solve the formulated reliability optimization multi-objective genetic 

algorithm (ROMO GA). The reliability optimization design using a multi-objective genetic algorithm for the 

redundancy allocation problem is presented to determine optimal solutions, where k (k-out-of-n) influences the 

cost function in series-parallel systems with multiple k–out-of-n subsystems. The objectives are to maximize 

system reliability and minimize system cost and system weight subject to cost and weight constraints. The 

constrained k values are considered for all subsystems; some subsystems may require more than one component 

to function, and the component types are also considered for each subsystem. By using a multi-objective genetic 

algorithm for solving optimization problems, we can obtain a number of optimal solutions constituting the 

Pareto-optimal set, and out of these solutions, we can evaluate the best one using an appropriate decision-

making technique. The multi-objective optimization methodology is adopted to solve the RAP. Figure 5 shows 

the set of nondominated solutions for the last iteration of the optimization process, where 𝐶𝑚𝑎𝑥 = 40 and 

𝑊𝑚𝑎𝑥 = 115. Each point in this figure represents an individual solution that has an optimal value of one 
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objective function, and it cannot be improved further without deteriorating at least one of the other objectives. 

The fuzzy function is employed to define the solution that guarantees an optimal trade-off between the three 

objectives, and the result is shown in Figure 5. The employment of the fuzzy function guarantees consistency 

and optimality of the selected solution.Figure 6shows the convergence between reliability, cost, and weight.  

The optimal trade-off solution shown in Figure 7 is [1, 6, 6, 1, 1, 6, 3, 5, 5, 6, 6, 6, 5, 5, 5, 6, 2, 2, 6, 6], 

and the number of components of each stage of the series-parallel system varies from 2 to 5. Therefore, from the 

20 positions, the results are illustrated as follows: 

 In the first subsystem, there are 3 components of type 1. 

 In the second subsystem, there are 2 components of type 5 and 1 component of type 3. 

 In the third subsystem, there are 3 components of type 5. 

 In the fourth subsystem, there are two components of type 2. 

It can be seen that the proposed algorithm is able to obtain a set of uniformly distributed solutions 

along the Pareto front, as shown in Figure 8. 

Thus, a new hybrid metaheuristic genetic algorithm and fuzzy function have been successfully 

demonstrated in this study. Table 4 lists the optimal trade-off solutions obtained when different values of the 

optimization constraints are chosen. From this table, it can be seen that our approach is able to find system 

configurations with lower cost and weight without significantly degrading the overall reliability.  

 
Fig. 5.  Overall best Pareto front obtained by multi-objective optimization and fuzzy function: cost vs. 

reliability.  

 
Fig. 6.  Convergence of reliability, cost, and weight. 

 
Fig. 7.  Optimal trade-off point for reliability vs. weight vs. cost in 3D space. 
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Fig. 8.  Nondominated solutions obtained from the proposed algorithm for weight vs. cost vs. reliability in 3D 

space. 

 

Table 4Optimization results for different cost and weight constraints. 

 
 

VII. CONCLUSION 
In this study, we proposed multi-objective optimization of a multi-state reliability system for an RAP 

involving a series-parallel system, based on a genetic algorithm and fuzzy function. Unlike other methodologies, 

our methodology not only optimizes the cost, weight, and reliability of the system simultaneously but also 

objectively defines the system configuration that achieves the optimal trade-off between the design objectives. 

The results showed that our methodology can find better solutions in terms of cost and weight without 

significantly degrading the overall reliability. The computational results confirmed the robustness of the 

proposed algorithm and highlighted its potential for future application.  

In the future, the proposed technique may be adopted for solving real-life decision-making problems in 

the form of interval-valued constrained optimization problems. In addition, it can be applied to various areas of 

engineering, management, and manufacturing. 
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