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ABSTRACT: Clouds are complex dynamical structures in turbulent motion and consist of small droplets that 

result from water vapor condensation. Inside the cloud, the air between droplets could be saturated or 

unsaturated. Mixing contributes with an interest mass and energy transfer process: drops provide moisture to the 

atmosphere while absorbing heat, and change its size. Turbulence motions at different scales could be observed. 

Gravitation and buoyancy force give rise to convective cells characterize by isotropic or anisotropic turbulence. 

Despite recent advances in cloud physics, the understanding of key issues such as spatial distribution of cloud 

drops, turbulence and microphysics interaction, turbulent mixing and size change is far from being complete. 

The main purpose of this paper is to do a fractal description of the size of a cloud drop by means of different 

physical laws (Henry 1803, Raoult 1884, van't Hoff 1887) and Cantor process. Distribution of cloud drops by 

drop size is proposed considering geometric aspects and probability distributions functions. 
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I. INTRODUCTION 
In our latitudes clouds formation process begins with strong winds that raise dust from dry soils by the 

absence of rain, accompanied by a strong sun that intensifies evaporation and places in the atmosphere 

increasing amounts of water vapor that seek the encounter with dust particles as condensation nuclei for the 

growing formation of cloud drops. That happy, contradictory and random encounter between water vapor and 

particles gives rise to drops of clouds, and within particles or condensation nuclei we emphasize salt. From 

winds we highlight those that are described as convective that raise potential solutes until heights cold enough 

for their encounter with water vapor. Condensation releases more and more amounts of heat that feeds winds 

and places air in turbulent movements that move vapor and solutes in a random way, modifying temperatures 

scalar field.Our three protagonists are subject to the interaction with the gravitational field, winds hydrodynamic 

turbulence and electrical interaction between solutes and solvents charges and dipoles. At macroscopic scales, 

they are subject to interaction with pressure scalar fields, temperature, volume, entropy and composition. Within 

this context, we should consider the drop of a solution and then get the abstraction of the pure drop of water. As 

solute we think about salt: sodium chloride, because it is a feasible condition on high seas, being far enough 

away from the pollution of a city, although due to results we can extend them to other types of solutes. 

Drop shape result of doing surface efficient against volume. The drop has a water vapor cover and we 

express the free energy change due to vapor condensation on liquid surface. We do a transformation in a 

rectangular volume separated by a semipermeable porous partition, which allows water to pass but retains the 

solute. In the transformed analogous volume, two heights are equal, expressing the equilibrium of the two 

parts.In order to carry out a detailed analysis to get a fractal description of drops of clouds, we should considerer 

at first thermodynamic potentials and perform Legendre transformations that allow us to generate new potentials 

by changing a state variable at each step. We identified possible variables of the multi-fractal description and 

found the associated spectra. Two integers representing surfaces and volumes dimensions and their ratio 

emerges prominently, which we interpret as the ratio of the surface energy, which also can be interchangeable, 

against all the energy reserve contained in its volume. We recall different physical laws [1], [2] and [3], to take 

into account scalar fields composition, to quantify changes in potentials, and to represent them by means of 
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usual and appropriate physical parameters. We do a Cartesian product of Cantor processes that allows us to 

build a possible size distribution. Also, we do a double inversion of the circle and sustained our results with data 

reported by [4]. We think of a Poisson random variable with its only parameter linked to the relative spatial 

frequency of solute moles number. Next, we think of a discrete Pascal random variable or negative binomial 

identifying success probability. Then we consider an Erlang distribution with its parameters: spatial and events. 

Finally, we state the Gamma continuous random variable and its two parameters linked with physical 

magnitudes reported by Legendre transformations and solutions laws. Results are graphed based on data 

reported by [4]. Besides we discussed other results and state our main conclusions. 

 

II.  MATHEMATICAL APPROACH 
In this section, a mathematical approach to do a fractal description of a cloud drop and its size 

probability distribution is presented. We imagine our three main protagonists in a scalar field of pressure, 

temperature, volume, entropy and composition. The main potential is the internal energy in state variables: 

entropy S and volume V. But in real systems, it is generally difficult to maintain entropy constant, since this 

implies a good thermal insulation. It is therefore more convenient to start out from the Helmholtz free energy F 

as a function of temperature T and volume V. Since Helmholtz free energy is determined by two variables, 

temperature T and volume V, two Legendre transformations can occur: in the first one, volume V is changed by 

pressure P and Gibbs potential is obtained, with state variables, temperature T and pressure P. In the second, 

temperature T is changed by entropy S and the internal energy E emanated in state variables, entropy S and 

volume V. However, laboratory experiments are often carried out under constant pressure and temperature 

conditions, so Gibbs potential is adequate: 
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We assume that a drop is formed by vapor molecules condensation, so there are two phases: saturated 

water vapor and liquid water. Consequently, the system has another state variable, the composition, and we must 

replace pressure variable by composition variable by means of a new Legendre transformation, therefore we 

obtain Gibbs potential in temperature and composition variables.The system is supposed to be closed at a certain 

temperature, droplet of specific radio contains a definite molecules number and in both vapor and liquid phases, 

chemical potentials are known per molecule. Gibbs potential change is calculated by an increase in the liquid 

phase area with the realization of a certain amount of work by surface tension and chemical potentials change 

between states: vapor and liquid. The first change is specified by 
lv

r 
2

4 and the second by  
vl

 , 

therefore change is: 
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Where  
lvvllv

r  ,,,  are: droplet radius, surface tension coefficient, molecules number in the drop 

and chemical potentials change of vapor minus liquid. 

 

2.1 Analysis of the solution 

We recall that [2] can be enunciated as a contraction of saturated vapors pressure with respect to pure 

solute pressure. And there is an analogous expression for solvent. Contraction factor is the molar fraction or 

relative frequency of moles number, 
21

/  
i

, for solute i = 1, for solvent i = 2, being pressure in solution less 

than the pressure in the pure state:  0

ii
pp  . In addition, for real gases, solute pressure presents an additional 

reduction, so there is an aggregate contraction factor according to[1], so solute pressure in solution is /
1

p , 

which would be equivalent to an apparent increase of solute molar fraction: 
21
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i
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21
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, 

and we obtain:    0

1211
/ pp

i
  , being  the van't Hoff factor, which depends on solute chemical nature and 

dissociation degree (a known value for salt is 2.7), [5]. 

Finally, we remember that for diluted solutions, we count on van'tHoff [3], which states that, 
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  the solute moles number, i = 1, or the solvent moles number, water, i = 2, 
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and   the van't Hoff factor. Work could be expressed by 
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On the other hand, work by surface tension is 
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variation of the original free energy is the reduction that is evaluated by osmotic pressure work: 
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
p the vapor pressure in 

equilibrium at temperature T on a liquid flat surface, the change by drop condensation is SkT
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ln   with 


 ppS / . Therefore, total change in thermal energy units is, 
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The first transformation performs from the previous expression (3), is to rewrite the three terms of the free 

energy change as: 
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the surface tension work contribution in the form: 

r
A

pp

l

l

1

1

/
ln

'

21

1

































 

 

In the multifractal description called "strange attractor" [6] and [7], we assume Gibbs free energy change as a 

structure function, in thermal energy units. Scale variable is identified by the change in the chemical potential 

occurring in condensation kTs
vl

/ , also in thermal energy units; singularity, being molecules average 

number in the drop in solution; and spectrum, represented by the work done by surface tension, in thermal 

energy units: 
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In the very dilute case, solute moles number is very small relative to solvent or water, whereby solute 

molar fraction tends to zero and composition is reduced to pure water: 
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where it is observed that drop radius is proportional to surface energy and water molar volume, while it 

is inversely proportional to relative humidity logarithm, results known by [8] and [9]. Of course we also have 

the possibility to develop the fractal model for pure water drop. For this we express drop radius in terms of its 

volume, and this in terms of drop molecules number, and then obtain the work, in thermal energy units and in 

terms of molecules number α. 

Scale variable in this multifractal description is also the chemical potential change occurring in the 

condensation kTs
vl

/ , in units of thermal energy; the singularity is the number of molecules in the drop α, 

spectrum represents the work done, in thermal energy units. And the structure function τ(s) is also the change in 

Gibbs free energy potential, in thermal energy units: 
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Thus we have the expression for droplet radius in terms of relative humidity and proportional to the length A0, 

which represents surface tension or energy per unit area on the surface, temperature, and water density ratio to 

its molecular weight; is the ratio of the number of moles contained in the drop to the volume of the drop: 
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2.1.1 The critical radius 

Of the three contributions to the Gibbs energy potential change, we do an approximation in the expression of 

osmotic pressure work. Molar fraction term 
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2.1.2 Inversion in a circle 

Now we do an inversion transformation on a sphere. Sphere radius is symbolized by 
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An important special case arises when mean radius supplement over the critical radius is the inverse of 

the mean radius:  
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c

 or  
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  resulting   2/51  , which corresponds to the well-

known gold number structure. 

 
2.1.3 Another representation of work 

Changes synthesis in Gibbs free energy potential was expressed through a representation of surface 
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which represents the success probability; its inverse 
p

p
u




1

 symbolizes the ratio of success probability with 
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n
np  , or the Gamma with the continuous parameters 1,

1



 



n . 

 

Then the contraction of Raoult and Henry laws are expressed in the Poisson parameter 
2/1

0

0
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

 and 1n . In the Erlang variable, it is manifested in the two parameters 
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 and 1 n . Parameters physical content of distributions are 

summarized in (9),  
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Once parameters of probability distribution density have content based on physical quantities, we re-

find Gamma distribution by means of a generalized Cantor process, as a proposal of probability density for 

drops diameters, which is supported by known experimental results. 

It is chosen as features basis    qqf  1/1  and the succession             
q

n

p

n

q

n

n
pnqP


 11/11 is 

calculated, which produces  
 1

2
/11




n

n
qP , we discretized by introducing resolutions sequence ynq

n
/ , 

and considering the limit results y
eP




2
. Analogously with   0,1, 





hhhf  the following equivalence 

is finally obtained
 






1

1

x
P . For the product, from some n it is presented that  yx , and with the 

normalization or conservation of the probability one obtains: 
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 , [11] and 

[12]. 

Alternatively, unit 1, as success certain, supports Laplace's inverse transform representation: 
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 ; and after normalizing a random variable of Erlang is obtained 
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A connection with the differential equations is stablished. For one success 1n ,   t
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which can be generalized in     
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1
 , this is the well-known Mittag-Leffler function, 

solution of the differential equation (10) and from which the exponential is recovered as a special case with 

1 ,   

   tDtD
tt


 
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1                                            (10) 

 

The constant 





 depends on the spatial behavior of the phenomenon, so we have two paths: 1. there is no 

spatial manifestation so it is a constant and we take    y 
r

t  as reference time or unitary type; and 2. 

there is spatial manifestation and the equation (12) arises. 

In the first case, a solution is expressed by     




r
ttEt /

,1
 , is the Mittag-Leffler function with parameter 

  which is shown in (11), [13], 
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In the second case, 





 could be related with the dual variable to the spatial position that is accustomed to 

denote 


k , so the term is interpreted as:    tkkt ,





, and corresponds to the Fourier transform of 

the probability density  txP , , which in turn is the transform of the fractional derivative  txPD
x

,


, with 
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changed sign, in its form Riesz derivative:      tkkktxPDF
x

,, 


 . So alternatively (10) stay: 

     txPDFtkD
xt

,,1


  , and with the inverse Fourier transform results: 

      txPDtxPxD
xt

,,


  , which is the fractional Fokker-Planck equation (12), also known as 

Einstein-Kolmogorov equation [14], 

      xDtxPDtxPD
txt




1,,                                   (12) 

 

Therefore, the obtained function    ttk  ,  is the characteristic function, with temporal parameter, of the 

passage or transition probability of the fractional Fokker-Planck equation, with 1  and 
r

t . 

 

III. DISCUSSION 
Evidently, probability density is asymmetric, [15] and [16]. We can inquire under what conditions that 

quality disappears. For this we calculate asymmetry parameter as the third central moment with respect to the 

third power of the standard deviation, results: 


2
. But this tends to zero only if  , which as Erlang 

distribution would turn it into a Dirac delta, but then the critical radius would become zero, which is a physical 

impossibility because solute's mass would be zero, or else it would be an impossible mathematical due 1 . 

 

Considering [17], if 1  it would be obtained 0
c

r  which is absurd from the physical point of view 

because it is equivalent to consider if 0B  we would have 0
1
m  and the drop would be pure water, or if 

A  it would imply that 0T  is reached. But on the other hand, within the two exponents, that of form is 

the most important, because it is the power of the success probability. 

Interaction between turbulence and a generic drop has consequences on droplets size distribution. [18] 

and [19] explain that as a consequence of the equilibrium expressed in the dynamic quadrilateral formed by: 

drop weight (as sediment), pressure drag, friction drag and Archimedes' flotation, flotation increases with 

turbulence increment and reciprocally diminishes with the approach to laminar regime. For example, due 

droplets evaporation, flotation component may decrease [20]. But also, with turbulence intensification, vortex 

knots that interact with droplets become smaller and smaller, so that eventually they could reach the 

Kolmogorov scale of fractions order of 1 mm. Thus a knot could be of a size comparable with that of 10 drops 

of 10 m in diameter [21], [22], [17] and [23]. Regarding to [17], fluid Lagrangian acceleration can be 

translated into an expression of the type  u
n /11  , so in the very turbulent regime it approaches to  u

n /1

which constitutes a fluid acceleration dilation that will eventually be more greater than gravity and will result in 

a predominance of flotation.So evaporation and cooling that accompanies it is produced, as well as a mixture of 

air with average relative humidity reduction, the first causes an increase of radius r, the second produces another 

increase at the same radius, so we have a shift towards the right of the parameter, or the lowering of the shape 

parameter [24] and [25].Now we consider the case of border interface of cloud interior with outside clear air: 

exterior temperature is slightly higher than that of the interior, and the exterior, with lower relative humidity 

(sub-saturated), while the interior over-saturated. Imagine an air flow from outside to inside with a mixture of 

the previous two. Evaporation and also the accompanying cooling is produced, as well as a mixture of air with 

the reduction of the average relative humidity; the first causes a radius increment, the second causes another 

increase at the same radius, thus we have a displacement towards the right of the parameter  , or the decrease 

of the form parameter  , [24] and [25]. 

We intend to observe the compatibility of our results with others of experimental order. To do so, we translate 

them into our context. For example, if we know modal radius and standard deviation by means of the 

experimental procedure, we determine the quotient    /1c , which is inversed and result 

    
2

2

12/2/  cc . 

 

In particular, if the dilation factor  , which transforms the critical radius into the mean radius, is the 

"gold number”; we imagine a cloud with the two statistics mentioned equal to unity so that the previous quotient 

becomes 1, and we get   
2

2/51  or either   2/51  . Then its graph looks analogous to the second 

curve of the group: drops in solution II, which corresponds to the mass of the solute grm
12

1
10


 . 
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Similarly, from the experimental data published in [26], we can find shape parameters values of the gamma 

density and judge the compatibility with our results. Of all of them we highlight the case of the Sauter radio 55 

m, from which we obtained the parameter triplet    48.1,09.0,08.3,,  , and which is analogous to one of 

the group: drops in solution II. In addition, from [27], based on mean value and standard deviation, we obtained: 

   69.1,40.0,45.2,,   which is analogous to the second [4] data:    5.0,5.2,  . 

Another point of discussion is obtained from the fractal description of the drop in solution, because it 

produces a spectrum that is determined by the exponent 3/2 , which means the ratio of two dimensions: that of 

the surface energy with respect to the energy of the volume. But these two integers create the number 13 

through Fermat's theorem of the representation of congruent primes with 1 in the group of integers module 4, as 

sum of two squares of integers. But, the number 13 is the number of "jade" in the calendar of the ancient 

Mesoamerican towns, a calendar that can be represented as the Cartesian product of two circles or Toro: the 

major containing an icosagon and the minor a tridecagon, and which complete a total of 18 months of 20 days 

each one, covered by various and successive Gods who preside every thirteen days, plus 5 unlucky days, [28]. 

Distribution density knowledge is also of practical importance in other areas such as agriculture, 

meteorology, medicine, pharmaceuticals, and other industrial processes such as: combustion, paint sprays, metal 

powders [29].In the special case of energy towers, where smallwater drops are sprayed into the tower from the 

top to generate a downward flow of humid air to move wind turbines arranged at the bottom, distribution density 

is important to understand and characterized drops dynamics and evaporation process [30]. In addition of 

gamma distribution, normal log and also Rosin-Rammler distribution are used[31]. 

 

IV. CONCLUDING REMARKS 
• Fractal model for drop in solution is determined by identifying singularities in the medium molecules 

number in the drop, scales in relative humidity, the spectrum in the work done by the surface tension and the 

structure in the change of Gibbs potential. 

• The ratio of surface size to the volume plays the essential role for the spectrum exponent of both drop in 

solution and drop of pure water. 

• Gamma continuous random variable is determined with the shape parameter determined by the relative 

distance between mean radius and critical radius and "the passage frequency" by the mean radius. Its 

physical content is made explicit in (9). 

• Gamma density of cloud droplet size distribution can be interpreted as the characteristic function, with 

temporal parameter, of the passage probability or transition of a fractional Fokker-Planck equation.  

• We plot probability densities graphs based on data published by [4], but reorganizing their data as shown in 

the following two tables. In Table 1 we have data for droplet in solution parameterized with the physical 

quantities. The solute is salt (NaCl), temperature is 10°C, contraction factor for critical radii is 0.31 from 

right to left, that is from the highest solute masses to the lowest. In the table, values corresponding to the 

parameters A and B are represented. With the first three values sets for alpha and lambda, from left to right, 

the graph is doing: Drop in solution I; with the following three: Drop in solution II, and with the last three: 

Drop in solution III. 

 

 

 

 

 
Table 1. Data for droplet in solution parameterized with the physical quantities. 

  Na = 11 Cl = 17 NaCl A=3.2*10^-

5/T 

Contraction 

Rc 

   

  22.9898 35.453 58.4428 283 0.316227766    

     0.001130742     

B=8.6*(m1

/M1) 

1.4715E-

05 

0.000147

15 

0.00147

152 

0.01471

524 

0.147152429 1.471524294 14.7152

429 

147.152

429 

1471.524

29 

m1 (g) 1E-16 1E-15 1E-14 1E-13 1E-12 1E-11 1E-10 1E-09 0.000000

01 

Critical 

radius 

Rc (m) 

0.19758
891 

0.624831
01 

1.97588
914 

6.24831
009 

19.7588914 62.48310085 197.588
914 

624.831
009 

1975.889
14 

alpha 3.14358
881 

2.948717
1 

2.77156
1 

2.61051 2.4641 2.331 2.21 2.1 2 

lambda 10.8487

302 

3.118790

64 

0.89658

927 

0.25775

129 

0.074098287 0.02130176 0.00612

383 

0.00176

048 

0.000506

1 

delta 1.46650
738 

1.513158
12 

1.56447
393 

1.62092
132 

1.683013455 1.751314801 1.82644
628 

1.90909
091 

2 
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Note: The greatest number of decimals was considered 

 

In Table 2, we have the field data also published by [4] and reorganized according to the inversion in 

the circle. 
 

Table 2.Field data also published by [4] and reorganized according to the inversion in the circle. 

  
rmin r50 rc rm rmax lambda alpha delta 

Small continental 

cumulus (Cu)          

USA 
 

3 
 

6 9 33 0.33333333 2 1.5 

Small maritime 

cumulus (Cu)          

Hawaii 
 

2.5 12 11 15 20 0.25 3.125 1.36363636 

Cumulus congestus 
“Cauliflower” 

6km Base 0.6 K         

USA 
 

3 
 

6 24 83 0.05555556 1.16666667 4 

Cumulonibus (Cb) 
         

USA 
 

2 
 

5 20 100 0.06666667 1.2 4 

Altostratus (As) 2km to 7km 
        

Germany 
 

1 
 

4.5 5 13 2 8 1.11111111 

Nimbostratus (Ns) 0 to 2km 
        

Germany 
 

1 
 

4 6 20 0.5 2.5 1.5 

 
In the following figures the distribution of cloud drops by drop size is present considering: Fig. 1, data of [4]; 

Fig. 2, Droplet in solution I; Fig. 3, Droplet in solution II; Fig. 4, Droplet in solution III.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Alpha 8 (Blue) 2.5 (Magenta) 3.125 (Green-Blue) 9.23 (Light Green-Blue) 

Lambda 2 (As) 0.5 (Ns) 0.25 (Cu) 0.55 
 

 

 

 
 

 

Figure 1. Distribution of cloud drops by drop size with data of [4]. 
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Alpha 3.14 (Blue) 2.94 (Magenta) 2.77 (Bluish green) 

Lambda 10.9 3.11 0.9 

 

 
Figure 2. Distribution of cloud drops by drop size considering droplet in solution I. 
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Figure 3. Distribution of cloud drops by drop size considering droplet in solution II. 

 

 
Alpha 2.21 (Blue) 2.1 (Magenta) 2 (Bluishgreen) 

Lambda 0.006 0.001 0.0005 

 
 

 
Figure 4. Distribution of cloud drops by drop size considering droplet in solution III. 
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