American Journal of Engineering Research (AJER)2017American Journal of Engineering Research (AJER)e-ISSN: 2320-0847 p-ISSN : 2320-0936Volume-6, Issue-6, pp-109-117www.ajer.orgResearch PaperOpen Access

Investigation of Atomic and Molecular Spectrum of g Herculis

Burcu Akça^{1*}, Cahit Yeşilyaprak², Ali Gürol³^{1*}Computer Engineering, Faculty of Engineering, Ardahan University, Ardahan, Turkey

^{2,3}Department of Physics, Faculty of Sciences, Atatürk University, Erzurum, Turkey

Abstract: In this study, the line identifications of g Herculis (g Her), which is M6III red giantstar, were investigated. The line identifications of thestarwere made by using the Moore Multiplet Table. Astronomic properties of thestarwere madeto find database Simbad by using Hipparcos Catalogue. Spectrumanalysis of the star was made by software Image Reduction and Analysis Facility (IRAF). **Keywords:** g Her, IRAF, red giant star

PACS No:95.10.-a; 95.30.Ky;95.75.Fg; 95.75.-z; 97.20.Li

I. INTRODUCTION

The aim of observing and surveying the spectra of stars is to have knowledge about that star. The age of the star, mass, chemical composition, etc. are in this knowledge. The total mass is the main determinant of the development of the star. It depends on the mass at the end of the star. According to the stage of evolution in which a star is in the process of evolution, it is changing many properties such as diameter, temperature, chemical composition, mass and many features like this. The most important stages of the star evolution are known as the Main sequence and the Red giant branch. The position of these stages is determined by the mass of the star. The g Her (M6 III) studied in this study is in the red giant branch. This star is one of the coolest (T_{eff} =3250 K)SRb (semi-regular) variable stars and has a mass, perhaps as great as (4M_☉).

In the literature, there areworks for different resolutions, wavelengths, spectrum region and telescopes for g Her.These studies can be sorted:Spectral energy distributions and effective temperature scale of M giant stars have been determined. This study has been applied a method of band model opacity to red giant stars of relatively low effective temperature (M-giant stars) [1].The Outer atmospheres of the coolest M giants (ρ Persei, 2 Centauri, g Herculis, θ Apodis and R Lyrae) have been examined at Ultraviolet spectrum region. The chromospheric spectrum found to contain a plethora of Fe II lines, whose relative strengths are strong, affected by saturation and fluorescence, and a few lines of C I, C II, Mg I, Mg II, Al II, Fe I and Cr II. The chromospheric spectra of ρ Persei, R Lyrae, 2 Centauri and g Her have been found to be remarkably similar [2]. Non-LTE (NLTE) calculations of semiempirical chromospheric models have been presented for 30 g Her (M6 III). The semiempirical models have been described here are constrained by two high-resolution IUE spectra recording the line profiles of the C II] UV0.01 intersystem lines near 2325 Å, the Mg II *h* and *k* lines near 2800 Å, and the Mg I resonance line at 2852 Å [3].

In the study, atomic and molecular specrum of g Herculishave examined. There were not many studies in the investigated literature except for those given in our article for g Her. Our goal is to contribute to the literature and to provide information about g Her for wide wavelength range.

II. OBSERVATION

The line identifications of the star were made by using Moore Multiplet Table [4]. Astronomic properties of the star were made to find database Simbad by using Hipparcos Catalogue [5]. The atomic and molecular spectrum of g Herculis for 5260-8560Å wavelength range examined. The observation information is given Table 1 for g Her. Some observations for g Her made in the past are given in Table 2.

Telescope	B-V	Exposure Time (sec)	Resolving Power (λ/Δλ)	Period	Instrume	CCD	
RTT150	1.28	400	40,000	89.2	Coude-Echell	e ANDOR	
Table 2. Some of g Her observations [3]							
Wavelengths (Å)		Date (U. T.)	Telescope	ResolvingExpoPower (λ/Δλ)Time		Exposure 'ime (sec)	
2500-3	3200	1988 June 16	IUE	5	00	300	
2500-2	2900	1988 June 16	IUE	10,	,000	2400	
2300-3	3100	1988 june 17	IUE	10,	,000	52800	
3922-3	3975	1989 Aug 13	McMath	21,	,000	9000	
8488-8	8590	1989 Aug 14	McMath	23,	,000	120	
4181-4	4248	1989 Aug 27	McMath	21,	,000	120	
6540-6	6600	1992 Apr 20	McMath	45	.000	300	

Table 1. The observation information for gHer

III. IMAGE REDUCTION AND ANALYSIS FACILITY (IRAF)

The accuracy of the spectral analysis results for a star depends on the quality of the observational data analyzed and the reliability of the atomic data used to make the methods used in the analysis current and accurate. The crude spectrum image for the g Her is given in Figure 1.

Spectrum analysis of star (such as preliminary reduction, reduction, wavelength calibration) was made using by IRAF. There are some rules that must be followed during the reduction process of Echelle spectra. It is necessary to make some adjustments which are caused by the CCD. The most important are dark, bias and flat calibrations [6]. The average bias, dark, and flat images are given in Figure 2, 3, 4.

Fig.3. The average dark image

IV. RESULTS AND DISCUSSION

In the study, atomic and molecular spectrum of g Herculishave examined for 5260-8560Å wavelength interval. The most important feature of M-type stars is the predominance of TiO molecules in their spectra. Especially, the visual spectrum is dominated by the typical TiO to bands characterizing the M spectral type. The spectra of M-type stars have metal lines because the effective temperature is low. Molecules are also found in the spectrum of these typestars. Because molecules can bind only at low temperatures.

The M-type stars, strong absorption bands of TiO and metallic lines do not exist at wavelengths shorter than 4000 Å [7]. In our work, TiO bands were found inwavelengths bigger than 4000Å. In the study, recognition of spectral lines for g Herculiswas made by IRAF. The spectrum line diagnostics were done by selecting clean and smooth apertures. Some apertures for g Her spectrum is given Figure 5;6;7; 8 and 9.

Fig. 5. The first aperture of g Her spectrum

Fig. 8.The 18th aperture of g Her spectrum

Fig. 9. The 34th aperture of g Her spectrum

TiO bands become stronger at wavelengths shorter than 9000 Å in stars which have M6 and M7 spectral species. The TiO bands in these species are weak at around 10,000 and 10,300 Å. This band comes to the visible level in the stars of M3 spectral type and M is intensified by the increase of spectral.Therefore, M spectral class is a useful criterion for determining. However, inM spectral type stars is also foundVO band. This band becomes dominant for M7 and M8-9 spectral species [8]. The atomic, molecular and ionic spectral lines of g Her is given in Table 3.In study of Luttermoser 1994 is obtained Ca I 6573 Å and H_{α} ~6562.5 Å. In this work is obtained Ca I 6570.6 Å and H_{α} 6560 Å. According to these results, there is about 2.4 Å deviation. This deviation is added to the wavelengths. It is estimated that the cause of this deviation is due to the radial velocity of the star. In this work, TiO band head determined by using the study of Valenti et al. 1998 [9]. The atomic, molecular, and ionic spectral lines determined by using Multiplet Table [4]. Therefore, the multiplet number is not specified for TiO band heads. In Table 3. λ_{obs} ; observation wavelength and λ_{Lab} ; it is likely the wavelength of the lines. So λ_{Lab} , may correspond to more than one line. As seen in Table 3. in the atmosphere of g Her were found to be definitely present in the dominant Fe I, and Ti I.The number of more than one ionized element is low because the effective temperature is low.In addition, TiO band, which are characteristic of these spectral class stars: 5950.565 Å, 8198.659, and 8414.957 Å for g Her. The spectrum obtained from the celestial bodies is important in obtaining a lot of information about them. The lines seen on the spectrum are closely related to the star temperature. The effective temperature of the celestial body is a clear determinant of what elements, molecules, or ions may be on it. For example, metal lines are not visible at high temperatures when present at low temperatures. Because, metals cannot bond at high temperatures. At low temperatures, atoms are found at the base level and electrons are closest to the nucleus. When the temperature israised ionized atoms form.Molecules do not form at very high temperatures. In short, metals, molecules, and molecular bands are found in stars with low effective temperatures.

Table 3. The atomic, molecular and ionic spectral lines for g Her

2. (1)	2	Multiplet No	2. (1)	2 (1)	Multiplet No
9569 9:2 4	2571 9 Eq. I	1272	7402.2+2.4	7404 72 Ea L	22
0300.0+2.4	8371.8 Fe I	1272	7492.2+2.4	7494.72 Fe I	55
8454.1+2.4	8455.24 CF I	56	7477.2+2.4	7479.06 O I	55
	8457.10 111	141		7479.70 Fe II	12
9426 4.2.4	9429 02 T. I	22.1	7474 4 . 2 4	7476.40 Fe I	1251
8430.4+2.4	8438.93 111	224	/4/4.4+2.4	7476.45 0 1	55
				7476.92 Fe I	1004
8421.1+2.4	8423.10 Ti I	150	7422.8+2.4	/425.12 Fe II	209
	0414.00 5.4			7425.64 F I	1
	8414.08 Fe 1 8414.957	1154	7291 9 . 2 4	7294 OC E- 1	1200
0412.4+2.4	TiO Band Head	1134	/381.8+2.4	7384.90 Fe I	1508
	fiead			7361.39 V I	117
8304.4+2.4	8306.115 H	12	7358.7+2.4	7361.56 Ti I	212
000111211	8306.80 Si I	19	/556./12.1	7361.59 A11	11
				7311 02 F I	5
8294.9+2.4	8297.58 Cr I	297	7309.3+2.4	7311.101 Fe I	1077
0251.512.1	0257.50 CT 1	227.	75051512.1	7311 26 Fe I	1105
				7278 48 Fe I	1274
8290.9+2.4	8293.527 Fe I	623	7275.9+2.4	7278 72 Hf II	111
	8287 38 Cr I	298		7273 20 S H	18
8286.9+2.4	8207.50 Cr I	298	7271.4+2.4	7273 77 Ti I	212
8211 3+2 4	8213 02 Mg I	238	7176 9±2 4	7179 16 Fe II	72
0211.512.4	8108 87 V I	20	7170.912.4	/1/).iore ii	12
	8198.87 V I 8198.951 Eq.I		7000 7 12 4		
8106 4 2 4	8108 650	30		7093 10 Eq.I	1189
8190.4+2.4	TiO Rand	1154	7090.7+2.4	7095.101101	1189
	Head				
	8151.95 Co.I	193		7054 042 Co I	140
8151.4+2.4	8160 15 4111	118	7052.3+2.4	7054.62 Cd II	130
	8151.95 Co.I	193		7054.02 Od II	150
8150.8+2.4	8160 15 4111	118	7033.3+2.4	7035.86 Ti I	307
8126 9±2 4	8129 32 Fe I	265	6968 9±2 4	6971 95 Ee I	404
0120.712.4	7885 00 TH	205	0900.912.4	6885.07.0 II	45
7883.1+2.4	7885 26 S II	68	6882.8+2.4	6885 772 Fe I	1173
	7005.20 5 11	00		6846 60 Gd II	94
7877.4+2.4	7879.75 Fe I	1306	6843.6+2.4	6846 97 O II	45
				6783 27 Eo I	206
7752 5+2 4	7754 70 E I	4	6781 2+2 4	6783 71 Fe I	205
7752.5+2.4	//54.70111	4	0781.2+2.4	6783.75 C II	205
	7748 281 Eq. I	402		0785.75 C H	14
7745.7+2.4	7748.2011C1	142	6766.9+2.4	6769.62 Ba II	8
	7748.03 NG I	142		6769.66 Fe I	1226
	7745.05 S H	70		6756 56 Fe I	1120
7743.1+2.4	7745 48 Fe T	1305	6753.7+2.4	6756 61 A II	20
	,,+5.+6101	1505	-	6681 03 CLT	38
7592 6+2 4	7592 74 Не п	6	6679.4+2.4	6681 23 Gd II	94
1392.0+2.4	/592. /4 He II	0		6681.34 Fe I	1155

Table 3.-Continued

λ_{obs} (Å)	$\lambda_{Lab} (\mathbf{A})$	Multiplet No	λ_{obs} (Å)	λ_{Lab} (Å)	Multiplet No
6648.2+2.4	6648.08 Fe I 6653.41 N I	13 20	6148.9+2.4	6151.509 V I	33
6591.1+2.4	6593.878 Fe I	168	6140.9+2.4	6143.0623 Ne I 6143.23 Zr I	1 2
6570.6+2.4	6572.781 Ca I 6572.900 Cr I	1 16	6129.3+2.4	6131.005 Mn II 6131.30 Si I 6131.54 Si I	13 30 30
	6574.238 Fe I	13		6131.86 Si I 6131.917 Mn II	30 13
6560+2.4	6562.817 H_{α}	1	6090.2+2.4	6092.13 S II 6092.814 Ti I	20 153
6495.5+2.4	6497.689 Ti I	102	6080+2.4	6082.431 Co I 6082.718 Fe I	169 64
6419.6+2.4	6420.47 N I 6421.355 Fe I 6421.507 Ni I	23 111 258	6064.1+2.4	6066.32 Al II 6066.44 Al II	92 92
6414+2.4	6416.905 Fe II 6416.94 Fe I	74 1253	5953.1+2.4	5955.12 Fe I 5955.37 Zr I 5955.682 Fe I	1233 3 1106
6320.5+2.4	6322.165 Ni I 6322.693 Fe I 6322.98 Fe III	249 207 3	5948.3+2.4	5950.13 Fe I 5950.91 A I 5950.565 TiO Band Head	1200 12
6303.9+2.4	6306.047 Sc I 6306.17 Hf II 6306.19 Fe I	3 81 1230	5875.1+2.4	5877.26 Gd II 5877.770 Fe I	94 1083
6221.3+2.4	6223.994 Ni I	228	5872.9+2.4	5875.6 Fe III 5875.618 He I 5875.650 He I 5875.989 He I	- 11 11 11
6210.4+2.4	6212.04 Fe I 6212.30 Ti II	1142 108	5864.5+2.4	5866.453 Ti I	72
6172.8+2.4	6175.158 Fe II 6175.424 Ni I	200 217	5849.6+2.4	5852.19 Fe I 5852.4878 Ne I	1178 6
6162+2.4	6162.172 Ca I 6163.42 Ni I 6163.560 Fe I 6163.5939 Ne I 6163.758 Ca I	3 230 64 5 20	5826.4+2.4	5828.00 N IV	15
6156.9+2.4	6159.409 Fe I	1175	5804.4+2.4	5806.31 Cr II 5806.56 La II 5806.727 Fe I 5806.75 Si II 5806.77 Sc II	31 90 1180 8 21

Table 3.-Continued

λ_{obs} (Å)	$\lambda_{Lab} (\mathbf{A})$	Multiplet No	λ_{obs} (Å)	λ_{Lab} (Å)	Multiplet No
	5800.02 Fe II	165		5597.21 Gd II	95
5797.8+2.4	5800.229 Ba I	9	5594.9+2.4	5597.87 Cr I	239
	5800.48 Si II	8		5597.92 Ti I	229
	5797.352 V I	142			
	5797.445 Ti I	309			
	5797.53 Cr I	185			
	5797.57 La II	4			
	5797.76 Zr I	4		5580.00 Ea I	1160
5796.6+2.4	5791.81 Fe II	165	5587.2+2.4	5589.00 Fe I 5589.384 Ni I	205
	5797.912 Si I	9			205
	5798.000 Cr I	185			
	5798.194 Fe I	982			
	5798.46 Cr I	17			
	5798.905 V I	142			
	5738.22 Fe I	1084	5584.3+2.4	5586.007 V I	85
5736.4+2.4	5738.286 Mn I	-		5586.16 Gd II	78
	5738.554 Cr I	227		5586.763 Fe I	686
	5732.29 Fe I	1313		5537 11 Ni I	188
5730.2+2.4	5732.72 Fe II	57	5535.4+2.4	5537 756 Mn I	4
	5732.86 Fe I	1055		5557.750 Will I	-
			5471.7+2.4	5474.09 Fe I	1314
5665 4+2 4	5667.164 Sc II	29		5474.228 Ti I	108
5005.412.4	5667.67 Fe I	209		5474.449 Ti I	259
				5474.734 Nd II	82
	5666.64 N II	3	5460.6+2.4	5463.282 Fe I	1163
5663.7+2.4	5666.78 Ni I	233		5463.38 Hf II	14
	5666.837 Fe I	1053; 1060		5463.974 Cr I	204
			5455.09 Fe I 5455.14 La I 5453.4+2.4 5455.613 Fe I 5455.613 Fe I	5455.09 Fe I	627
				5455.14 La I	3
5599 5+2 4	5601 285 Ca I	21		5455.433 Fe I	1145
000012.4	5551.265 Cu I	21		5455.613 Fe I	15
				5455.80 Cr II	50
				5455.815 Nd II	83

Table 3.-Continued

λ_{obs} (Å)	λ_{Lab} (Å)	Multiplet No	λ_{obs} (Å)	λ_{Lab} (Å)	Multiplet No
5451.2+2.4	5453.255 Ni I	231	5351.6+2.4		
	5453.338 Co I	194		5354.01 Co I	91
	5453.646 Ti I	108		5354.66 Cr II	29
	5453.81 S II	6		5354.67 Ta I	6
	5453.98 Fe I	1064			
5425 2 . 2 4	5427 10 Ea I	1145	5349.9+2.4	5352.000 O V	13
5455.5+2.4	5457.19 Fe I			5352.046 Co I	172
		15	5346.2+2.4	5348.069 Mn I	36
5432 5 1 2 4	5424 527 Eq.I			5348.319 Cr I	18
5452.572.4	J4J4.J27 IC I			5348.40 Hf II	22
				5348.67 Gd I	6
	5414 080 Eo II	19		5300.012 Ti I	74
5412.3+2.4	5414.009 FC II	40	5298.1+2.4	5300.41 Fe I	1240
	5414.91 10 1	074		5300.749 Cr I	18
	5412 56 Eq. I	1237	5297.2+2.4	5299.00 O I	26
5409.6+2.4	5412.50 Fe I			5299.278 Mn II	11
	5412.00101	1102		5299.85 Hf II	14
	5404.23 Ti I	259	5275.3+2.4	5277.31 Fe I	1149
	5404.12 Fe I	1145 1165 53		5277.32 Fe I	584
5402.4+2.4	5404.144 Fe I			5277.40 Zr I	27
	5404.87 O I			5277.59 Fe I	983
	5404.95 Ta I	13		5277.68 Al II	67
5400.1+2.4	5402.000 Co I	195			
	5402.113 Fe II	-	5256.8+2.4	5259.09 Fe I	1149
	5402.27 Fe III	-		5259.38 La II	21
	5402.51 Ta I	1		5259.62 C II	30
	5402.57 Lu I	2		5259.743 Pr II	35
	5402.69 A II	-		5259.976 Ti I	298
	5402.78 Y II	35			

ACKNOWLEDGMENTS

Spectroscopy was carried out with the observation project titled "Examination of the Spectrum, Mass Loss, Amplitude Change and Envelope Formation of SR and Mira-Type Red Stars" at the TÜBİTAK National Observatory (TUG) in 2006 with the project of Associate Professor Cahit Yeşilyaprak.

2017

REFERENCES

- [1] Tsuji, T., Spectral Energy Distributions and Effective Temperature Scale of M-giant Stars, Astron. Astrophys., 62:29-50, (1978).
- [2] Eaton, J. A., Johnson, H. R., The Outer Atmospheres of the Coolest M Giants: Ultraviolet Spectra of p Persei, 2 Centauri, g Herculis, P Apodis and R Lyrae, The Astrophysical Journal, 325:355-371, (1988).
- [3] Luttermoser, D. G., Johnson, H. R., Eaton, J. A., The Chromospheric Structure of the Cool Giant Star g Herculis, The Astrophysical Journal, 422:351-365, (1994).
- [4] Moore, C. E., 1972. A Multiplet Table of Astrophysical Interest Revised Edition Nat.Stand. Ref. Data Ser. USA.
- [5] Perryman, M. A. C., Lindegren, L., Kovalevsky, J., Hog, E., Bastian, U., Bernacca, P. L., Creze, M., Donati, F., Grenon, M., Grewing, M., Leeuwen, F. V, Marel, H., Mignard, F., Murray, C. A., Poole, R. S., Schrijver, H., Turon, C., Arenou, F., Froeschle, M., and Petersen, C. S., 1997. The Hipparcos Catalogue. European Space Agency The Netherlands, <u>http://simbad.ustrasbg.fr/simbad/sim-fid</u>
- [6] Derman, E., Gürol, B., Çağlar, H., Cuhacı, L., Demircan, Y., Gökay, H. G. Iraf, and Spectral Reduction., Istanbul Kültür University Publications, 105: 158, (2009).
- [7] Melikian, N. D., Magnan, C., Sarkissian, J. M., Karapetian, A. A., New M-Type Variables in Galactic Dark Clouds. Astrophysics, 46: 10-17, (2003).
- [8] Lockwood, G. W., Scanner Photometry of Weak TiO Bands Near 1 Micron in Cool M Stars. The Astrophysical Journal, 180: 845-855, (1973).
- [9] Valenti, J. A., Piskunov, N., Christopher, M. J-K., Spectral Synthesis of TiO Lines, The Astrophysical Journal, 498:851-862, (1998).