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Abstract: Drillstring buckling is one of the major challenges facing the drilling industry, which can increase 

non-productive time (NPT) by locking up the wellbore and it may require serious fishing operations to solve. 

The use of oversimplified assumptions, which neglects friction effect, torque and wellbore geometry, is one of 

the reasons for the poor prediction of drillstring buckling. The model governing the deflection of the drillstring 

can yield several integration constants requiring several accurate boundary conditions in order to solve. The 

difficulty in generating such boundary conditions makes it cumbersome to predict drillstring buckling. In this 

study, we overcome this difficulty by creating a particular solution from the total moment equation comprising 

bending moment and torque in the drillstring. The study includes the effects of wellbore geometry and 

coefficient of friction into the analysis while predicting critical force. The results obtained shows that for any 

wellbore geometry, the drillstring stiffness and unit weight are the most important factors affecting the critical 

force. In vertical wellbores, the radial clearance has little or no influence on the critical force. For horizontal 

and inclined wellbores, the radial clearance has a significant influence on the critical force with wellbore 

inclination an important factor for the later. The value of the critical force obtained using the model developed 

in this study was 11,272 Lbf which compares with 11, 725.3 Lbf obtained using the Lubinski`s model. In 

addition, the value obtained for horizontal well was 206,552.7 Lbf that compares favourably with the Huang et 

al model (2015a). Thus, the recommendation is to model properly the radial clearance and drillstring stiffness, 

and to introduce drilling packers in order to prevent tubular buckling of oil well drillstring. 

Keywords: Drillstring buckling; drillstring stiffness; radial clearance; critical force; beam-column model; 

wellbore geometry. 

 

I. INTRODUCTION 
The major concern when drilling a well is how to follow the well planning program in order to carry 

out a safe, usable and economic operation, (Adams 1985; Azar 2006). For the well to be usable, it must be stable 

and problem free. One of the integral components of a drilling rig is the drillstring, which is composed of 

drillpipe, drill collars, bottom hole assembly and other accessories, Mitchell and Miska(2011), the stability of 

which determines if the concern of the well planner will be successful or not. Excess loads acting on the 

drillstring render it unstable and result in buckling, when a critical force is exceeded. When a tubular string 

buckles, it will acquire a curved shape, Gao and Huang (2015). 

Drillstring buckling, a boundary value problem, can incur huge cost on a drilling project because it may 

lead to an increase in non-productive time (NPT) and serious fishing operations may be required to solve the 

challenge. It can lead to drillstring lock up, casing wear and drillstring failure, Gao and Huang (2015). The Euler 

deflection model defines the buckling of a slender column as presented by Chapra and Canales (2007), and 

Mitchell and Miska (2011). Nevertheless, this model is not applicable to the buckling of drillstring because of 

downhole complexities arising from such factors as frictional forces, torque, weight of drill collars, size of the 

string and the wellbore geometry, (Mitchell and Miska 2011; Gao and Huang 2015). 

In the process of solving equations governing the elastic behaviour of the drillstring, many boundary 

conditions are required because of the many constants of integration generated from the equations. This is the 

case because the equations are usually of fourth (4th) order and appear as inhomogeneous differential equations. 

The solutions of such differential equations are obtained by the combination of a complimentary solution and a 

particular solution, Chapra and Canales (2007). The exact boundary conditions are required if any useful 

solution are to be obtained. Thus, research is incapacitated since only the boundary conditions at the extremes of 

deflection are known with precision. Prediction of drillstring buckling has been a challenge to drilling 

engineering, Mehdi and Jeremy (2014), and the use of dimensionless parameters has been successfully applied 

as presented by Mitchell and Miska (2011). One of the reasons for this difficulty is the inability to define a 
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relationship between the deflection in the lateral directions and the length of the drillstring.  Predicting the 

maximum displacement and location of the drillstring for a specific depth is essential to defining drillstring 

buckling, Abdul-Ameer (2012).The exact conditions of the drillstring in-situ are also hard to define. There are 

also weaknesses in the assumptions used to generate the governing equations. 

While the determination of accurate model for predicting the critical force is important, more important 

is to have a model that is applicable in vertical or non-vertical wellbores. This will yield a cost effective way of 

predicting drillstring buckling. 

The aim of this study is to overcome the difficulties in defining the critical force causing drillstring 

buckling by reducing the number of unknowns generated in the governing equations. The objective is to 

overcome the necessity of using many boundary conditions in trying to solve buckling models by developing a 

particular solution. This will be applicable in a straight wellbore. 

 

Tubular Buckling Literature  
Several models have been proposed for predicting tubular buckling. Some of the notable models for 

vertical wellbores are those presented by, (Lubinski 1950; W. Huang et al 2016). Huang, W., et al (2015a) 

worked on horizontal wells, while Huang, W., et al (2015b) worked on inclined wellbores. Apparently, none of 

these models appears to predicting the buckling force for a vertical, inclined or horizontal well. The results 

obtained from such models are quite different even for similar wellbore geometry mainly because of the 

different assumptions in their formulations. The most commonly used models for studying tubular buckling are, 

(Gao and Huang 2015), the beam-column model, the buckling differential equation, and the energy method. 

The beam-column model assumes the drillstring to be in the form of a column having two possible 

ways of deflecting in the lateral directions. Only a small amount of deflection occurs in the tubular compared to 

the axial length of the drillstring. Thus, the deflection satisfies the linear elastic theory. The governing equation 

for such a deflection, which is a differential equation, is given as follows, Gao and Huang (2015): 
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The integration of equation (1) will yield four integration constants that are obtainable only when accurate 

boundary conditions are specified. Equation (1) is a differential equation of the inhomogeneous form, solvable 

by the combination of a complimentary solution and particular solution, Chapra and Canales (2007), the 

substitution of the particular solution into the general equation satisfies the equation. The Beam-Column model 

will be used in this study to generate the critical buckling force. This will be done in such a way as to make 

prediction for vertical, inclined or horizontal wellbore geometry. 

In the buckling differential equation method, the well is constrained by the clearance radius along the 

lateral directions: 

Cosru
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The substitution of equations (2) and (3) into the governing equation for the beam-column, equation yields the 

following, Gao (2006): 
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Where   angular displacement from the buckling differential equation 

The bending moment and torque make up the total moment vector in the drillstring as follows, Mitchell and 

Miska (2011): 

T
MEIM                         

(5) 
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While in a state of compression, the drillstring responds to bending moment and there may be significant drag 

force depending on the contact made with the walls of the wellbore. The sinusoidal buckling solution for the 

deflection of tubular is presented in equation (6), Gao and Huang (2015): 

zASinw
v

                        

(6) 

The energy method considers the total potential energy of the tubular. The sinusoidal solutions are 

substituted into the expression for total potential energy. The calculated minimum value of the expression gives 

the required solution for buckling.  

All three basic methods are applied to determine the critical buckling load. Lubinski (1950) was the 

earliest researcher to give a detailed description of tubular buckling in the drillstring. He used a vertical wellbore 

with no torque and substituted into the beam-column model to obtain the following expression: 
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Mitchell (2013) used numerical analysis to solve the buckling differential equation for the helical 

buckling, while Parslay and Bogu (1964) used the energy method to obtain an expression for the critical load in 

an inclined wellbore. The mathematical expression for the critical force is as follows, (Parslay and Bogu, 1964): 
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Equation (8) is much like the Euler model but has additional term. It is possible to use this model to obtain the 

critical force for vertical, inclined or horizontal wellbore, but in the current study, the Beam-Column model will 

employed for this purpose. 

Menand et al (2011) and Dawson (1984) used the energy method to obtain the following expression for 

inclined wellbore: 
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(9) 

The results produced using equation (9) and equation (8) are similar when applied in a vertical well, but 

evidently, the Menand et al (2011), and Dawson (1984) models do not work for vertical wells. 

Huang, W., et al (2015a) derived a new model for predicting the behaviour of horizontal wellbore 

based on the assumptions that the wellbore is straight, the drillstring is in continuous contact with the wellbore, 

and frictional effects are negligible. The expression they obtained is given as follows: 
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(10) 

The result obtained using equations (9) and (10) yield similar results when applied to horizontal wells. Mitchell 

(2003) developed a similar equation for predicting the critical force in horizontal wells. 

 

II. METHODOLOGY 

This section contains the approach used in predicting the critical force to buckle drillstring in vertical, 

horizontal or inclined wellbores. The fundamental assumptions applicable are that the drillstring is elastic; with 

considerable friction effects acting on it, and that the radial clearance constrains the deflection. Thus, the 

governing equation applied is the beam-column model, which is fourth order. The difficulty of applying many 

boundary conditions to solving the fourth order differential equation was overcome by generating a particular 

solution for the deflections in the drillstring. This solution was obtained from the total moment equation, which 

comprised contributions from bending moment and torque in the drillstring. The substitution of the derivatives 

of the particular equation into the beam-column model resulted in a quadratic equation with respect to the 

critical force. 

An MS excel programme was developed in order to compute the critical force for buckling, while the 

effects of the variables affecting the critical force was presented using the crystal ball software. 
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Analysis of study 

The following are the assumptions applied in this study: 

 The drillstring is an elastic material with significant friction effects 

 Drillstring curvatures are neglected and wellbore inclination affects buckling 

 Drillstring unit weight is significant. 

Considering the sinusoidal buckling of a drillstring in a wellbore filled with drilling mud, the upper 

section of the drillstring exists in tension due to the hook load used in anchoring it. The tension of the upper 

section puts the lower section of the drillstring, below a point called the neutral point, in compression. The 

combined weight of the axial force and the drillstring weight results in the buckling of the tubular when a 

critical force is exceeded. 

The expression for the deflection of a section of the drillstring in the y direction can be written as 

follows: 
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The bending moment in the section of the drillstring can be given as, (Chapra and Canales 2007; Mitchell and 

Miska (2011); Ibrahim 2003): 
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(12) 

Where M is the total moment in the drillstring section, which can be written as follows, Mitchell and Miska 

(2011): 
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 The integration of equation (12) yields the following: 
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Application of the boundary conditions that 0)0( zv  and 0)(  Lzv results in the following equation: 
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Allowing the maximum deflection to occur at the middle of the drillstring section, the particular model for the 

deflection changes to the following expression: 
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From equation (16), the following expressions are obtained: 
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The model for obtaining the torque acting in the drillstring is obtainable as follows, Aadnoy (2010): 

wLSinirkM
btorque
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(20) 
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The bending moment equation is presented in appendix A 

The substitution of equations (17), (18), (19) and (20) into equation (11), and carrying out further mathematical 

arrangements yields the following expression when applied to a straight inclined drillstring: 

04)(
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The negative sign of the friction coefficient has been incorporated while deriving equation (21), which is 

quadratic in terms of the critical force. The variable, L, is the length of the buckled section of the drillstring. 

Equation (21) can be simplified to the following expressions: 
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The positive value of the solution to equation (22) can be written as follows:  
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The axial length over which drillstring buckling occurs is a requirement. From the solution of sinusoidal 

buckling, the following expression was obtained for the buckled length: 
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(27) 

p is a unit length factor, which in this study is a function of drillstring unit weight, stiffness and length as 

follows: 

),,( EILwfp                      

(28) 

From dimensional analysis shown in appendix B, the expression for the unit length factor is: 

EI
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(29) 

Combining equations 27 and 29, and subsequently including a design factor for safe drilling purpose yields the 

expression below for the buckled length: 

3
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(30) 

F
D  is the design factor ranging from 1.1-1.2 (Mitchell and Miska 2011). In this study, the average value is 

assumed. 

 

III. RESULTS AND DISCUSSION 
  The importance of equation (22) is that it is applicable in a vertical or non-vertical well, unlike most 

other models. For the buckling of drillstring in a straight vertical wellbore, the expression for the critical load 

can be given as follows: 

3865.1
w
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                   

(31) 

Equation (31) shows that the radial clearance has no impact on the critical force causing buckling in a vertical 

wellbore. The main reason for this could be that prior to buckling of the drillstring, the tubular does not rest on 



American Journal of Engineering Research (AJER) 2017 
 

 
w w w . a j e r . o r g  

 
Page 306 

any part of the wellbore walls except for some offsets. The unit weight of the drillstring has a very high impact 

on the buckling force in long vertical wells. The larger the unit weight of the drillstring the more difficult it is to 

buckle. That is, the use of heavy drillpipe in vertical sections will be favourable to drillstring stability. Figure 1 

is a display of the variables affecting buckling in a vertical wellbore. The result shows that the radial clearance 

has little or no impact on the model for obtaining the critical force. The unit weight of the drillstring has a higher 

impact on the critical force in vertical wells mainly because there is no support to the exposed length of the 

drillstring. 

Using the data in Table 4, the value of the critical force for vertical wellbore is 11,272.02 Lbf as shown 

in Table 1. This compares very well with the value of 11,725.3 Lbf obtained using the Lubinski model. The 

coefficient of friction has little influence on the critical force for such wells mainly because there is no contact 

with the walls of the wellbore. 

  The critical force causing tubular buckling in a horizontal well is much higher than that of a 

corresponding vertical wellbore. One reason for this is that is, the drillstring rests on the faces of the wellbore 

wall, thus enabling a higher force to cause the buckling of the structure. Much frictional force has to be 

overcome for buckling to occur. The expression for the critical force in a horizontal well, derived from equation 

(22), is as follows: 

c
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(32) 

Equation (32) is the same as that obtained by Mitchell (2003), Menand et al (2011), Dawson (1984), and Huang 

et al (2015a), for a horizontal well. 

Figure 2 is a display of the variables affecting buckling in a horizontal well. It shows that for a 

horizontal well, the radial clearance, the unit weight and stiffness of the drillstring are all very important 

variables to consider. Each has almost the same influence on the critical force. There is a negative correlation 

for the radial clearance because the length at the bottom supports the lowest portion of the wellbore. The higher 

the stiffness the higher the critical force of the drillstring. That is, it becomes more difficult to cause the 

drillstring to buckle. The larger the radial clearance between the drillstring and the wellbore the lower the 

critical force. That is, it becomes easier to cause the drillstring to buckle. Computation of the critical force gives 

a value of 206,552.7 Lbf as presented in Table 2, which is quite large when compared to that of the vertical 

wellbore. This is the same value obtained when the Huang W. et al (2015a) model is applied. The radial 

clearance significantly affects the critical force in a non-vertical wellbore, (Dawson and Paslay 1984; Wu 1992; 

Paslay and Bogy 1964). Equation (22) approximates the Paslay and Bogy model when parameters A and C are 

introduced. 

Figure 3 displays the variables affecting drillstring buckling of an inclined wellbore. The value of the 

critical force is quite lower than that of horizontal wellbore, but the difference gets smaller as the inclination 

approaches 90 degrees. 

The radial clearance has a high impact on the critical force in an inclined wellbore. This is because of the 

eccentricity of the drill pipe due to the slanting of the well. 

The critical force increases as the wellbore inclination increases. Figure 4 is a display of the variation 

of critical force with wellbore inclination. 

There is a positive correlation between the variables, and the result is similar to that obtained by Gong et al 

(2016) for the variation of critical force and inclination for helical buckling. The critical force increases with 

inclination since part of the wellbore bears the load on the string. Thus, it is more difficult to buckle a drillstring 

in a horizontal wellbore than in a vertical one. Table 5 is a computation of the critical force for different 

wellbore geometries using several models. The significant variance in the critical force in an inclined wellbore 

maybe because of the non-curvature of the drillstring that was assumed. 

 

IV. CONCLUSIONS 

A new model for obtaining the critical force for buckling in a drillstring of any geometry was 

developed in this study. The equation accounted for the effect of bending moment and torque in the drillstring. 

The starting equation was the beam-column equation for deflection in the drillstring. The application of the total 

moment equation was used to develop a particular solution that was used to substitute for the differentials in the 

beam-column model.  

From the analysis of the study, the following points are drawn: 

 The radial clearance between the drillstring and wellbore, drillstring unit weight and drillstring stiffness 

significantly influence the critical force for buckling in non-vertical wellbores. 

 The radial clearance has no influence on the critical force for buckling in vertical wellbores.  
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 The critical force increases with the wellbore inclination. 

 In terms of buckling in non-vertical wells, friction enhances drillstring stability hence delaying the onset of 

buckling. 

 

V. RECOMMENDATION 

The proper modelling of the relationship between the radial clearance and drillstring stiffness is 

recommended. In addition, continues rotation of the drillstring should be ensured, and the use of drilling packers 

and centralizers in the annular space is recommended to help improves drillstring stability. 

 

Nomenclature 

A Amplitude in the sinusoidal buckling solution 

CBA ,, = coefficients in quadratic equation of critical force in drillstring  

1
C = Constants of Integration, 

2
/ ftLb  

2
C = Constant of Integration, ftLb /  

F
D =Design factor, dimensionless 

E =Young`s Modulus of drillstring, Psi 

EI = Drillstring stiffness, product of Young`s modulus and moment of inertial, Lbf/sq.ft 

zc
FFFF ,,,

1
= Critical force to cause buckling, Lbf 

i = Wellbore inclination, Degree 

I = Moment of inertial, 
4

ft  

 = Wellbore Curvature of the drillstring centreline, ft 

dc
L = Length of buckled drillstring, ft 

bT
MMM ,, = Total moment, torque and bending moment of drillstring respectively, Lbf-ft 

n = number of sinusoidal period of buckling, dimensionless 

bp
wq , = Weight per unit Length of drillstring in mud, Lbf/ft 

c
r = Radial Clearance, ft 

Z = axial distance, ft  

 =Angular displacement of drillstring, Rad 

v
w = angular velocity, sec/rad  

vu , = Lateral Displacements of the drillstring, ft 
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APPENDIX A: Dimensional Analysis for Drillstring Curvature 

The equation of the bending moment of a drillstring is related to the curvature as follows: 

          

              A-1 

Where EI is the drillstring stiffness and  is the drillstring curvature. 

The curvature of tubular is a function of the axial force, unit weight of drillstring, stiffness and radial distance, 

Gao (2006), Huang et al (2015a). 

Let the drillstring be constrained by the radial clearance between the drillstring and wellbore walls, 
c

rr  , and 

the net compressive axial force affects the bending moment, Thus: 

 FEIrf
c

,,           

       A-2 

From the Rayleigh method of dimensional analysis, the following obtains: 
cba

c
FEIr )(           

        A-3 

Dimension of   is 
1

L  

Dimension of 
c

r  is 
1

L  

Dimensions of )( EI  is 
23 

TML  

Dimensions of F  is 
2

MLT  

Equating the power of each variable, the following expressions are obtained: 

13  cba           

     A-4 

0 cb            

      A-5 

022  cb            

      A-6 

The feasible set of solution that defines the bending moment is 

1,1,1  cba  

Equation A-3 can be written as follows: 

EI

Fr
c

            

     A-7 

Equation A-7 can be recast into the following: 
2

2
















EIr

F
r

c

c
           

     A-8 

The bending moment equation, A-1, can then be written as follows: 
22


c

EIrM             

         A-9 

Where 
EIr

F

c

  

EIM 

http://dx.doi.org/10.2118/29462-PA
http://dx.doi.org/10.1115/1.3629721
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APPENDIX B: Dimensional analysis for buckled length 

The sinusoidal solution for a buckled drillstring is a function of length. From such solution is possible 

to have the following: 

p

n
L


            

         B-1 

Where p is a variable called the unit length, which is a function of unit weight, stiffness and length: 

 EILwfp ,,           

         B-2 

From the Rayleigh method of dimensional analysis, the following obtains: 
cba

EILwp )(           

         B-3 

Dimension of   is 
1

L  

Dimension of L  is 
1

L  

Dimensions of )( EI  is 
23 

TML  

Dimensions of w  is 
2

MT  

Equating the power of each variable, the following expressions are obtained: 

13  cb            

       B-4 

0 ca            

       B-5 

022  ca            

       B-6 

The feasible set of solution that defines the bending moment is 

5.0,5.0,5.0  cba  

Equation A-3 can be written as follows: 

EI

wL
p             

      B-7 

APPENDIX C: List of Tables 

Table 1: Critical Force For Vertical Well 

 
 

Table 2: Critical Force For Inclined Well 
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Table 3: critical force for horizontal well 
Inputs Keys

Dbit 12.2 inch ϒsteel 7.85 - Dbit Drill bit diameter

Didc 2.25 inch E 4300000000 Psi Didc internal diameter of drill collar

Dodc 7 inch wdc 95.53757962 Lbf/ft Dodc outside diameter of Drill Collar

ρmud 12 ppg rc 0.216666667 ft Wds unit weight of Drillstring

Wdc 117 Lbf/ft i 90 degree wds unit weight of Drillstring in mud

ϒmud 1.44 - EI 24189094.18 Lbf/ft^2 ρmud density of mud

μ 0 Fc critical buckling load

Outputs ϒmud specific gravity of mud

I 0.005625 ft^4 A 0.216666667 ϒsteel specific gravity of Steel

rc 0.216667 ft B -1.49607E-13 i wellbore inclination

Kb 0.816561 - C -9243870043 Kb buoyancy factor

Fc 206552.7 Lbf E Youngs modulus

I moment of inertia

rc radial clearance

A, B, C constants in quadratic equation

 

Table 4: Drillstring parameters used in the study 
Drill bit diameter  = 12.20 inch Unit weight of drillstring in air = 117 Lbf/ft 

Drillstring outer diameter = 7.0 inch Inclination = 0 deg 

Drillstring internal diameter = 2.25 inch Buoyancy factor = 0.816561 

Coefficient of friction = 0.2 Mud density = 12 ppg 

Modulus of elasticity = 4300000000 Psi  Specific gravity of Steel  = 7.85 

 

Table 5: Comparison of Results 
Wellbore geometry Model  Critical Force (Lbf) 

Vertical Well Lubinski (1951) 11,725.3 

New model 11,272.02 

Inclined Well Menand et al (2011) 60,974.08 

Dawson (1984) 60,974.08 

New model 66,851.29 

Horizontal Well Huang et al (2015a) 206,552.7 

New model 206,552.7 

 

APPENDIX D: Figures 

 
Fig. 1- Sensitivity of parameters in vertical wellbores 

 

 
Fig. 2- Sensitivity of parameters for buckling in horizontal wells 
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Fig. 3- Sensitivity of parameters to buckling in inclined wellbore 

 

 
Fig. 4- Variation of critical force and wellbore inclination. 

 

 
Fig. 5- Effect of friction on critical force 
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