American Journal of Engineering Research (AJER)2017American Journal of Engineering Research (AJER)e-ISSN: 2320-0847 p-ISSN : 2320-0936Volume-6, Issue-4, pp-107-121www.ajer.orgResearch PaperOpen Access

The Challenges of Borehole Drilling in A Mixed (Heterogeneous) Geologic Terrain of Larding, Quaan-Pan, Plateau State North-Central Nigeria

^{*1}Aluwong K. C., ²Mangdong,C.L., ³Goyit, M. P., ⁴Kamtu, P. M And, ¹Idowu, K. A

¹Department Of Mining Engineering, University Of Jos. ²Department Of Geology, College Of Arts, Science And Technology, Kurgwi, Plateau State. ³Department Of Geology, University Of Jos ⁴Department Of Mechanical Engineering, University Of Jos

ABSTRACT: The study area lies within a mixed terrain of basement (Older Granite and gneisses), and volcanic (Basalts). Vertical Electrical Sounding (V.E.S) was conducted using ABEM terrameter SAS 4000 to investigate the groundwater potentials of the area. Twenty-seven geo-electrical soundings were carried out, twelve from the mixed terrain and five from a nearby homogenous terrain for comparison. Comparative analysis showed that resistivity values from the mixed terrain were inconsistent, having highs and lows, ranging from 34.7 to 365 ohm meter, while those from the homogenous terrain were consistent, with resistivity ranging from 14.84 to 74.41 ohm meter. Eight boreholes were drilled, four each on either terrain. Drilling was easier on the homogenous terrain, with total drilled depth ranging between 30 to 35 meters, with a good yield, while a lot of challenges were encountered during drilling on the mixed terrain ranging from difficulties in penetrating through the overlying basaltic boulders to the basement, to loss of water into dry fractures, and the collapse of the drilled hole during development. Only one borehole was successfully drilled in the mixed terrain to a depth of 35 meters. The studies revealed that the area is a poor hydro-geological terrain due to its mixed geology. **Keywords:** ABEM terrameter SAS 4000, hydro-geological, borehole, drilling and hydro-geophysical

I. INTRODUCTION

The study area is located in Quaan-Pan Local Government Area of Plateau State, North Central Nigeria. It lies between latitudes $08^{0}57$ ' and $09^{0}03$ 'N and longitudes $09^{0}12$ ' and $09^{0}10$ ' E (Fig.1). The area lies on a mixed terrain of basement (Older granite and gneisses), close to it lies a homogenous volcanic (basaltic) terrain particularly the newer basalts of the Jos Plateau which occur as cones and lava flows and are mainly built of basaltic scoria and pyroclastics (Lar and Tsalha, 2005).

There are few rivers and streams within the study area, and the area falls within the tropical Savannah environment with prolonged dry season during which all the streams are dried up, subjecting the community to serious water shortage. Thus in a effort to provide the community with potable water, various government agencies and individuals have taken strong initiatives to exploit the subsurface water for the populace which has resulted to little success due to the heterogeneous nature of the area.

The successful exploitation of basement terrain groundwater requires a proper understanding of the geo-hydrological characteristics. This is particularly important in view of the discontinuous (localized) nature of basement aquifers (Satpathy and Kanungo, 1976). Therefore, the drilling process for groundwater development in a heterogeneous terrain such as Lardang, should be preceeded by detailed hydro-geophysical investigations.

The groundwater in the basement terrain is mainly contained in the porous and permeable weathered basement zones. The groundwater yielded from the weathered horizon is often supplemented by the accumulated groundwater in the fractured and or jointed column of the basement rocks. The highest groundwater yield in basement terrains is found in areas where thick overburden overlies fractured zones (Olorunniwo and Olorunfemi, 1987 and Olorunfemi and Fasuyi, 1993). In the study area, the overburden is usually less than 1m thick. The electrical resistivity method is one of the most relevant geophysical methods applied in groundwater investigation in the basement terrain (Ako and Olorunfemi, 1989; Limaye 1989; Owoade and Moffat 1989,). The relevance of the method is based on the usually significant resistivity contrast between the weathered zone and or fractured column and the very resistive fresh bedrock (Olorunfemi and

Fasuyi, 1993). The development of groundwater in Lardang is beset with problems of failed (abortive) hand dug wells and boreholes arising from poor knowledge of the hydro-geophysical characteristics of the heterogeneous basement aquifers. To provide background information for future groundwater development as a way of reducing cases of borehole failures, a hydro-geophysical investigation of the area was conducted using the electrical resistivity method.

Fig. 1. Location map of the study area showing geophysical surveyed stations

II. Materials And Methods

A total of twenty-seven (27) Vertical Electrical Sounding (V.E.S) was conducted using ABEM Terrameter SAS 4000 to investigate the groundwater potential of the area, involving the Wenner electrode array. Field data were obtained from eleven (11) points which was interpreted using manual curve matching and IPI2WIN computer software. Six (6) of the points investigated were on the heterogenous terrain, while the other five (5) were on the homogenous basaltic terrain for comparison. Eight (8) boreholes were drilled four (4)each on either terrain using an India drilling machine (Rig) employing air drilling method from surface simply because of the thin overburden in this area, less than 1m in all cases.

1.2 Geology

The area is underlain by the Pre-Cambrian basement complex rocks of Nigeria which was intruded by the newer basalts of the Jos Plateau in the Cenozoic (Wright, 1985). The identified lithological limit includes Older Granite, gneisses with few occurrences of pegmatites, basalt in form of boulders scattered on the surface (Fig. 2).

Fig.2 Geologic Map of the surveyed area

III. Results and Discussion

The points investigated are presented in table 1 and the interpreted resistivity values and curves are presented below.

Table 1. Investigated points			
S/No	Locality and coordinates	Drilling depth	Result
1	Lardang 1 N 09 ⁰ 02'.846'' E N 09 ⁰ 14'.939''	70m	Collapsed
2	$ \begin{array}{c} \text{Lacvation 4.54m} \\ \text{Lardang 2} & \text{N } 09^{0}02^{\circ}.940^{\circ\circ} \\ & \text{E } 009^{0}14^{\circ}.705^{\circ\circ} \\ \text{Elevation 469m} \end{array} $	40m	Abortive
3	Lardang 3 N 09 ⁰ 02'.475'' E009 ⁰ 15'.342'' Elevation 432m	40m	Abortive
4	Kwanoeng 1 N 09 ⁰ 03'.049'' E009 ⁰ 14'.499'' Elevation 476m	35m	Good yield
5	Kwanoeng 2 N 09 ⁰ 03'.650'' E009 ⁰ 14'.425'' Elevation 432m	Not drill	-
6	Kwanoeng 3 N 09 ⁰ 03'.437'' E009 ⁰ 14'.971'' Elevation 424m	Not drill	-
7	Varam N 09 ⁰ 02'.490'' E009 ⁰ 17'.532'' Elevation 327m	30m	Good yield
8	Kwang N 09 ⁰ 01'.380" E009 ⁰ 17'.638" Elevation 319m	30m	Good yield
9	Bogot N08 ⁰ 58'.959" E009 ⁰ 16'.655" Elevation 319m	30m	Good yield
10	Doemak N 08°56'.837" E009°14'.599" Elevation 310m	35m	Good yield
11	Voershik N 08 ⁰ 57'.587'' E009 ⁰ 16'.584'' Elevation 320m	Not drill	-

Comparative analysis from the above results shows that the resistivity values from the mixed terrain were inconsistent, having highs and lows ranging from 34.7 to 365 ohm meter, while those from the homogeneous terrain were consistent, with resistivity ranging from 14.84 to 74.41 ohm meter. Drilling was easier on the homogeneous terrain, with total drill depth ranging between 30 to 35m with good yield, while a lot of challenges were encountered during drilling on the mixed terrain ranging from difficulties in penetrating of the drill bit through the overlying basaltic boulders to the basement, to loss of water into dry fractures, and the collapse of the drilled hole during development.

Bogot

Model			Field c	urve
D	Ro		AB/2	Ap
0.5	59.7		1.5	25.4
0.434	59.7		2	20.8
0.434	17.5		2.6	18.8
3.504	17.5		3.4	18.4
3.504	8.42		4.5	15.0
9.034	8.42		6	15
9.034	251		8	14.4
56.434	251		10.5	15.1
56.434	5.02		14	16.1
169.3	5.02		18	20
			24	27.2
			32	31.1
			42	38.0
			55	48.4
			72.5	66.3
			95	68.4

Synthetic curve		
AB/2	App.Resistivity	
1.5	25.318	
2.0842	20.589	
2.896	18.221	
4.024	16.729	
5.5914	15.374	
7.7692	14.419	
10.795	14.839	
15	17.562	
20.842	22.802	
28.96	30.252	
40.24	39.641	
55.914	50.562	
77.692	61.818	
107.95		
70.835		

Doemak

App.Resistivity 25.4

20.8 18.8 18.4 15.6 15 14.5 15.1

16.5 20 27.2 31.7 38.6 48.5 66.3 68.4

			Field c	urve
Model]	AB /2	App.Resistivity
D	Ro		1.5	56.3
0.5	61.9		2	63
3.54	61.9		2.6	62.4
3.54	3.96		3.4	52.9
7.39	3.96		4.5	45.7
7.39	5437		6	39.1
22.17	5437		8	29.7
			10.5	19.1
			14	15.7
			18	18.2
			24	23.3
			32	31.9
			42	41.5
			55	52.7

72.5	69.5
Synthet	ic curve
AB/2	App.Resistivity
1.5	61.045
2.0842	59.752
2.896	56.785
4.024	50.776
5.5914	40.821
7.7692	28.682
10.795	19.306
15	16.743
20.842	20.429
28.96	27.981
40.24	38.787
55.914	53.75
77.692	74.413

www.ajer.org

Kwanoeng 1

Model	AB/2 App.Resistivity	Synthetic curve
D Ro	1.5 69.1	AB/2 App.Resistivity
0.5 76.2	2 76.4	1.5 75.27
3.47 76.2	2.6 74.2	2.0842 73.873
3.47 11.5	3.4 69	2.896 70.693
8.07 11.5	4.5 63	4.024 64.34
8.07 17740	6 52.3	5.5914 54.083
24.21 17740	8 41.4	7.7692 42.253
	10.5 35.1	10.795 34.695
	14 32.4	15 36.289
	18 39.1	20.842 46.968
	24 51.9	28.96 64.73
	32 63.5	40.24 89.795
	42 96	55.914 124.53
	55 137	77.692 172.58
	72.5 182	107.95 238.94

Kwanoeng 2

www.ajer.org

Model			
D	Ro		
0.5	70.3		
0.447	70.3		
0.447	170		
2.837	170		
2.837	747		
7.757	747		
7.757	26.1		
13.827	26.1		
13.827	191		
41.481	191		

-				
Field c	Field curve			
AB/2	App.Resistivity			
1.5	115			
2	136			
2.6	154			
3.4	163			
4.5	189			
6	210			
8	252			
10.5	282			
14	295			
18	272			
24	235			
32	180			
42	157			
55	129			
72.5	139			
95	145			

Synthetic curve			
AB/2	App.Resistivity		
1.5	117.52		
2.0842	135		
2.896	155.12		
4.024	180.32		
5.5914	212.47		
7.7692	248.22		
10.795	276.4		
15	281.84		
20.842	255.17		
28.96	204.54		
40.24	156.05		
55.914	133.44		
77.692	136.33		
107.95	149.22		

Kwanoeng 3

		72.5 60.2
Model	Field curve	Synthetic curve
D Ro	AB/2 App.Resistivity	AB/2 App.Resistivity
0.5 1448	1.5 1255	1.5 1306
1.75 1448	2 1189	2.0842 1141
1.75 76.3	2.6 987	2.896 872.82
5.68 76.3	3.4 743	4.024 544.31
5.68 21.8	4.5 434	5.5914 265.84
19.18 21.8	6 221	7.7692 111.98
19.18 110	8 102	10.795 54.996
57.54 110	10.5 59.9	15 36.986
	14 38.4	20.842 32.58
	18 32.7	28.96 35.483
	24 34	40.24 42.621
	32 37.6	55.914 51.925
	42 43.4	77.692 62.171
	55 50.2	

www.ajer.org

Lardang 1

				95	248
Model		Field cu	urve	Synthe	tic curve
D	Ro	AB /2	App.Resistivity	AB /2	App.Resistivity
0.5	121	1.5	130	1.5	126.33
2.25	121	2	131	2.0842	133.5
2.25	685	2.6	139	2.896	147.56
5.03	685	3.4	152	4.024	170.08
5.03	38.9	4.5	178	5.5914	197.14
13.72	38.9	6	200	7.7692	218.12
13.72	593	8	222	10.795	220.86
41.16	593	10.5	232	15	200.17
		14	213	20.842	165.92
		18	177	28.96	141.11
		24	153	40.24	144.24
		32	132	55.914	173.84
		42	147	77.692	218.18
		55	174	107.95	270.01
		72.5	222		

Lardang 2

Model			AB/2	App.Resistivity
D	Ro		1.5	19.21
0.5	20.16		2	18.01
1.731	20.16		2.6	17.61
1.731	7.432		3.4	14.91
3.99	7.432		4.5	14.75
3.99	38.19		6	14.07
19.91	38.19		8	15.69
19.91	6770		10.5	17.9
59.73	6770		14	22.02
			18	26.43
			24	32.58
			32	40.85
			42	50.3
			55	66.44
			72.5	90.85
		Synthetic curve		
Field c	urve		AB/2	App.Resistivity

1.5	19.181	
2.0842	18.094	
2.896	16.428	
4.024	14.722	
5.5914	14.103	
7.7692	15.411	
10.795	18.517	
15	22.973	
20.842	28.969	
28.96	37.52	
40.24	50.208	
55.914	68.764	
77.692	94.982	

Lardang 3

					72.5	523
Model		Field cu	Field curve		Synthetic curve	
D	Ro	AB /2	App.Resistivity		AB/2	App.Resistivity
0.5	125	1.5	197		1.5	197.41
0.757	125	2	238		2.0842	242.24
0.757	679	2.6	268		2.896	292.37
4.307	679	3.4	326		4.024	338.19
4.307	46.1	4.5	358		5.5914	365.86
10.247	46.1	6	365		7.7692	359.71
10.247	79405	8	342		10.795	314.04
30.741	79405	10.5	315		15	249.15
		14	273		20.842	207.34
		18	227		28.96	220.53
		24	198		40.24	287.64
		32	214		55.914	396.79
		42	317		77.692	550.2
		55	394	•		

2017

Varam

Model		Fie	Field curve		Synthetic curve		
D	Ro	AB	/2	App.Resistivity	AB/2	App.Resistivity	
0.5	7.79	1.5		8.01	1.5	7.8315	
5.16	7.79	2		8.1	2.0842	7.9004	
5.16	69	2.6		7.53	2.896	8.0756	
20.66	69	3.4		8.55	4.024	8.4959	
20.66	14482	4.5		8.79	5.5914	9.4245	
61.98	14482	6		9.17	7.7692	11.233	
		8		10.9	10.795	14.265	
		10.	5	14.9	15	18.728	
		14		17.6	20.842	24.907	
		18		22.6	28.96	33.483	
		24		29.8	40.24	45.617	
		32		34.2	55.914	62.845	
		42		42.7	77.692	87.03	
		55		55.9	107.95	120.63	
		72.	5	78.9			
		95		118			

Voershik

www.ajer.org

Model	Field curve	Synthetic curve		
D Ro	AB/2 App.Resistivity	AB/2 App.Resistivity		
0.5 50	1.5 44.5	1.5 44.801		
1.29 50	2 41.5	2.0842 40.008		
1.29 19.5	2.6 34.8	2.896 33.721		
15.89 19.5	3.4 31.5	4.024 27.713		
15.89 29510	4.5 26.6	5.5914 23.687		
47.67 29510	6 22.7	7.7692 21.963		
	8 20.8	10.795 22.099		
	10.5 21.7	15 24.159		
	14 26.1	20.842 29.028		
	18 25.9	28.96 37.944		
	24 32.1	40.24 51.917		
	32 42	55.914 71.96		
	42 54.2	77.692 99.887		
	55 70.2	107.95 138.61		
	72.5 92.6			
	95 121			

Kwang

Model	
D	Ro
0.5	54.77
1.082	54.77
1.082	104.1
2.939	104.1
2.939	34.87
21.079	34.87
21.079	223.3
63.237	223.3

Field c	Field curve					
AB/2	App.Resistivity					
1.5	60.49					
2	64.44					
2.6	67.19					
3.4	70.2					
4.5	70.78					
6	62.65					
8	59.87					
10.5	50.57					
14	45.43					
18	44.04					
24	45.72					
32	50.51					
42	59.8					
55	76.82					

72.5	87.7				
95	103.3				
Synthetic curve					
AB/2	App.Resistivity				
1.5	60.521				
2.0842	64.732				
2.896	68.794				
4.024	70.107				
5.5914	66.627				
7.7692	58.878				
10.795	50.257				
15	44.678				
20.842	44.153				
28.96	49.049				
40.24	59.269				
55.914	74.088				

WELL LOG FOR THE DRILLED BOREHOLES

Page 118

Pump testing at Bogot @ 4Litres per Minute

Pump testing at Kwang

Team carrying out pump testing @ Kwang

Pumping rate @ 3Litres per Minute

Pump testing at Varam @ 6Litres per minute

Pump testing at Varam @ 6Litres per minute

IV. CONCLUSION

The hydro-geophysical investigation and the challenges encountered during drilling revealed that Lardang area is a poor hydro-geological terrain due to its mixed geology. It is not far from the fact that the fractures, joints created by the volcanic activities are dry in most cases leading loss of water into such openings during drilling. The studies also revealed that the homogeneous basalts seems to be interlocking underground making it easier to drill without falling as is the case with the mixed terrain, and a good hydro-geological terrain.

REFERENCES

- Ako, B.D. and Olorunfemi, M.O. (1989). Geoelectric Survey for Groundwater in the Newer Basalts of Vom, Plateau State. Nigerian Journal of Mining and Geology 25, Nos. 1&2, 247-250.
- [2]. Lar, U.A. and Tsalha, M.S. (2005). Geochemical Characteristics of the Jos-Plateau Basalts, North Central Nigeria. Global Journal of Geological Sciences Vol. 3(2), 187-193.
- [3]. Limaye, S.O. (1989). Groundwater for Irrigation and Domestic use in Crystalline Basement Rocks in India. In Aquifer types and the Geoelectric/Hydrogeologic Characteristics of part of the Central Basement Terrain of Nigeria (Niger State). Journal of African Earth Sciences Vol. 16, No.3 pp 309-317, 1993.
- [4]. Olorunfemi, M.O. and Fasuyi, S.A. (1993). Aquifer types and the Geoelectric/Hydrogeologic Characteristics of Part of the Central Basement Terrain of Nigeria (Niger State). Journal of African Earth Sciences Vol. 16, No.3 pp 309-317.
- [5]. Olorunniwo, M.A. and Olorunfemi, M.O. (1987). Geophysical Investigations for Groundwater in Pre-Cambrian Terrains A Case History from Ikare, South Western Nigeria. Journal of African Earth Sciences 6, 787-796.
- [6]. Owoade, A. and Moffat, W.S. (1989). Groundwater Prospects in Southwestern Nigeria. 15th WEDC Conference Water Engineering and Development in Africa, Kano, Nigeria, 112-116.
- Satpathy, D.N. and Kanungo, D.N. (1976). Groundwater Exploration in Hard Rock Terrain. A Case History, Geophysical Prospects 2, No. 4, 725-736
- [8]. Wright, J.B. (1985). A Palaemagnetic Study of Cenozoic Basalts from Northern Nigeria. In Geology and Mineral Resources of West Africa Pp.187.