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ABSTRACT: Several research efforts has been made toward establishing that the decimal digits of the 

mathematical constant Pi ( ) follows each other in a random sequence. The present study have same objective 

from visual perspective involving qualitative and quantitative analyses of iteratively generated fractals using 

two “Chaos Game” implementations. Six fractals images were generated in pair from their corresponding 

affine functions using Pseudo-randomly generated numbers and Pi digits respectively as selection criteria. The 

variations in visual and average improved fractal disk results between the paired fractals were found to be 

insignificant thereby establishing those Pi digits follow each other sufficiently in a random sequence. 
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I. INTRODUCTION 
A mathematical constant Pi is an irrational number with continuous decimal digits part but often 

approximated as 3.142. It is generally represented by the symbol π and explored on daily basis for estimating the 

circumference of circles. It has been well described in literature as the ratio of circle’s circumference to its 

diameter (Xiong, 2010; Bartholomew, 2014; Didur, 2014 and KU, 2015).The importance of Pi in engineering is 

enormous and cannot be over emphasized. In the design of machines and other engineering components or 

products such as camshaft, crankshaft, piston, engine block, radiators, tires, pipeline, conduit and cabling 

systems, boilers, bolt and nuts, round gaskets and oil tankers just to mention a few, the use of Pi as part of 

estimating parameters is quintessential. Sequel to the numerous applications and long time significance of Pi, 

several laudable research efforts (Gibbs, 2003; Gibbons, 2005; Bailey et al, 2013; Pampena, 2013 and Borwein 

et al, 2015) have been made on this mathematical constant and more especially on its forever occurring decimal 

digit part.   

A reasonable number of works dwell on the randomness of Pi decimal digits. For instance, Bailey 

(1988) performed statistical analysis on the expansion of Pi to 29,360,000 decimal places and found that 

frequencies of n-long strings of digits for n up to 6 are completely unremarkable. It was concluded in the paper 

that the decimal expansion of π appears to be entirely arbitrary. Sourabh et al, (2009) studied the randomness of 

the subsequences of Pi decimal digits. The authors found that randomness exist for the first 960 million digits 

and suspected to be generally arbitrary for other subsequences of the number decimal digits. Khodabin (2011) 

investigated the statistical properties of Pi number decimal digits. The first 40960 digits of π-3 were considered 

and results showed that all digits distributed uniformly in 40960 decimal digits. The author was able to establish 

that transmission between all digits in one step is wholly random. It was concluded that a statistical model for 

reliable prediction of next digit in decimal digits of Pi is yet to exist. 

Despite robust efforts that have been made on the study of randomness in respect of decimal digits part 

of Pi, the literature is still sparse on investigating the arbitrariness of these digits of the mathematical constant 

using fractal concept. This work focuses on qualitative (the visual evaluation) as well as quantitative (the 

statistical distribution of the estimated improved disk dimensions) analyses of iteratively generated fractals 

using Chaos Games implemented respectively by randomly generated numbers and Pi decimal digits. 

The definition of fractal well reported in the literature and can be described as a rough or fragmented 

geometric shape that can be subdivided into parts, each of which is (at least approximately) a reduced size or 

self-similar copy of the whole(Rama and Mishra, 2010 and Singh et al,  2012). The term was well reported in 

the literature to be coined by Benoit Mandelbrot in 1975 and was derived from the Latin word “fractus” 

implying “broken” or “part” (Lopes, 2009; Rama and Mishra, 2010 and Singh et al, 2012). The basic properties 

of fractals are self-similarity, scale invariance and general irregularity in shape with more significant details at 

higher magnifications (Rama and Mishra, 2010).  
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Fractal has been widely used as a resourceful concept for characterization (and modelling) of shapes or 

structures in science and engineering based research problems (Magana et al, 2004; Camps-Raga and Islam, 

2010; Khanbareh, 2011; Kumar, 2013 and Salau et al, 2016)). Iteratively generated fractal is gaining 

prominence for qualitative and quantitative analyses from visual perspective (Singh et al, 2012; Chugh and 

Ashish, 2014 and Kamal, 2015). The use of superior iteration methods for implementing two-step feedback 

systems was the beginning of new iterative technique in fractal modelling (Singh et al, 2012) and has been 

found to have many potential applications. Emerging fractals for various equations have been explored using 

one-step, two-step, three-step and four-step iterative techniques (Chugh and Ashish, 2014). The foregoing was a 

great motivation for the adoption of iteratively generated fractals in the present study (using randomly generated 

numbers and Pi decimal digits as tools for implementation of the Chaos game). The outcome of this 

investigation can lead to generation of some affine oriented fractals which in turn can revolutionize the existing 

engineering applications of Pi. 

 

II. METHODOLOGY 
The present study adopted basically the procedure outlined by Salau et al (2016) for both fractal 

generation using “Chaos Game” algorithms and fractal characterization. However in the present study, there are 

two game options; “Game1” involves generation of Pseudo-random number (  ) with a seed of 9876 returning 

values that spread continuously between ( 0 1.0  ) while “Game2” was based on reading and checking 

sequential decimal digits of   in which returning values are discrete integer between (0-9). The affine function 

with matching determinant (see equations 1 and 2)  as the returned value in each of the game options is then 

selected preferentially to advance the fractal generation by additional one simulation step till sufficient steps are 

obtained. According to Edward (1996), an affine is defined completely when value are given to (a, b, c d, e and 

f) in the iterative equation (1) while the frequency of a given affine playing the “Chaos Game” among other 

competing affine can be estimated by determinant (DET) equation (2). Using least square algorithms, the best 

slope ( fD ) of log-log plots of disk size (X) and the minimum number of disks (Y) needed to cover fractal 

image completely were determined as equivalent to the improved fractal disk dimension ( fD ) from the power 

law proportionate’ equation (3). 
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Simulation Parameters 

Six different cases of fractals (A, B, C, D, E and F) with corresponding affine functions given in tables 

1 to 6 were simulated from common initial coordinate (1, 2) and through unsteady (first 100 solution points) and 

steady (next 2000 solution points) that were arbitrarily selected.  The steady solutions was thereafter 

characterized using five iteration levels and ten different disk sizes as recommended by Salau et al (2016).  

 

Table 1: Affine function parameters and their selection conditions for Case A 
Affine No 
(Case A) 

Affine function parameters Affine selection conditions   

a b c d e f Pseudo-random 

 ( ) 

Pi-digits 

(Any-of) 

1 0.5000 0.0000 0.0000 0.5000 0.0000 0.0000 0 0.33   0, 1 & 2 

2 0.5000 0.0000 0.0000 0.5000 0.5000 0.0000 0.33 0.67   3, 4 & 5 

3 0.5000 0.0000 0.0000 0.5000 0.2500 0.5000 0..67 1.00   6, 7 & 8 
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Table 2: Affine function parameters and their selection conditions for Case B 
 Affine function parameters Affine selection conditions   

Affine No 

(Case B) 

a b c d e f Pseudo-random 

 ( ) 

Pi-digits 

(Any-of) 

1 0.3333 0.0000 0.0000 0.3333 0.0000 0.0000 0 0.25   0 & 1 

2 0.1667 -0.2887 0.2887 0.1667 0.3333 0.0000 0.25 0.55   2 & 3 

3 0.1667 0.2887 -0.2887 0.1667 0.5000 0.2887 0.55 0.75   4 & 5 

4 0.3333 0.0000 0.0000 0.3333 0.6667 0.0000 0.75 1.00   6 & 7 

 

Table 3: Affine function parameters and their selection conditions for Case C 
  Affine function parameters Affine selection conditions   

Affine No 
(Case C) 

a b c d e f Pseudo-random 

 ( ) 

Pi-digits 
(Any-of) 

1 0.3333 0.0000 0.0000 0.3333 0.0000 0.0000 0 0.20   0 & 1 

2 0.3333 0.0000 0.0000 0.3333 0.6667 0.0000 0.20 0.40   2 & 3 

3 0.3333 0.0000 0.0000 0.3333 0.0000 0.6667 0.40 0.60   4 & 5 

4 0.3333 0.0000 0.0000 0.3333 0.6667 0.6667 0.60 0.80   6 & 7 

5 0.3333 0.0000 0.0000 0.3333 0.3333 0.3333 0.80 1.00   8 & 9 

 

Table 4: Affine function parameters and their selection conditions for Case D 
  Affine function parameters Affine selection conditions   

Affine No 

(Case D) 

a b c d e f Pseudo-random 

 ( ) 

Pi-digits 

(Is) 

1 0.3333 0.0000 0.0000 0.3333 0.0000 0.0000 0 0.13   0 

2 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000 0.13 0.25   1 

3 0.3333 0.0000 0.0000 0.3333 0.6667 0.0000 0.25 0.38   2 

4 0.3333 0.0000 0.0000 0.3333 0.0000 0.3333 0.38 0.50   3 

5 0.3333 0.0000 0.0000 0.3333 0.6667 0.3333 0.50 0.63   4 

6 0.3333 0.0000 0.0000 0.3333 0.0000 0.6667 0.63 0.75   5 

7 0.3333 0.0000 0.0000 0.3333 0.3333 0.6667 0.75 0.88   6 

8 0.3333 0.0000 0.0000 0.3333 0.6667 0.6667 0.88 1.00   7 

 

Table 5: Affine function parameters and their selection conditions for Case E 
 Affine function parameters Affine selection conditions   

Affine No 

(Case E) 

a b c d e f Pseudo-random 

 ( ) 

Pi-digits 

(Any-of/ Is) 

1 0.3333 -0.3333 0.3333 0.3333 0.3333 0.0000 0 0.29   0, 1 & 2 

2 0.6667 0.0000 0.0000 0.6667 0.3333 0.3333 0.29 0.89   3, 4, 5, 6, 7 & 8 

3 0.3333 0.0000 0.0000 0.3333 0.6667 0.0000 0.89 1.00   9 

 

Table 6: Affine function parameters and their selection conditions for Case F 
 Affine function parameters Affine selection conditions   

Affine No 

(Case F) 

a b c d e f Pseudo-random 

 ( ) 

Pi-digits 

(Any-of/ Is) 

1 0.2500 0.0000 0.0000 0.2500 0.0000 0.7500 0 0.10   0 

2 0.2500 0.0000 0.0000 0.2500 0.2500 0.5000 0.10 0.20   1 

3 0.2500 0.0000 0.0000 0.2500 0.5000 0.7500 0.20 0.30   2 

4 0.2500 0.0000 0.0000 0.2500 0.7500 0.5000 0.30 0.40   3 

5 0.7500 0.0000 0.0000 0.5000 0.0000 0.0000 0.40 1.00   4, 5, 6, 7, 8 & 9 
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III. RESULTS AND DISCUSSION 
Figure 1 is the scattered plots obtained from the first 2000 steady simulated solutions (coordinate 

points) for the Sierpinski triangle (Case A) by the two “Chaos Game” options. Therefore the visual results are 

qualitatively the same and agreed with literature result. Similar visual agreement were made between the scatter 

plots of steady solutions (Game1 and Game2 options) for the remaining five cases, but were not presented only 

to conserve space. The agreement between these corresponding results is evidence supporting the presence of 

randomness in sequential appearance of the digits after the decimal part of constant Pi ( ). Furthermore, the 

quantitative improved disk dimensions obtained from the studied six cases were as presented in figures 2, 3 and 

4. All these results are qualitatively and quantitatively interchangeable between the two game options thereby 

reinforcing further the randomness of occurrence of the decimal digits of the constant Pi. 

 

 
Figure 1: Scattered plots of first 2000 steady simulated solution coordinate points for case A 

 

 

Figure 2: Comparison of distributed average estimated improved disk dimension ( fD ) using two game options 

for the first 2000 steady solution points into 100 equal parts between 1.394 1.623fD   for case A only. 

 

 
Figure 3: Variation of estimated improved disk dimension with increase in number of steady solution points for 

case A only 
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Figure 4: Comparison of the estimated mean value of improved disk dimension using game options (Game1 

and Game2) for the first 2000 steady solution points each of cases A to F. 

 

IV. CONCLUSIONS 
This study has shown that qualitatively and quantitatively results variations are insignificant for “Chaos 

Game” played either by pseudo-randomly generated numbers or the consecutive decimal digits of the 

mathematical constant Pi ( ). It is therefore concluded that the string sequence of the decimal digits of Pi ( ) 

is sufficiently random and can be used interchangeably with the conventional pseudo-random numbers to 

generate some affine oriented fractals for engineering applications. 
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