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ABSTRACT: Various results in the previous literature exist that indicate that all computed solutions to 

chaotic dynamical systems are time step dependent. These problems can be solved by using multiple methods. 

This paper deals with an explicit MATHEMATICA algorithm for the implementation of Runge-Kutta method of 

orders 4 (RK4) to solve the Lü chaotic system. Numerical comparisons are made between the Runge-Kutta of 

fourth-order and the Euler’s method. Comparisons were also done between the (RK4) methods but with 

different time steps. It has been observed that the accuracy of (RK4) solutions can be increased by lessening the 

time step. And shows that (RK4) method successfully to solve the Lü system. It has been determine accuracy of 

method using symmetrical times. 
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I. INTRODUCTION 

During 1990, Ott, Grebogi and Yorke offered the (OGY) method to control chaos [1] . After their 

founding work,chaotic control has become a focus in nonlinear problems and a lot of work has been done in the 

field [2]-[4]. Currently, many methods have been proposed to control chaos [4] [5]. Most of scientific problems 

and natural phenomena can be modeled by chaotic systems of ordinary differential equations (ODEs). Not all 

chaotic systems have analytical solutions. This is due to their difficulties. Therefore, the numerical methods can 

be used to obtain the approximation of solutions of the problems. Some numerical methods that can be used to 

solve the systems are; Euler’s method, midpoint method, Heun’s method and Runge-Kutta method of different 

orders. Newly, Hairer et al. [6] have used the Euler’s method to solve the chaotic system. They used this method 

because it is one of the simplest approaches to obtain the numerical solution of a differential equation. An 

algorithm for Euler’s method is used to obtain an approximation  for  the initial-conditions problem and was 

employed to Lü’s chaotic system [7]. They used the FORTRAN software to solve this system and 

MATHMATICA to plot the solutions and the results are given for different number of iterations. Although the 

results obtained is the same butterfly effect, but however, this  method is not an efficient method and seldom 

used because of its less accuracy [8]. In this  paper,  has been interested   to   test  the system [7]. We choose the 

RK4 because it can obtain greater accuracy and does not need the calculation of higher derivatives [8]. 

Moreover, RK4 has been widely and commonly used for simulating the solution of chaotic systems [9, 10, 11, 

12] .We want to prove whether this method successfully can solve the Lü system or not. The organization of  

this  paper  is  in  the  following  manner. In  Section 2  we  give  some  introduction for a new chaotic system 

that is Lü system. The definition of fourth-order Runge-Kutta method (RK4) will be defined in Section 3 while 

in Section 4 we show the algorithm to compute the RK4. Section 5 is the numerical results and discussion.  

 

II. THE LÜ CHAOTIC SYSTEM 
The Lü system is defined by them followings equations: 
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Where a, b, c are real constants. When a=36 , b =3 , c = 20, Lü system has a typically critical chaotic attractor  

with Lyapunov exponents L1= 1.5046, L2= 0, L3 = -22.5044 and Lyapunov dimension dL=  2.0669  [7]. Figure 1 

to Figure 4 shows the attractor  Zhou system from different views. 
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Figure 1. The chaotic attractor of Lü system. 

 

 
Figure 2: x-y phase plane of Lü’s attractor 

 

 
Figure 3: x-z phase plane of Lü’s attractor 

 

 
Figure 4: y-z phase plane of Lü’s attractor 
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III. FOURTH-ORDER RUNGE-KUTTA METHOD (RK4) 
There exists some different orders of Runge-Kutta methods, but all of them can be cast in the following general 

form. 

 

yi+1  = yi  +  (ti , yi , h)h                  (2) 

Where  (ti , yi , h) is named an increment function, which is interpreted  as  the  representative  slope  over 

interval. The estimate slope   is used to extrapolate from an old value  yi  to a new value yi+1 over a distance h. 

This is called an explicit method. The general form of this increment function is:  

 = a1k1 + a2k2 + ... + ankn              (3) 

Where the a’s are real constants and the k’s are: 

k1= f(ti ,yi) 

k2= f( ti+ p1h , yi+ q11 k1h) 

k3= f( ti+ p2h , yi+ q21 k1h+q22k2h) 

. 

. 

. 

kn= f (ti+pn-1h , yi+qn-1,1k1h +qn-1,2 k2h +…+qn-1,n-1kn-1) 

Where p’s and q’s are constants [13]. 

To solve (ODEs) problem,  an initial value problem (IVP) of the first order differential equation consider as  :  
)4()a(y,bta,)y,t(fy   

The solution of this IVP by using the classical RK4 is given by:  

 

Where: 

 

 

 

 

 

 

 

 

 

This explicit Runge-Kutta method of order four (RK4) requires four evaluations of function [14]. We will use 

this  classical RK4 method to solve the Lü chaotic system which will be explained in the next section. 

 

IV. THE ALGORITHM OF RK4 
 Follow is the algorithm to calculate the (RK4) as stated in Burden and Faires [15]. We will apply this algorithm 

to solve the Lü chaotic system in order to find the values of  x, y and z with the initial conditions (0, 4, 1). 

To  approximate  the  solution  of  the  (IVP)  in   (4)  at  (N + 1) equally spaced numbers in the interval [a, b]: 

INPUT: endpoints a,b; integer N; initial value    

OUTPUT: approximation w to y at the (N + 1) values of t 

Step 1: set t = (b-a)/N ; 

  t = a; 

  w = a;  

OUTPUT   (t,w) 

Step 2: for i = 1,2,…, N do steps 3-5. 

Step 3: set  
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(Compute wi ) 

T=a+ih   ( compute ti) 

Step 5: OUTPUT (t,w) 

Step 6:  STOP. 

The algorithm above has been applied to solve  the Lü system by using MATHEMATICA program to plot the 

solutions. 

 

V. RESULTS AND DISCUSSIONS 
Hairer et al. [6] have used the Euler’s FORTRAN software to solve the system and MATHEMATICA 

to plot the solutions of  x, y and z. In this paper, we first make the comparison between the Euler’s methods with 

different solution of equation (1) for different time steps. we compare the accuracy of the (RK4) method with 

the Euler’s method on the chosen time step t=10
-8

. The absolute values were used to determine the 

performance  of  (RK4)  against  the  Euler’s  method.  In Table 1, we first find the error between the RK4 

method ( t = 0.01) and Euler (t=10
-8

). We could see clearly that the maximum error is 8.7113937.  

So, we can conclude that the accuracy of (RK4) solutions can be increased by decreasing the time step. 

To solve the three-dimensional system of Lü chaotic system, we use the Maple program to run the (RK4) in 

order to produce the values of x, y and z when the value of time increased. Then these values will be linked to 

MATHEMATICA program to plot the solutions. The result is shown below in Figure 5 when 0 t 10  Here, we 

choose t = 0.001 to solve the Lü system. With the time steps of 0.001, this means that there are 6000 values of 

x, y and z. Notice that this figure has only one part of butterfly wings. This is due to the lower numbers of 

iterations used which are 6000. Next, we show the effect of different ranges of t to Lü’s attractor with the same 

time steps; 0.001. The more the iterations used, the more the attractor become complete. By using different 

number of iterations, we can see how the attractor is designed and moves. The result is shown below in Figure 6 

to Figure 8. 

 

Table 1: Differences between RK4 and Euler solutions for t [0,100] 

 
 

 
Figure 5: Lü’s attractor when 0 t  10 
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Figure 6: Lü’s attractor when 0 t  20 

 

 
Figure 7: Lü’s attractor when 0 t  50 

 

 
Figure 8: Lü’s attractor when 0 t  100 

 

VI. CONCLUSIONS 
In this paper, we calculated time step independent solutions up to t = 100 with two different numerical 

methods. This paper shows that the (RK4) method successfully to solve the  Lü chaotic system [7]. This method 

is used because it (RK4) can obtain greater accuracy and does not need the calculation of higher derivatives. 

From the previous research by Hairer et al. [6], the use of Euler’s method can also solve the chaotic system, but 

however, it is less accuracy compared to (RK4) method. Numerical comparisons have been made between the 

Runge-Kutta of order four (RK4) and the Euler’s method for different time steps. It has been observed that the 

accuracy of (RK4) solutions can be increased by lessening the time step. An algorithm for (RK4) method is used 

to solve the initial-value problem for ordinary differential equation of the Lü chaotic system. This method yields 

the values of x, y and z. The results are given for different ranges of time. And using different number of 

repetitions, we can see how the attractor is designed and changes. 
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