
American Journal of Engineering Research (AJER) 2017

 American Journal of Engineering Research (AJER)

e-ISSN: 2320-0847 p-ISSN : 2320-0936

Volume-6, Issue-1, pp-32-36

www.ajer.org

Research Paper Open Access

w w w . a j e r . o r g

Page 32

Quick Sort with Optimal Worst Case Running Time

Dr. Mirza Abdulla
College of Computer Science, AMA International University

ABSTRACT: Quick sort is more than 50 years old and yet is one of the most practical sorting techniques used in the

computing industry. Its average running time matches the best asymptotic running time for a sorting algorithm and

with a constant factor that outperforms most of the known sorting techniques. However, it suffers from the theoretical

worst case time bound of 𝑂(𝑛2) on a list of size n. Ironically, this worst case occurs when the list is already sorted in

ascending or descending order! We present ways to improve the worst case time performance to asymptotically match

the optimal worst case running time for any comparison based sorting techniques. Our technique, however, tries not to

affect the average running time but the slightest.

Keywords: Quick sort, Sorting, order statistics, analysis of algorithms.

I. INTRODUCTION
Sorting and searching are probably the most important problems in computing. Indeed most if not all of the

problems in computing require the solution to some kind of search problem. The importance of sorting, in particular

stems from the fact that it aids in the permutation or the rearrangement of data to facilitate faster search.

If we follow the history of sorting we see that some techniques for the rearrangement of data existed even

before the first contemporary computer was built in the mid of the twentieth century. For example the Hollerith sort

was used in the in the early years of the twentieth century during the population census in the USA. However, the

construction of computers made the number of sorting techniques increase from few techniques to hundreds and

thousands different techniques. These various sorting techniques can be divided into mainly two types: comparison

based and non-comparison based.

Non-comparison based sorting techniques rely mainly on the random access ability of memory. Some of the

most well known non-comparison based sorting techniques are Count sort, Radix and Bucket sort. On the other hand

comparison based techniques rely for the most part on the comparison between elements to obtain the desired

rearrangement of data. Most well known comparison based sorting techniques can be divided into incremental

techniques and divide and conquer techniques. Examples of the incremental sorting techniques are bubble sort,

Selection sort and Shell sort. These are known to be grossly inefficient techniques as they require 𝑂(𝑛2) steps to sort a

list of 𝑛 elements in the worst and average case. However, variation of these techniques exists that attain sort times that

are far better than the 𝑂(𝑛2) steps of the original techniques. For example, Shell sort [1] which is a variant of the

Insertion sort can attain times of the order of 𝑂(𝑛 log2 𝑛). Similarly, Selection sort [2] can be made to attain times of

the order of 𝑂(𝑛 log2 𝑛), or even better as in the case of heap sort [3] which is a variant of selection sort and has a

worst case time of 𝑂(𝑛 log 𝑛) which is optimal.

Examples of divide and conquer sorting techniques include ones such as merge sort, quick sort and heap sort.

All these techniques attain the optimal time of 𝑂(𝑛 log 𝑛) in the average case. Similarly, in the worst case, both the

merge sort, and heap sort attain the optimal bound of 𝑂(𝑛 log 𝑛) comparison steps to sort a list of 𝑛 elments.

However, quicksort may require 𝑂(𝑛2) steps in the worst case, and strangely enough this case occurs when the data is

already sorted! Yet quick sort was and is still the practical sorting technique in the average. Indeed many computer

application vendors used quicksort as the main sorting technique, since the average running time of quick sort on a list

of 𝑛 elements may require about 1.9𝑛𝑙𝑔𝑛 comparisons which is superior to those attained by other famous sorting

techniques. The low constant factor in the average time complexity of quicksort contributed to making it one of the

most important sorting algorithms. The algorithm is centered on a partitioning scheme that splits an input list into two:

those with values not more than the pivot and those with values more than the pivot. It follows, that the choice of the

pivot is of crucial importance to the running time of the algorithm. Indeed, if we (say) always choose the first item in a

list as the pivot, then the running time of the quick sort technique degrades to 𝑂(𝑛2) steps when fed with a list that is

already sorted, since we would always get two lists after the partition: one that contains the pivot only if all the number

are different, and the other contains the rest of the list.

American Journal of Engineering Research (AJER) 2017

w w w . a j e r . o r g

Page 33

Quicksort was originally proposed by Hoare [4] in the early sixties of the last century. The choice of the pivot

was the first element in the given list. However, later the algorithm received wide spread attention and several ideas for

the pivot were introduced. Ragab [5-6] discusses some of the choices for the pivot.

In this paper we tackle exactly this point of making quicksort run in 𝜃(𝑛 log 𝑛) time without losing its

attractive feature of being highly practical. We do so by allowing quick sort perform the normal operations of

partitioning and swapping without any modification, but only intervening in the choice of the pivot when the degenerate

case of partitioning continues for some time without reverting to a more “acceptable” pivot for the partitioning of the

list. Moreover, the intervention is thinned out to make sure that in the average case the partitioning step doesn’t affect

the overall time when it is not regularly called, yet making sure that we don’t run into the 𝑂(𝑛2) running time.

In section 2 we explain the working of the intervention method, the median of medians, and in section 3 we

explain the quicksort technique and analyze its worst case complexity. Section 4 provides comparison of the enhanced

quicksort to the classical one on various data sets.

II. THE MEDIAN OF MEDIANS
The famous median of median technique works by following the steps:

1. Partition the list of 𝑛 elements into
𝑛

5
 blocks of 5 elements each.

2. Find the median of each group.

3. Find the median of medians by recursion on the groups medians.

4. If the found median of medians is indeed the median of the whole list we can stop with answer

5. Otherwise partition the original list on this median and the larger partition would contain the median of the whole

list and all we need to do is to find the item in that list whose rank would make it the median of the original list.

This technique was shown to run in 𝜃(𝑛) time in the worst case. However, the constant factor of the time

complexity can be quite high to be practical in the average case during the pivot selection in quicksort. A faster

implementation can be obtained if we relax the condition of finding the median to that of finding an acceptable pivot

that splits the list into two lists, the smaller of which is not less than say quarter the size of the original list. For

example if we accept the answer we get in step 3 of the above algorithm steps and ignore steps 4 and 5, we get a pivot

which is guaranteed to split the list into two lists the smaller of which is at least one quarter the size of the original list.

Such a relaxation would still guarantee the asymptotically optimal worst case running time of quicksort to

be 𝑂(𝑛 log 𝑛).

If we relax the choice of the pivot to be one that when used to partition the list the size of the smaller of the

two resulting lists is some constant fraction of the original list size we can reduce the constant factor in the asymptotic

running time of the median of medians algorithm even further. Indeed, to guarantee the 𝑂(𝑛 log 𝑛) worst case time

bound on quicksort, we may choose to call the medianOfMedians to work only on a small fraction of the given list.

This work can guarantee that we get a pivot that would divide the list into two lists each not less than a particular

fraction of the original list size, yet the extra work of calling this function would not substantially affect the running

time, yet maintain the 𝑂(𝑛 log 𝑛) bound.

III. PIVOT SELECTION BY MEDIANOFMEDIANS
function acceptable Pivot(a[], l, r, k, j)

 i = l;

 while (i+jk ≤ r){

 m1 = i;

 t = i + jk;

 for(s= i+j; s<t; s+=j) if (a[s] < a[m1]) m1 = s; //takes O(n/j) time

 swap(i, m1); //every item greater than k items

 i+=jk;

 }

 i = l;

 while (i+jk
2
 ≤ r){

m1 = i;

 t = i + jk
2
;

 for(s= i+jk; s<t; s+= jk) if (a[s] > a[m1]) m1 = s; //takes O(n/jk) time

 swap(i, m1); //every item less than k items

 i+=k
2
;

 }

 i = jk
2
;

 return mom(a[l]; a[l+i]; a[l+2i]; . . . ; a[t])

} // takes O(n/k
2
) time.

American Journal of Engineering Research (AJER) 2017

w w w . a j e r . o r g

Page 34

Description of the algorithm

The first while loop iterates in jumps of jk where in each iteration the maximum of k items in this range each

at distance of its neighbors, and the maximum element is placed in the first location in the range. At the end of the first

while loop we are guaranteed that the first element in each block or range is not less than at least k other items.

Similarly the second while loop iterates in jumps of jk
2
 items and the minimum element of the maxima items found

during the first while loop is placed in the first location of the block. This way we guarantee that the first item in each

block of jk
2
 items is the maximum of k elements in the block and the minimum of k elements in the block of jk

2
 items.

IV. ANALYSIS OF THE ALGORITHM
The median of medians algorithm finds then the median of these first elements in each block. Thus we are

guaranteed to get the median of n/jk
2
 elements in the original list. The median obtained this way is thus ≥

𝑛

2𝑗 𝑘2
 items

and ≤
𝑛

2𝑗𝑘2
 items in the given list. It follows, therefore, that the returned median is greater than or equal at least

𝑛

2𝑗𝑘
 item

in the original list, and similarly it is less than or equal at least
𝑛

2𝑗𝑘
 item in the original list. since both j and k are

constants we are guaranteed to split the original list into two lists, smallest of which is a constant fraction of the original

list.

The overall time of the algorithm is the sum of the time for each of the two while loops and the median of medians

running time on the n/jk
2
 items.

The first while loop inspects every j
th
 item in the list and the maximum of k items in a block of size jk is placed

in the first item of the group. Thus there are at most
𝑛

𝑗𝑘
 such blocks and the overall number of iterations is: 𝑘

𝑛

𝑗𝑘
 =

𝑛

𝑗
.

It follows, therefore, that the overall time for the first loop is
𝑐1𝑛

𝑗
 time units, for some constant 𝑐1 > 0.

Similarly the second loop loop inspects every jkth item in the list and the minimum of k items in a block of

size j𝑘2 is placed in the first item of the group. Thus there are at most
𝑛

𝑗𝑘2
 such blocks and the overall number of

iterations is: 𝑘
𝑛

𝑗𝑘2
 =

𝑛

𝑗𝑘
. It follows, therefore, that the overall time for the first loop is

𝑐2𝑛

𝑗𝑘
 time units, for some

constant 𝑐2 > 0.

Finally the median of medians requires 𝑐3𝑛 steps on a list of n items. Thus for a list of
𝑛

𝑗𝑘2
 items it would run in

𝑐3𝑛

𝑗𝑘2
.

The overall time for our version of the median of medians requires
𝑐1𝑛

𝑗
+

𝑐2𝑛

𝑗𝑘
+

𝑐3𝑛

𝑗𝑘2
 time steps in the worst

case to return a pivot that can split the original list into two lists, the smallest of which contains no less than
𝑛

2𝑗𝑘
 items,

where 𝑛 is the number of elements in the original list. Thus we have:

Lemma 1. The acceptablePivot function makes
𝑐1𝑛

𝑗
+

𝑐2𝑛

𝑗𝑘
+

𝑐3𝑛

𝑗𝑘2
 steps to find a pivot which is guaranteed to produce

partitions of size not less than
𝑛

2𝑗𝑘
 items. ∎

Corollary 2. The constants j, and k can be chosen so that the acceptablePivot function runs in time less than n in the

worst case and yet produce partitions of acceptable size each. ∎

V. THE QUICKSORT ALGORITHM
We use the conventional quicksort algorithm with the conventional pivot selection. However, we interfere

when we see that the algorithm is going more and more into the degenerate case. The intervention forces the selection

of a pivot that guarantees that the smallest of the partitioned lists is at least a constant fraction of the original list size.

This way we can guarantee that we can get a worst case of 𝑂(𝑛 log 𝑛) time steps to sort a list of 𝑛 elements. To make

sure that the running time of the sorting algorithm is for the most part not affected by the “intervention”, we only allow

the intervention if we see signs indicative that the partitioning is doesn’t yield for the most part acceptably size

“balanced” partitions. In this case we use the median of medians algorithm on a small subset of the list to guarantee

that we get a division of the list into more acceptable size partitions.

However, in order to know when to perform such an activity we need to have some kind memory to

remember past history. This is accomplished through the use of a variable which is initially zero, but is incremented

every time we see that the partitioning is not acceptable. When the count reaches a threshold we apply the median of

medians or else the variable is reset to zero again. This way we don’t intervene with the working of the sorting

algorithm, unless there are strong indications that it is going to the degenerate case, and the intervention is applied in

that case only to a small subset of the given list so as to reduce the time cost of the intervention.

American Journal of Engineering Research (AJER) 2017

w w w . a j e r . o r g

Page 35

HoareQS(a, l, r, d){

 if (r-l) < 25 return InsertionSort(a, l, r);

 else {

 if (d > maxDegenerate) {v =acceptablePivot(a[], l, r, 5, 20); swap(l, v); d =0;}

 x = a[l];

 i = l - 1

 j = r + 1

 while (i < i){

 repeat

 j = j - 1

 until a[j] ≤ x

 repeat

 i = i + 1

 until a[i] ≥ x

 if i < j

 swap(a[i], a[j])

 else
 return j

 }

 swap(l, j);

 if ((r-l) > 10*(j-l)){

 HoareQS(a, l, j, 0);

 d++;

 HoareQS(a, i, r, d);

 }

 else if ((r-l) > 10*(r-i)){

 HoareQS(a, i, r, 0);

 d++;

 HoareQS(a, l, j, d);

 }

 Else {

 HoareQS(a, l, j, 0);

 HoareQS(a, i, r, 0);

 }

}

Explanation of algorithm steps

The quicksort algorithm checks to see of the size of the list is less than 20 in which case insertion sort is used.

If the number of consecutive recursive calls in which one of the lists is unacceptably more than the size of the other we

call the median Of Medians algorithm explained earlier to return the location of the pivot, which is then swapped with

the first element in the list. The rest of the code is exactly what is found in classical quicksort where a conventional

pivot finding technique such as the first element of the list. However, after the list is partitioned, we check to see if one

of the partitions is at least 10 times the size of the other, in which case we increment the variable d before calling

quicksort on the larger of the two. The variable d is used to count the number of successive recursive calls in which the

size of one partition is “unacceptably” greater than the size of the other. However, it is reset to 0 when the disparity of

the partition sizes is not “unacceptable”. In the algorithm above the constant max Degenerate is used as the

acceptability measure.

VI. ANALYSIS OF THE QUICKSORT ALGORITHM.
For a list of size n where n is a constant less than 25 the algorithm calls insertion sort which takes constant

time on the given list. For lists of size more than 25 assume that the value of d has reached a threshold where we call

the median of medians. In such a case the algorithm takes
𝑐1𝑛

𝑗
+

𝑐2𝑛

𝑗𝑘
+

𝑐3𝑛

𝑗𝑘2
 more time as was explained earlier. In

order to find the worst case behavior of the algorithm we consider a completely ordered list, which would force the call

to the acceptable Pivot function the maximum number of times. In this case the classical quicksort will keep calling

itself recursively on a resulting partition list whose size can be as high as the original input list but one less item.

However, with the new quicksort technique we continue only for an acceptable number of times before we revert to the

median of medians which would give us a more acceptable partitioning of the list. Thus in the worst case, after max

Degenerate consecutive recursive calls, where each call results in the reduction of the maximum partition size by one

American Journal of Engineering Research (AJER) 2017

w w w . a j e r . o r g

Page 36

we may have to call the acceptable Pivot function. In this case the size of the list cannot be more than 𝑛 −
𝑚𝑎𝑥𝐷𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 items, where n is the size of the list during the previous call to the acceptable Pivot function in the

recursion tree. Thus the acceptable Pivot function will divide the list into two lists the smallest of which is at least

 𝑖 =
(𝑛−𝑚𝑎𝑥𝐷𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒)

2𝑗𝑘
 items in size.

Moreover the time for finding the pivot and then partitioning the list is 𝑐5𝑛 =
𝑐1𝑛

𝑗
+

𝑐2𝑛

𝑗𝑘
+

𝑐3𝑛

𝑗𝑘2
+ 𝑐4𝑛, where 𝑐4𝑛 is

the time to partition the list, for some constant 𝑐4 > 0.
Thus we have the following recurrence for the worst case time complexity of the quicksort algorithm.

𝑇𝑛 = 𝑇𝑖 + 𝑇𝑛−𝑖 + 𝑐5𝑛 and 𝑇𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡for n < 25.

Since i and n-i are both constant fractions of n, we have.

Theorem 3. The worst case running time of quick sort is 𝑂(𝑛 log 𝑛). ∎

VII. CONCLUSIONS
In this paper we introduced and analyzed a quicksort variant that unlike the classical quicksort, attains optimal

asymptotic time bound of 𝑂 𝑛 log 𝑛 . The algorithm provides minimal intrusion to the working of the classical

quicksort and thus the average should not deviate much from that of the classical quicksort algorithm. We carried our

analysis on the single pivot partitioning technique, but the bounds still apply for the dual pivot partitioning technique.

REFERENCES.
[1]. Shell, D. L. (1959). "A High-Speed Sorting Procedure" (PDF). Communications of the ACM. 2 (7): 30–32.

[2]. Abdulla, Mirza (2016). “An efficient enhancement to selection sort”. Submitted for publication.
[3]. Williams, J. W. J. (1964), "Algorithm 232 - Heapsort", Communications of the ACM, 7 (6): 347–348.

[4]. Hoare, C.A.R. (1962) Quicksort. The Computer Journal, 5, 10-15
[5]. Ragab, M. (2011) Partial Quicksort and Weighted Branching Processes. PhD Thesis, 28-35.

[6]. Ragab, M. and Rosler, U. (2014) The Quicksort Process. Stochastic Processes and their Applications, 124, 1036-1054.

[7]. Fill, J.A. and Janson, S. (2001) Approximating the Limiting Quicksort Distribution. Random Structures Algorithms, 19, 376-406
[8]. Fill, J.A. and Janson, S. (2004) The Number of Bit Comparisons Used by Quicksort: An Average-Case Analysis. ACM-SIAM

Symposium on Discrete Algorithms., New York, 300-307.
[9]. R. Sedgewick, “Quicksort,” PhD dissertation, Stanford University, Stanford, CA, May 1975. Stanford Computer Science Report

STAN-CS-75-492.
[10]. R. Chaudhuri and A. C. Dempster, “A note on slowing Quicksort”, SIGCSE Vol . 25, No . 2, June 1993.

[11]. Fuchs, M. (2013) A Note on the Quicksort Asymptotics. Random Structures and Algorithms.

[12]. Iliopoulos, V. (2013) The Quicksort Algorithm and Related Topics. PhD Thesis. Department of Mathematical Sciences, University
of Essex.

[13]. Joseph JaJa, "A Perspective on Quicksort", Computing in Science & Engineering, vol. 2, no. , pp. 43-49, January/February 2000.
[14]. Knuth, The Art of Computer Programming, vol. 3, Addison-Wesley, 1975.

[15]. R. Loeser, “Some performance tests of :quicksort: and descendants,” Comm. ACM 17, 3 , pp 143 – 152, Mar. 1974.

[16]. Wild, S., Nebel, M.E. and Mahmoud, M. (2014) Analysis of Quickselect Under Yaroslavskiy’s Dual-Pivoting Algorithm.
Algorithmica, 78, 485-506.

http://penguin.ewu.edu/cscd300/Topic/AdvSorting/p30-shell.pdf
https://en.wikipedia.org/w/index.php?title=J._W._J._Williams&action=edit&redlink=1
https://en.wikipedia.org/wiki/Communications_of_the_ACM

