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ABSTRACT: This paper is concerned with a Rayleigh fading multicasting SIMO network, where a single
source transmits to a group of users in the presence of an eavesdropper. We consider selection combining (SC)
and maximal ratio combining (MRC) diversity techniques at the receivers and eavesdropper. We derive the
closed-form analytical expressions for the probability of nonzero secrecy multicast capacity, and ergodic
secrecy multicast capacity. This analysis shows, how the channel diversity enhances security in multicast
channels. We also present a comparison between SC and MRC diversity techniques to show which technique is
better for secure wireless multicasting.
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l. INTRODUCTION
Security is an important issue in the multicasting wireless communication system, since the wireless
medium is susceptible to eavesdropping and wireless multicasting networks are used to transmit personal and
confidential information. Security enables the destined to successfully obtain the source information. On the
other hand, channel diversity has been proved as an effective technique in wireless communication system to
increase secrecy capacity. The theory of secrecy of communication systems was first developed by Shannon in

[1].

Several work have been done in this field. Recently, bounds on the secrecy capacity with SC and MRC
diversity techniques was studied in [2] for Rayleigh fading channel. The authors showed that the reduction of
secrecy capacity due to the lack of transmit signal power can be improved by exploiting diversity combining. In
[3], authors quantified the loss of security due to the channel estimation error and showed, how the channel
diversity overcomes that loss. In [4], authors studied the security of cognitive radio network using secure
switch-and-stay combining (SSSC) techniques and showed that SSSC reduces the channel estimation
complexity significantly.

In this paper, we define the secrecy multicast capacity so that the eavesdropper can not be able to
decode any information from the main channel (i.e., channel between transmitter and receiver). Then, we drive
the closed-form analytical expressions for the probability of non-zero secrecy multicast capacity and ergodic
secrecy capacity for with SC and MRC diversity techniques.

The rest of the paper is organized as follows. The system model is discussed in section Il. Section 111
defines secrecy multicast capacity and section IV derives the Probability Density Function (PDF) of multicast
capacity of the proposed system. Closed-form expressions for the probability of non-zero secrecy multicast
capacity and ergodic secrecy multicast capacity for multicasting are described in Sections V and VI,
respectively. Section VI provides the numerical results. Finally, Section VIII draws the conclusion of this work.

Il. SYSTEM MODEL
This paper is concerned with a multicasting scenario, where a source transmits a common stream of
information to a group of M client receivers in the presence of an eavesdropper shown in Fig. 1. Each client
receiver and eavesdropper are equipped with ng and ng antennas, respectively. All the channels are considered
as Rayleigh fading. Therefore, the received signal at i" receiver, where, i=1,2,....,M, is given by (1), that is:
Ym; = hix+ z; €Y)
Where h; denotes the direct channel coefficient between the source and the i" receiver, x denotes the

transmitted signal and z; ~ N'(0, Ny, oI z) is the Gaussian noise, imposed on the i" receiver. NV'(0, Np ol p)
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means Gaussian distribution with zero mean and N, I, , variance, where N,, , denotes the noise power of the i"
receiver and I, , is an identity matrix of ng X ng.

Again, the received signal at eavesdropper is shown in (2) and is given by:

Ye= geX + 2, N (2)
Where g, denotes the channel coefficient between the source and eavesdropper and z, ~ N (0, N, I, ;) is the
Gaussian noise, imposed on the receiver of eavesdropper. ' (0, Ne oI, E) means Gaussian distribution with zero
mean and N, 1, . variance, where N, denotes the noise power of the receiver of eavesdropper and [, , is an
identity matrix of ng X ng.

Source g, Receivers

Eavesdropper
Fig.1: System Model

1. MULTICAST SECRECY CAPACITY
From (1), the received signal at the i" receiver is given by:
Ym; = hix + z;
Mutual information at i" receiver is given by (3), that is:
I(X; }’m,-) = h(yml) - h(zi) (3)
Here h(.) denotes entropy. Let the variance of x is given by Q, = E (xx) = P, where E(.)and (.)' denote the
expectation and conjugate transpose operations, respectively.
Now, co-variance of received signal can be derived as follows
Ry, =E (Ympp Yy )

= E{(hix + z)(hx + z)*}

= E{(hix + z)(x*h{ + z)}

= E(hyx x*hf + z;z})

= hE(x xY)hi + E(z,z))

= h,Ph{ + N, I,
Similarly, covariance of noise signal is given by,

Rzi = ]E(Zl'Z?-) = NmOInR
Hence, the entropy of y,,; is given by
= h(ym,) = log, det (ﬂeRym') = log, det[me(h;Ph{ + Ny, I, .)]
Similarly, the entropy of z;is given by
h(z;) =log, det(r[eRzl.) = log, det(ﬂeNmOInR)

Hence the mutual information at the i receiver is shown in (4) and is given by:

det(ﬂeRymi)
1(x;Ym,) = log, “det(meRy;)

det[me(h;Ph{ + N, I, .)]
det(NmoInR)

= log,
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P
det[n, ,(— 1Rl + I )]
o

= log,

2016

det(Ny, I,,)
P
210g2(1+N_||hi”2) (4)
Mo
Multicast capacity of i"" receiver is given by (5), that is:
P
— i 112
Cpn = log,(1 + N min 1A []%)
= log, (1 + 6; min; <y ¥im,) ()
where,8; = NL and 1r<n-i<nMVmi is the minimum instantaneous SNR among all the receivers.
mo i
Here, from (2) the received signal at the eavesdropper is given by
ye = gex + Ze
Similarly, the mutual information at the eavesdropper is:
I(X; ye) = h(ye) - h(ze)
Now, co-variance of received signal at the eavesdropper is:
R, =E (., ¥5)
= IE{(gex + Ze)(gex + Ze)+}
= E{(gex + z,)(x"g: + z)}
= E(gexx"g{ + z.27)
= g.E(x x"g: + E(z.2z;)
=g.Pgi+ N, I,
Similarly, covariance of noise signal is given by:
R, = E(z.28) = N, I,
Hence, the entropy of y, is given by:
h (yej) = log, det(neRye)
= log, det[me(g.Pg; + NeoInE )]
Similarly, the entropy of w; is given by
h(z.) = log, det(meR,,)
= log, detifreN, I, ;)
Hence the mutual information at the eavesdropper is given by (6) and is given by:
I ) | det(meR,,)
X; =log, —F—=
Ye 82 det(meR,,)
o det[me(g.Pg; + N I, )]
&2 det(neNeOInE)
P
det[Neo(N— | |ge | |2 + InE)]
= log, =
det(N, I,,)
P
=log, (1 + gl (6)
€o
Capacity of eavesdropper is given by (7) and that is:
P
C, =log;(1+—1I1g.11*)
€o
=logy (1 + 627e) (7
where, 6, = NL and y, is the SNR of the eavesdropper channel.
Under perfect secrecy, the secrecy multicast capacity with is given by (8):
Cs = I}l(g?(cm - Ce)
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= logy (1 + 6y miny gy Vin;) — 1082(1 + 6,7.)

1+601 min1<j<y Ym ;
= logy [—— =1 (8)

V. PDF OF CAPACITY
The Probability Density Function (PDF) of capacity is important parameter to justify a channel quality because
it helps to determine the capacity which brings the most benefit.

4.1 Maximal Ratio Combining
The PDF of instantaneous received SNRs y,,, and y,at the MRC output of users and eavesdropper can be
expressed in (9) and (10), respectively as [5]:

Ymi
MRC _ ym "Rt
ﬁ/m (Ymi) —me Ymo (9)
ng—1 _Ye
FRE () = Lol e e, (10)

(mg—=1D)!y"E
Here, y,,, and y, , are average SNRs per symbol at user and eavesdropper, respectively. Distribution of the
minimum SNR among all the users can be derived using (11)

M-1
Ty (n) = MAZEE (e )[1 = B3 (Y )] (11)
The cumulative distribution function (CDF) of Yim; can be derived as
Ym;
B ) = [ 5 () i,
Oy CypRTL o Tmy
= fO L ___p Ymg d}/mi

(-1l R

Using the identity of [6, eq. (3.351.1) & eq. (3.351.2)],

k

fou xe M dx = M:‘!Ll —e i Z:O%!unlikﬂ = M:llil - “_n_lr(n + 1"uu)
we have the final expression of CDF, shown in (12):
[ _ ]
B (1) = ST LY T R Y (A 7
O e Dl (LY g e = DE A
| Vo, ]
M(rnye)
=1- - 12)
Using (9) and (12) into (11), we get
Vo M-1
ynR—l Ym; T (nR’yml)
MRC m; - m,
. )=M————ze "m0 |1 —-(1—
fdyar (m) (g = D'yt ( (ng — 1! )
Vi M-1
()
_ Vrrrlzf I "R Vi,
(g — DIyt (ng — 1)!
B y:q'f_l —;mi ym M
~ Maanmgre e [H e, =

Proposition 4.1:

Let the probability density function of x is denoted by f(x). Then the probability density function of C =
log,. (1 + 6x) is given by,

ec—1

eC
4(©) = 5 f(—5)

Proof:
We have, C = log, (1 + 8x). The probability density function of C, can be written as,

a(©) = [ 8¢ = log.(1 + 6x)f(x)dx
The following mathematical facts have been used for this proof ;
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6(x x1)

) 8(f() =X

| | , Where x; are the zeros of f(x), i.e. f(x;) = 0;
dx x)

i) [ 60c —x)8(x — x;)dx = §(x; — x,) for a < x;, %, < b; and

_ _(f(x,), x,€V

i) fV fa)6(x = x,)dx _{ 0, otherwise

Assuming k=1+6x, we have  f(k) =C —log,x and f (k)= —% . Now  from

f(k) =0,k =eCand f'(k)|K=ec = —elc. Using the above mathematical facts, we have

q(c) :fec5(1+9x—ec)f(x)dx

= e f 5 (9 <x - 1)) F0)dx

- _f < - )f(x)dx, Since, 5(dz) = ¥

)

Where, §(.) is a delta function.
Using proposition 4.1, the PDF of C,,,can be determined as shown in (14), that is:

ebm elm — 1
MRC(c y =S fMRC
q ( m) 01 dmin 91

I 6(2)

ecm 1 ngp—1
I e M G e WAL o
(ng — DMy (ng — DMy " Y,
Using the identity['(n,x) = (n — 1)!e™ Z;‘JO% of [6, eq. (8.352.7)], we have
g"re(C,) = Z(nR D(M-1) MB(ng,M—-1) eCm (em _1)nR+t—le_ern_0(ecm_1) (14)

Ymo "R (g —1)!
Here, 6, is assumed 1 for simplicity and B, (ng, M — 1) denotes the coefficient of (e — 1) in the expansion

oCm_1\ 1M1
of 1 220)] "

Similarly, the PDF of C, is derived and shown in (15):

Cor,C 1 efe—1
MRC _ ebe(e e—1)"E~ _To
q (Ce) - (nE—l)!(eCe—l)”E eV (15)
4.2 Selection Combining
The PDF of instantaneous received SNRs y,,, and y.at the SC output of i" receiver and eavesdropper are given

by (16) and (17) [5]:

ng _Ymy "R Yy
() =—|1—e V"w] e Tmo (16)
-1

Ye _Ye
£ = y— l1—eteo| e e (17)
€o
Here, y,,,, and y., are average SNRs per symbol at user and eavesdropper, respectively.

Distribution of the minimum SNR among all users can be expressed as shown in (18)

M-1
e (V) = ME ()1 = 37 ()] (18)
The cumulative distribution function (CDF) of y,,,; can be derived as

B Om) = [ G i,

-1
Ymi ng ymi nR _ymi
=f —[1—e Vmo e mo dy,.
0o Ym,
_Vmi 1 _le-
Let, l—e tmo=2z= e "mody,,, =dz

Ym,
Ym;

FOr, ¥y, = 0,z = 0 and for y,,, = ¥, z=1—e "mo. Substituting these values, we get
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_Ymi
1—e Ymo

o B (m,) = f npz"* 1 dz
0

Ym

- m mi np
_ [ngz"R 1-e Ymo 3 _ _%
_[ ng ]0 _<1 e Ymo (19)
_Vmi ng—1 _ymi _m
rfm (ym) M [1_6 ym":| e ¥Ymo [1—(1—@ yma)

Using proposition 4.1, the PDF of C,,can be determmed, that is shown in (21).
elm efm —1
5CCc.) = sc
q ( m) 01 dmin 91

Using (16), (18) and (19), we get

_ M-1
efm  my eCm_1 "R elmg _efm_1\"F
ZQ_M_ 1—e T01Vmg, e 9irm, [1 =1 —e f1¥m,
1 Ymo
ng _ecm—l nr=1 _ecm—l _ecm—l ngqM-1
=emM——|[1—e 7¥mo e Ymo [1—[1—e Ymo
Vm,

Using the identity (a + x)» = ¥7_o(®)x*a"*of [6, eq.(1.111)] and assuming #; = 1 for simplicity, we have
_(k1+kp+1)(em-1)

SC(C )= Zkl OZZR 1+an1( 1)k1+k2 (11';11) (nR—lk-ZnRh) M,,nTReCme Ymo (21)
Similarly, the PDF of C, is given by (22):

eCe—1 -1 eCe—1

ng
a*‘(C.) = ”’j“[l—e ] e Teo (22)

€o

V. PROBABILITY OF NONZERO SECRECY MULTICAST CAPACITY
The probability of non-zero secrecy capacity in the presence of eavesdropper can be defined as given in (23),
based on the definition of positive secrecy capacity in [1].
Pr(C, > 0) = Prigc,, >C,)

= [ a(Cu)a(CHdC.dC,, (23)
Using (14), (15) into (23) and performing integration, we get the expression of probability of nonzero secrecy
capacity using MRC diversity as shown in (24)
MR (nR DM-1) MBrngM-1) (M \ TR np-1_ 1 (M 1R
C(C >0) = 7ym0nR+t(nR O (%) I‘(nR +t)— Zd:o W(E + E)

XT(ng +t+d) (24)
Again using (21), (22) into (23) and performing integration we get the expression of probability of nonzero
secrecy capacity using SC diversity as shown in (25)

sC — ngr—1+ngky wng 1 ngng _1\k1+ko+ks (M—l) (nR—1+an1) ng—1 Ymo YmoVeo
Pret(C, > 0) = Z Zkz—o Zka—o Y 0(1+k3)( ) k1 kz ks kitko+l e, Ueqtka+1)+ym, (1+k3) (25

VI. ERGODIC SECRECY MULTICAST CAPACITY
Ergodic capacity is related to channel capacity. It is same as Shannon channel capacity. It is the average
capacity of the channel.
The ergodic secrecy capacity is the average of the instantaneous secrecy capacity that is given by (26):
(Cs) :OO[E[Cm] — E[C,]

=fcmq(cm)dcm _f Ceq(ce)dce (26)

0
Using (14), (15) into (26) and performing integration we get the expression of probability of nonzero secrecy
capacity using MRC diversity as shown in (27)
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MBe(np M=) np
(nR—ﬂ:y,’;‘z%* k1=0  (np—1+t—kq)!

M
(CS)MRC _ E,Ef.;l)(mz_l}MBt(nRM_i)ZnR_1+t (nr—1+t)! ((_I)HR_1+,¢_J¢1_1 (%)H'kl eTmoEi (_ yl)_l_
mMo.
gnr-isiok; g1 (@)’“’ﬁ“‘z _ 1 gmemn Gt (CoUETR gn 0 a) (27)
kz=1 (-)"RTHEEL R |y (np—1)! 24370 (ng—1-kz) \ yeo B T HD) & O\ T

Frpimks) (kg —1)! )

ky=1 (_Yeu)(nE_l_ka —k4)

Again using (21), (22) into (26) and performing integration we get the expression of probability of nonzero
secrecy capacity using SC diversity as shown in (28)

Mo e R M—-1 1+ npk Ltky 1+k
- Nnp — n n

ey =y Y (T (T I M e {0,
() L L 1) ky k, T+,

1= 2=
1+k
o Voo (o)
—— Teo? (28)

1+k3

Yo

-1 -1
- Tpiynp (=1 (M)

VIL. NUMERICAL RESULTS

TR

—sc (nR:é)

: : —SCng=4) :

A S S == <MRC (n=2) |----t--ee]
—= MRC (n=4)| _

Probability nf_g\fonzgn Ss&rscy annu\_&y (bitgfsealHLZ)

SNR (dB)
Fig. 2: The probability of non-zero secrecy multicast capacity versus average SNR of main channel for selected
values of ng with M = 2.

Fig.2 shows the probability of non-zero secrecy multicast capacity as a function of the average SNR of
the main channel with SC and MRC diversity schemes. We see that for a particular number of antennas at the
receivers, MRC diversity enhances security more significantly than SC diversity.

I

T T T T T T

a8
H

o
T

o RC )
: : : : : === MRC (=4

Probability of Nonzero Secrecy Capadly (bily'sex/T1Z)

) 5 10 15 35 40 45 50

SNRZE(IELE)
Fig. 3: The ergodic secrecy multicast capacity versus average SNR of main channel for selected values of ng
with M = 2.

Fig.3 shows the ergodic secrecy multicast capacity as a function of the average SNR of the main channel with
SC and MRC diversity schemes. From the figure, it is observed that ergodic secrecy multicast capacity
increases with the number of receive antennas but for a particular number of receiving antennas, MRC diversity
enhances security more than the SC diversity.
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VIII. CONCLUSION
In this paper, we study the security of a multicasting scenario in the presence of a single eavesdropper.
Here the closed-form analytical expressions for the ergodic secrecy multicast capacity and probability of non-
zero secrecy multicast capacity are derived for multicasting with MRC and SC diversity schemes at the
receivers and eavesdropper. According to the numerical results, we can conclude that both the MRC and SC
diversity enhance security in multicast networks but the effect of MRC diversity is more significant than SC
diversity.
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