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ABSTRACT:This work is devoted to a numerical study of the thermal free convection.In this paper, author 

solves numerically, using the method of finite differences, the transfer equations, laminar, three-dimensional, 

between inclined isothermal ellipsoid of revolution, and a Newtonian fluid in vertical upward flow generated by 

the natural convection. In the boundary layer, the results concerning the dimensionless velocity fields and 

temperatures as well as the Nusselt number and the friction coefficients, are represented graphically. With 

respect to the angle of inclination of the ellipsoid, the author put in evidence of the privileged points on the 

partition of the body. 

Keywords: three-dimensional free convection, three-dimensional boundary layer, inclined ellipsoid of 
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Nomenclature 

Roman letter symbols 
a thermal diffusivity of the fluid (m

2
.s

-1
)  

a’ length of the semi-axis of the axis of revolution, (m) 

b half-axis length perpendicular to the axis of revolution of the ellipsoid, (m) 

Cfu meridian friction coefficient 

Cfw azimuthal friction coefficient 

Cp specifique heat capacity at constant pressure of the fluid, (J.kg
-1

.K
-1

)  

g acceleration due to gravity, (m.s
-2

)  

L  length reference body, (m)  

Nu  local Nusselt number 

Pr Prandtl number 

r normal distance from the projected M of a point Pof the fluid to the axis of revolution of the ellipsoid, 

(m)  

Sx,S factors of geometric configuration 

T∞ temperature of the fluid away from the wall, (K)  

Tp temperature of the wall, (K) 

Vx velocity component in x direction, (m.s
-1

)  

Vy velocity component in y direction, (m.s
-1

)  

Vφ velocity component in   direction, (m.s
-1

)  

x, y  meridian and normal coordinates, (m)  

 

Greek letter symbols 
  angle of inclination, ( ° )  

e
  eccentric angle,in theliterature,(rad) 

  azimuthal coordinate, ( ° )  

  density of the fluid, (kg.m
-3

)  

  kinematic viscosity, (m
2
.s

-1
)  

  thermal conductivity, (W.m
-1

.K
-1

)  
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  dynamic viscosity, (kg.m
-1

.s
-1

)  

  volumetric coefficient and thermal expansion, (K
-1

)  

t
  angle formed by the major axis and a point on the wall, ( ° ) 

 

Indices/Exponents  
+  dimensionless variables 

I. INTRODUCTION 
Heat transfers around the rotationally symmetrical body have been widely studied [1-23] 

given their practical interest, especially in machinery. Take for example some hydraulic structures, aircraft, 

turbine engines, propulsion systems for ships, rockets, projectiles, metal deposition techniques in a vapor phase. 

Most of the literature relating to vertical ellipsoid.Among them, as Mochimaru [1] studied the numerical 

simulation of the natural convection in a cavity of an ellipsoid of revolution, using a method of spectral finite 

differences.He found that the strength of the circulating movement of the liquid metal layers due to natural 

convection can be well controlled by variation of heat transfer through the wall of the ellipsoid. Souad et al [2] 

studied the heat transfer and unsteady pulse by natural convection within an air-filled ellipsoid of revolution and 

whose wall is to be brought to a constant temperature, is crossed by a flow of constant density and warmth they 

have shown the existence of multicellular structures for certain values of the Grashof number and the variation 

of the form factor. Furthermore, authors observe the transition of the system between two equilibrium states and 

claim that the Nusselt number is monotonically decreasing function of time when the flow is unicellular and 

sharply decreases with each appearance or disappearance of cells.Olumuyiwa [3] has contributed to the heat 

transfer by convection mixed rotationally elliptical vertical and it confirmed that the disturbance parameter is 

responsible for the lateral displacement of the temperature profile. The author compares the results with the 

published work by Morris [4-5] to check the calculation code. Alidina [6] contributed to a study of laminar and 

permanent three-dimensional flows around the ellipsoid of revolution. He showed that on the wall, there is a 

place where the components do not depend on the position of the body in space. Cherif et al [7] contributed in 

the hydrodynamic control by mixed convection of the thickness of the vapor deposition of the semiconductoron 

the symmetrical body. Authors show that the flow and transfer are significantly dependent on this variability and 

which is possible to control the growth of heat and mass boundary layers by acting on the operating conditions, 

in particular on the profiles of body. A. Watson et al [8] studied the steady laminar free convection due to an 

ellipsoid of revolution heated.Xia et al [9] have landed on the natural convection of the low pressure gas in the 

ellipsoidal chamber induced by combined thermal conditions. After the works, the survey shows that the various  

thermal conditions non-uniform  of stratospheric environment exert a significant influence on both thermal and 

dynamic characteristics of natural convection of a gas at low pressure in a chamber. Shapiro et al [10] discussed 

the vortex formation in a thermal elliptical bubble. Lin et al [11] studied the two-dimensional natural convection 

around the body in the axisymmetric case of variable shape. Authors proposed a fast calculation procedure 

based on the coordinate transformation which can express the solutions of the conservation equations that 

govern based on a sequence of universal functions that depend on the Prandtl number and the configuration, 

determined by the contour of the body and its orientation relative to the strength of the body which generates the 

movement. Medvinsky et al [12] discussed a study of the conditions to local limits absorption elliptical limits 

based on the Helmholtz equation and also introducing a new boundary condition of an ellipse based on modal 

expansion. 

Given all the research work published on an ellipsoid, the three-dimensional natural convection 

between a Newtonian fluid and an inclined elliptical body, also of great interest, given the technological 

developments in terms of research in the field of heat.  

This work, which aims to analyze the influence of the inclination angle on heat transfer.We consider a 

three-dimensional flow, laminar, continuous, isothermal between a ellipsoid of revolution and a newtonian fluid 

in vertical upward flow created by the natural convection whose the axis of symmetry is inclined relative to the 

vertical direction. The conservation equations are discretized using an implicit finite difference scheme. 

 

II. THEORETICAL FOUNDATIONS 
The physical model considered is constituted by an ellipsoid of revolution of length L and inclined by an 

angle  relative to the vertical. The body wall is maintained at a constant temperatureTp, different from the 

temperatureT∞ of fluid away from the wall which is also constant. 
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TheFigure 1shows the spatial configuration of the physical model studied. 

 
Figure 1:physical model and co-ordinates system 

 

2-1. Simplifying assumptions 
Besides the classic assumptions of the boundary layer and those of Boussinesq, we pose the following 

assumptions: 

- The ellipsoid is stationary, 

- Transfers are laminar and permanent, 

- Radiative transfer and viscous energy dissipation are negligible, 

- The fluid is air whose physical properties are constant, except for the variations of density are at the origin of 

the free convection. 
 

2-2. Conservation equations in the boundary layer 

Let -
p

T T T


  and the appropriate variables are reduced: 
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  : Grashofnumber 

Then, the dimensionless equations in the boundary layer are written: 
 

 Equation of continuity 
 

1
0

yx x
V VV V d r

x y r r d x





   

 

   

 
   

  
  (1)  

 
 Momentumequation 

2 2

2

yx x x

x y x

V V VV V Vd r
V V S T

x y r r d x y
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2

2

x

x y

V V V V V V Vd r
V V S T

x y r r d x y

     





      

  

 

    

   
    

   
 (3) 

 
Sxet S  are the factors of geometric configuration defined by: 

  s in . c o s . c o s c o s . s in
x t

S        (4)                                                                                            

= s in . s inS  
 

 

 
 Heat equation 

2

2

1

P r
x y

VT T T T
V V

x y r y





   

 



   

   
  

   
 (5) 

P r
p

C

a

 


  , Prandtl number 

The dimensionless boundary conditions associated with these equations are: 

on the wall 0y

   

1T

 , 0

x y
V V V



  
   (6) 

Awayfrom the wall y

   

0T

 , 0

x y
V V V



  
   (7) 

 
2-3. Nusselt number and friction coefficients 

- Nusseltnumber 
1

4

0y

T
N u G r

y





 

 
   

 

(8) 

- Friction coefficients 

0 0

,
x

u f f

y y

VV
C f L c C f L c

y y





 



  

  
          

(9) 

 

III. NUMERICAL SOLUTION 
The study area is divided into NxMxLcurvilinearparallelepiped attached to the body and defined by the 

stepsdimensionless x+, y+ and +, N and L beingthe number ofmeridians and parallels. For clarity, we 

noterespectivelyU, V, W and Tthemeridional, normal, azimuthalanddimensionlesstemperature. The 

dimensionless conservation equations (1), (2), (3) and (5) are discretized using an implicit finite differences 

scheme. The calculations are performed at the nodes (i,j,k) with 1iN, 1jM and 1kL. Afterarrangement, 

thediscretized equationscan eachbe written in thefollowing form: 

,   (10) 

Wherein X ischosen from oneof thevariablesU, WandT, JMAXindex characterizingthethicknessofthe boundary 

layer.The algebraic systems (10) associated with the discretized boundary conditions are solved by the Thomas 

algorithm. As for the dimensionless normal component is calculated from the continuity equation: 

 

k k k 1 k k 1 k

i 1 , j i , j i 1 , j i 1 , j i 1 , j i 1 , jk k k i

i 1 , j i 1 , j 1 i 1 , j 1

i 1 i 1

U U 3 W 4 W W U1 r
V 3 V V 2 y 1

4 x 2 r x r

  

    

       

    

      
                  

 

For 1iN-1, 1kL-1 and 2jJMAX–1 
The convergence within the boundary layer is achieved when the following criteria: 

 

( p 1 ) ( p )

( p 1 ) ( p )

X - X

S u p X , X




   (12) 

is simultaneouslychecked forT, U and W. 

j 1 j j -1 j
A X B X C X D


  

(11) 

2jJMAX–1 
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( p )
X and ( p 1 )

X
  are respectively the values of the quantity X of the iterations p and p + 1. 

 

IV. RESULTS AND DISCUSSION 
To prove the accuracy of our results, we validated the numerical code by comparing the results of our 

calculations with those deduced from the literature [14] in the case of an axisymmetric system of an elongated 

ellipsoid. The table IV-1, illustrating the evolution of the heat exchange ratio based on the eccentric angle in a 

range of 0 to  , Pr = 1.0, shows that our results are in good agreement with those in the literature [14 ] and the 

relative deviation of not more than 1%.In the same table, we also compare the results with those obtained by 

Merkin [13] and Kumar et al [15], it seems reasonable to conclude that the agreement is good. 

 
Table IV-1:Numerical values of heat transfer coefficient, 

[ 0 , ]
e

  , Pr =1.0, b/a’=0.25 

e
  Presentresults M. K. Jaman et al [14] J. H Merkin [13] Kumar et al [15] 

0.0 

0.2 

0.4 
0.6 

0.8 

1.0 
1.2 

1.4 

1.6 
1.8 

2.0 

2.2 
2.4 

2.6 

2.8 

3.0
  

0.8412 

0.7714 

0.6622 
0.5790 

0.5184 

0.4736 
0.4397 

0.4146 

0.3936 
0.3772 

0.3644 

0.3539 
0.3450 

0.3368 

0.3264 

0.3072 

0.2782 

0.8426 

0.7706 

0.6619 
0.5781 

0.5175 

0.4729 
0.4392 

0.4132 

0.3929 
0.3768 

0.3641 

0.3538 
0.3451 

0.3370 

0.3270 

0.3062 

0.2780 

0.8359 

0.7682 

0.6617 
0.5788 

0.5187 

0.4745 
0.4409 

0.4149 

0.3943 
0.3779 

0.3646 

0.3538 
0.3447 

0.3363 

0.3266 

0.3084 

0.2785 

0.8428 

0.7722 

0.6632 
0.5794 

0.5191 

0.4747 
0.4410 

0.4150 

0.3944 
0.3779 

0.3646 

0.3537 
0.3446 

0.3362 

0.3262 

0.3070                                   

- 

 

In our results, we set Pr = 0.72 and b/a’ = 0.7.The representation of U+, against x+ shows the existence, 

in the plane of symmetry characterized by 0 an d 1 8 0     , of a curvilinear abscissa x+=0.43 privileged 

wherein x+ do not depend on the inclination angle  (Figure 2.a). This independence extends within an area 

from x+ = 0.2 to x+= 0.6 on the meridian defined by 9 0   (Figure 2.b). 
 

 
 

Figure 2:meridian component of the velocity, for different values of   

(a) : U+ against  x+, 0 an d 1 8 0      ; (b) : U+ against  x+, 9 0    ;(c) :  U+ against  , 

x+=0.24,0.43,0.61 

In these figures, the curve corresponding to the vertical ellipsoid ( =0°) is a dividing line between the 

values relative for x+<0.43 and that on x+> 0.43. In the latter, the manners they show increases with the 

inclination, for 0   and decreases on the meridian of equation 1 8 0   . In these developments, it is thus 

observed that the variations of the tangential component are reversed for x+> 0.43. 

For this privileged abscissa, there is a value at which U+ does not depend on the inclination alpha  and that 

this region is in the vicinity of 90 °(Figure 2.c). 

(a) (b) (c) 
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For the privileged abscissa x+ = 0.43, the variation curves of U +, against y+ do not depend either to , for

0 , 9 0 ,1 8 0     and the figures 3.a and 3.b illustrate this phenomenon. 

 

 
 

 

 

 
These figures confirm that the thickness of the boundary layer increases with the curvilinear abscissa 

and the meridional velocity varies from zero at the wall to a zero value outside of the boundary layer through 

positive values within thereof.    

In the case of a non-axisymmetric system, it looks as much on the azimuthal component dimensionless W + and, 

the figures 4.a and 4.bconfirm constantly for x+ = 0.24, the angle of inclination has no influence on this 

component and is thus dependent on the latter regardless of the value of y+(Figures 5.a and 5.b).  

 

 
 

 

 

Figure 3:meridian component of the velocity against y+, for different values of  and                           

x+=0.24, 0.43, 0.61 

(a) : 0 180et     ;(b) : 9 0    

Figure 4.a:azimuthal component of the velocity, for different values of   

(a) : W+ against x+, 4 5 an d 1 3 5     ;(b) : W+ against  , x+=0.09, 0.24, 0.61 

(a) (b) 

(a) (b) 
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However, we can add notes as, there is one and only one point on the wall of the ellipsoid for which W+ is not 

dependent on the inclination, for x+  0,24and even for 9 0 an d  0 , 2 0 0 , 6 0x


    (Figures 5.cand5.d). 

 
 

 
Figure 5.c:azimuthal component of the velocity, for different values of  , 

(a) : W+ against x+, =90° ;(b) : W+ against  , x+=0.50, 0.70 

 

 
Figure 6:azimuthal component of the velocity, for different values of   

(a): W+ against x+,  =90° ; (b) : W+ against , x+=0.09 ; 

(c): W+ against y+, =90°, x+=0.09 and 0.7 

Figure 5.a:azimuthal component of the velocity against y+, for different values of  and  

x+=0.09,0.24,0.50,0.70. 

(a): 4 5    ; (b) : , 9 0    

(a) (b) 

(a) (b) 
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The curves in the figures 6 show in general that the component W+ increases with .Moreover, these 

paces further confirm that the thickness of the boundary layer increases with increasing x+. 

The Figures 7.a, 7.b illustrate the evolution of the normal component dimensionless V +, for several values of 

 ,  =0° and 180°. The curves corresponding to  =0° and 180°,evolves from either side and relating to the 

axisymmetric flow ( =0°).  On the meridian defined by =90°, V+ no longer depends on the inclination for 

0 , 2 0 , 6x


  .However, V+ admits one to three privileged points for a fixed value, for example x+= 0.32, then, 

the coordinates points are defined by (x+=0.32,  =0°), (x+=0.32,  =90°) and (x+=0.32,  =180°) (Figure 7.c). 

 

 
 

 

 

 

 
The dimensionless temperature field has the same features as that of U+ andthe figures 8.a, 8.bshow the 

existence of privileged points on the wall of the ellipsoid for which T+ is independent of the inclination . We 

also note that the temperature varies weakly with in the plane of symmetry 
0

 (Figure 8.c). 

 

 
 

 

 

 

In the case of dimensionless quantity
1

4N u G


, we constantly observe the peculiarities concerning the 

temperature. In case of presence of convection due to movement of a fluid in laminar flow, the heat transfer will 

be made primarily by fluid displacement and certainly, the number is none other than the dimensionless 

temperature gradient at the wall, while its variations depend to exchanges between the wall and the fluid. In our 

case, given the hypothesis relating thereto, we note that the dimensionless quantity
1

4N u G


present in the 

Figure 7: normal component of the velocity, for several values of  . 

(a) : V+ against x+, for  =0° and 180° ;  (b) : V+ against x+,  =90° ;(c) : V+ against  , 

for x+=0.16, 0.32, 0.50, 0.70 

 

 

 

 

Figure 8:temperature profile, for several values of . 

(a): T+ against  x+,  =0° and  =180° ; (b) : T+ against  , x+=0.24, 0.43, 0.61 ; 

(c):T+ against y+, x+=0.24,  =0° and  =180° 

 

 

(a) (b) (c) 

(a) (b) (c) 
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mennerregressive. This indicates that, the heat exchange decreases gradually as one moves the wall according to 

the movements of the particles following dimensionless directions x+ and y+. Furthermore, it is independent of 

angle α with the dimensionless direction x+ on the meridian equation  =90° (Figure 9). 

 

 
 

 
 

Figures 10.a and 10.b show some curves of changes in the coefficient of friction Cfu to show the 

existence of maximum warning of separation of the boundary layer. These points are naturally closer to the pole 

of ellipsoid for =0° that for =180°. 

 

 
 

 

 
 

Figure 11, showing the changes in Cfwagainst , shows that it is zero in the plane of symmetry and confirms 

that this size increases with . 

Figure 9: nusselt number against x+, for several values of  . 

(a):  =0° and  =180° ; (b) : =90° 

 

 

 

Figure 10:tangential and azimuthal friction coefficients against x+, for several values of  . 

(a) : Cfu  for =0° and  =180° ;(b) :Cfu and Cfw for  =90° 

 

 

 

(a) (b) 

(a) (b) 



American Journal of Engineering Research (AJER) 2016 
 

 
w w w . a j e r . o r g  

 
Page 275 

 
 

 

 

 
Increasing the amplitude of this dimensionless magnitude in the negative pole confirms, that a strong adherence 

of fluid particles to the wall when the body is strongly inclined.  

 
V. CONCLUSION 

The orthogonalcoordinate systems curvilinear related to body are well suited to the study of three-

dimensional hydrodynamic and thermal boundary layers around an ellipsoid of revolution inclined.In this 

article, we presented the distributions of speed and temperature as well as the local values of Nusselt number 

and friction coefficients.In the case of a pure natural convection, it appears in the calculations that on the wall of 

the ellipsoid, there seems exist the privileged coordinate values for which the tilt angle has little effect on the 

dynamic and thermal quantities. Their position depends of course on the curvilinear abscissa and in the vicinity 

of the meridian equation =90°. 

In these results, a presence of suction of the particles on the lower meridian, when the body is strongly 

inclined and this phenomenon causes a slight disruption. After the analyzes, we find that the thickness of the 

boundary layer varies and depends on the curvilinear abscissa and of the tilt. The results for the normal 

component according to the normal coordinate illustrate its evolution in terms of thickness. 

In this work, we reported the effects of the inclination angle of the body, by considering the form factor 

is constant. Soon, it would be desirable to consider the transfer of heat and pulse based on variations of the form 

factor and inclination or even coupled to a material transport and take into account the unstable boundary 

conditions.   
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