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ABSTRACT: The objective of the present numerical model is to investigate the effect of shape of stenosis on 
blood flow through an artery using Bingham plastic fluid model. Blood is modeled as Bingham plastic fluid in a 
uniform circular tube with an axially symmetric but radially non symmetric stenosis. The expressions for flux, 
dimensionless resistance to flow with stenosis shape parameter, stenosis length and stenosis size have been 
shown graphically. 
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I. INTRODUCTION 
Human system, its growth functions are very complicated in nature, so the knowledge of blood flow 

through arteries is very much important for better understanding the anatomy and physiology of an organic 
system. For over centuries, in most of the cases cardiovascular diseases have been noticed as one of the major 
cause of death in the industrialized world. Among the cardiovascular diseases the familiar one such as stroke 
and atherosclerosis are closely related to abnormality, disorder and malfunction of blood flow characteristics in 
human body, owing to this, blood flow related problems have shown significant interest for biomedical 
researchers. 

Blood flow characteristics can be altered significantly by the arterial diseases, such as stenosis and 
aneurysm. Stenosis is a serious cardiovascular disease. The medical term stenosis means narrowing of body 
passage. Though actual formation of stenosis is unclear to us, it is believed that stenosis is formed by the 
deposition of fatty substances like cholesterol, fats/ lipids in the inner wall of the artery and unnatural growth of 
the connective tissue in the lumen of the artery (Young and Tsai [1]). 

If stenosis is formed resistance to flow is increased and hence normal blood flow is disturbed in a 
significant manner, so blood flow is insufficient to reach each cell and this resist the nutrient supplement whose 
consequences cause several diseases like hypertension, stroke, brain haemorrhage etc. This may be caused by 
unhealthy living conditions such as heavy alcohol use, exposure to Tabaco smoke, lack of physical activity and 
improper dietary habits. 

In view of these, several bio-medical researchers (Young [2], Lee and Fung [3], Shukla et.al [4], 
Chaturani and PonnalagarSamy[5]) have considered various mathematical models for blood flow through single 
stenosed artery. In all those studies they have considered the blood as a Newtonian fluid. But since it has been 
observed that whole blood being a suspension of erythrocytes in an aqueous solution, blood behaves as a non-
Newtonian fluid at low shear rates in micro vessels (Charm and Kurland [6], Blair [7], Aroesty and Gross [8], 
Majhi and Nair [9], Cokelet [10], Lih [11] ). Halder [12] presented a mathematical model of blood flow through 
stenosed artery by considering blood as power–law fluid and observed that maximum resistance to flow is 
attained at the throat of the stenosis, in case of a symmetrical stenosis. Biswaset. al [13], Siddiqui et. al [14] 
have presented a non-Newtonian fluid model by considering blood as Herschel-Bulkley type fluid. Blair and 
Spanner [15] have presented a mathematical model by considering blood to be Casson type non-Newtonian 
fluid. 

Dechant [16] has presented a perturbation model for the oscillatory flow of a Bingham-plastic in rigid 
and periodically displaced tube. Biswaset. al [17] have studied two layered pulsatile flow of blood through 
arterial tube by considering the core layer as Bingham-plastic fluid and the peripheral as Newtonian fluid. Many 
researchers (Parmar et. al [18], Richard et. al [19]) have presented mathematical models to study the effect of 
stenosis on non-Newtonian flow of blood. However, all those investigations considered the effect of single 
stenosis, but the constrictions may develop in series or may be irregular in shape or overlapping. Chakravarthy 
et. al [20], Srivastava et. al [21] have studied effect of overlapping stenosis on arterial flow of blood. 
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In the present analysis I propose to discuss the effect of overlapping stenosis on blood flow through an 
arterial tube by considering the blood as Bingham-plastic type non-Newtonian fluid. 
 

II. MATHEMATICAL FORMULATION 
Let us consider the steady flow of blood through an axially symmetric but radially non-symmetric 

overlapping stenosed artery. 
The geometry of stenosis can be taken as [21]: 
 
    h  = 	 ோ(௭)

ோబ
 

     = 1− ଷఋ
ଶோబ௅బర

ݖ)11] − ଴ଷܮ(݀ − ݖ)47 − ݀)ଶܮ଴ଶ + ݖ)72	 − ݀)ଷܮ଴ − ݖ)36 − ݀)ସ],				݀ ≤ ݖ ≤ ݀ +  ଴ܮ

     = 1, otherwise,                                                                                                                               (1) 
where R(z) is the radius of the tube in the stenotic region, R଴ is the radius of the tube outside the 

stenotic region, R୮ is the radius in the plug flow region , L଴ is the length of the stenosis and d indicates its 
location, δ is the maximum height of the stenosis. Projection of stenosis at the two positions is denoted by z as z 
= d + ୐బ

଺
, z = d + ହ୐బ

଺
. The critical height is taken as ଷδ

ସ
at  z = d + ୐బ

ଶ
 from the origin. 

 

 
Fig.1:  Geometry of a uniform tube of circular- cross section with overlapping stenosis. 

 
The equation governing the flow is given by  
                                                           − డ௣

డ௭
= 	 ଵ

௥
డ
డ௥

 (2)                                                                   ,(௥௭߬ݎ)
in which τ୰୸ represents the shear stress of blood for Bingham-plastic fluid and p is the pressure gradient. 
The relationship between shear stress and shear rate is given by  
                                                          ߬௥௭ 	= ߤ ቀ− డ௨

డ௥
ቁ + ߬଴  ,     ߬௥௭ ≥ ߬଴ 

                                                             డ௨
డ௥
	= 0,																															߬௥௭ < ߬଴                                          (3) 

where u stands for the axial velocity of blood; τ଴, the yield stress and µ , the coefficient of viscosity of blood. 
The boundary conditions are: 

(i) ߬௥௭ is finite at 0 = ݎ 
(ii) ݑ =  0 at ݎ = ℎ(ݖ) 

                                                            (iii)	డ௨
డ௥

= 0  if ߬௥௭ < ߬଴          
                                                                                            (4) 

 
 

III. SOLUTIONS 
Integrating (2) and using the boundary condition (i) of (4) we get 
                                                                   		߬௥௭  = 	 ௉௥

ଶ
 

From (3), we get by using the boundary condition (ii) of (4)  
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Since ப୳
ப୰

= 0 at r = r଴, the upper limit of the plug flow region is obtained as 

଴ݎ = 	
2߬଴
ܲ  



American Journal of Engineering Research (AJER) 2016 
 

 
w w w . a j e r . o r g  
 

Page 49 

Thus we get  
= ݑ                                                                     	 ௉௛
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The plug velocity u୮ is given by  

= ௣ݑ                                                                         ௉௛మ
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)ଶ                                                         (7) 

The volumetric flow rate i.e, the flux is given by  
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The pressure drop ∆p across the stenosis between z = 0 to z = L is obtained as  
݌∆                                              = 	 ∫ డ௣
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௅ݖ݀
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Introducing the following non-dimensional quantities we get 
ݖ̅                                              = 	 ௭
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In equation (10) we finally get (after dropping the bars) 
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The resistance to flow λ is defined as 
=  ߣ                                                             	 ∆௣
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The pressure drop in the absence of stenosis (h =1) is denoted by ∆p୒and is obtained from (12) as 
ே݌∆                                                                    = 	 ∫ ିଶସఓொ
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ଵݖ݀
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The resistance to flow in the absence of stenosis as  
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Hence the normalized resistance to flow λത is given by  
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IV. RESULTS AND DISCUSSIONS 

To illustrate the flow behavior the results are shown graphically with the help of MATLAB-7.6.The 
numerical results are shown graphically and discussed for various values of the shape parameters. 

Fig. 2 - Fig. 4 depict the variations of flux Q for different values of yield stress	τ଴ , stenosis length L଴ 
and z with the variation of stenosis height	δ. It is observed that Q decreases with the increase of δ and 	τ଴ for 
fixed values of the other parameters, but it increases when stenosis length L଴ and z increase. 

Fig. 5 - Fig. 7 show the variations of resistance to flow with the variations of stenosis height for 
different values of 	τ଴, L଴ and d. It is found that as stenosis increases, resistance to flow λത increases with the 
increase of 	τ଴ andL଴ , but the reverse effect occurs when d increases. 

 
V. CONCLUSIONS 

Blood flow characteristics through human artery are greatly influenced by the flux and resistance to 
flow, whose consequences cause several diseases, like hypertension, heart attack, brain haemorrhage etc. In the 
present analysis we observe that resistance to flow increases within the stenotic region as stenosis developed. So 
the present investigation may be helpful for further study of the various types of cardiovascular diseases. 
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Fig. 2: Variation of flux for different values of yield stress. 

 
Fig. 3: Variation of flux for different values of stenosis length. 

 
Fig. 4: Variation of flux for different values of z. 
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Fig. 5: Variations of resistance to flow with the variations of stenosis height for different values of 	τ଴. 

 
Fig. 6: Variations of resistance to flow with the variations of stenosis height for different values of 	L଴. 

 

 
Fig. 7: Variations of resistance to flow with the variations of stenosis height for different values of d. 
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