
American Journal of Engineering Research (AJER)  2016 

        American Journal of Engineering Research (AJER) 

e-ISSN: 2320-0847  p-ISSN : 2320-0936 

Volume-5, Issue-9, pp-157-161 

www.ajer.org 

Research Paper                                                                                Open Access 
 

 
w w w . a j e r . o r g  

 
 

Page 157 

 

Web Based Genetic Algorithm Using Data Mining 
 

Ashiqur Rahman
1
 Asaduzzaman Noman

2
, Md. Ashraful Islam

3
, Al-Amin Gaji

4
, 

1
(M.Sc in Information Technology (IT), Jahangirnagar University, Bangladesh) 

2, 3, 4
(CSE, Royal University of Dhaka, Bangladesh) 

 

ABSTRACT: This paper presents an approach for classifying students in order to predict their final grade 

based on features extracted from logged data in an education web-based system. A combination of multiple 

classifiers leads to a significant improvement in classification performance. Through weighting the feature 

vectors using a Genetic Algorithm we can optimize the prediction accuracy and get a marked improvement over 

raw classification. It further shows that when the number of features is few; feature weighting is works better 

than just feature selection. Many leading educational institutions are working to establish an online teaching 

and learning presence. Several systems with different capabilities and approaches have been developed to 

deliver online education in an academic setting. In particular, Michigan State University (MSU) has pioneered 

some of these systems to provide an infrastructure for online instruction. The research presented here was 

performed on a part of the latest online educational system developed at MSU, the Learning Online Network 

with Computer-Assisted Personalized Approach (LON-CAPA). 

Keywords: GA, CMC, Optimization, Data Mining, Web. 

 

I. INTRODUCTION 
Genetic Algorithms have been shown to be an effective tool to use in data mining and pattern 

recognition. [7], [10], [6], [16], [15], [13], [4]. An important aspect of GAs in a learning context is their use in 

pattern recognition.  There are two different approaches to applying GA in pattern recognition: 

1. Apply a GA directly as a classifier. Bandyopadhyay and Murthy in [3] applied GA to find the decision 

boundary in N dimensional feature space. 

2. Use a GA as an optimization tool for resetting the parameters in other classifiers. Most applications of GAs 

in pattern recognition optimize some parameters in the classification process. Many researchers have used 

GAs in feature selection [2], [9], [21], [12], [18]. GAs has been applied to find an optimal set of feature 

weights that improve classification accuracy. First, a traditional feature extraction method such as Principal 

Component Analysis (PCA) is applied, and then a classifier such as k-NN is used to calculate the fitness 

function for GA [17], [19]. Combination of classifiers is another area that GAs have been used to optimize. 

Kuncheva and Jain in [11] used a GA for selecting the features as well as selecting the types of individual 

classifiers in their design of a Classifier Fusion System. GA is also used in selecting the prototypes in the 

case-based classification [20]. 

In this paper we will focus on the second approach and use a GA to optimize a combination of 

classifiers. Our objective is to predict the students’ final grades based on their web-use features, which are 

extracted from the homework data. We design, implement, and evaluate a series of pattern classifiers with 

various parameters in order to compare their performance on a dataset from LON-CAPA. Error rates for the 

individual classifiers, their combination and the GA optimized combination are presented. 

 

II. DATASET AND CLASS LEVEL 
As  test  data  we  selected the  student and  course  data  of  a  LON-CAPA course, PHY183 (Physics 

for Scientists and Engineers I), which was held at MSU in spring semester 2002. This course integrated 12 

homework sets including 184 problems, all of which are online. About 261 students used LON-CAPA for this 

course. Some of students dropped the course after doing a couple of homework sets, so they do not have any 

final grades. After removing those students, there remained 227 valid samples. The grade distribution of the 

students is shown in Fig 1. 

 

 

 



American Journal of Engineering Research (AJER) 2016 
 

 
w w w . a j e r . o r g  

 

 

Page 158 

Fig. 1. Graph of distribution of grades in course PHY183 SS02 

 
 

We can group the students regarding their final grades in several ways, 3 of which are: 

1. Let the 9 possible class labels be the same as students’ grades, as shown in table 1. 

2. We can label the students in relation to their grades and group them into three classes, “high” representing 

grades from 3.5 to 4.0, “middle” representing grades from 2.5 to 3, and “low” representing grades less than 

2.5. 

3. We can also categorize the students with one of two class labels: “Passed” for grades higher than 2.0, 

and”Failed” for grades less than or equal to 2.0, as shown in table 3. 

 

Table 1. Selecting 9 class labels regarding to students’ grades in course PHY183 SS02 
1 Grade = 0.0 2 0.9% 

2 Grade = 0.5 0 0.0% 

3 Grade = 1.0 10 4.4% 

4 Grade = 1.5 28 12.4% 

5 Grade = 2.0 23 10.1% 

6 Grade = 2.5 43 18.9% 

7 Grade = 3.0 52 22.9% 

8 Grade = 3.5 41 18.0% 

9 Grade = 4.0 28 12.4% 

 

Table 2. Selecting 3 class labels regarding to students’ grades in course PHY183 SS02 
High Grade >= 3.5 69 30.40% 

Middle 2.0 < Grade < 3.5 95 41.80% 

Low Grade <= 2.0 63 27.80% 

 

Table 3. Selecting 2 class labels regarding to students’ grades in course PHY183 SS02 
Passed Grade > 2.0 164 72.2% 

Failed Grade <= 2.0 63 27.8% 

 

We can predict that the error rate in the first class grouping should be higher than the others, because 

the distributions of the grades over 9 classes are so different. It is clear that we have less data for the first three 

classes in the training phase, and so the error rate would likely be higher in the evaluation phase. 

 

III. EXTRACTABLE FEATURES 
Features from LON-CAPA that were used, how they can be visualized (to help in selection) and why 

we normalize the data before classification. 

The following features are stored by the LON-CAPA system: 

1. Total number of correct answers. (Success rate) 

2. Getting the problem right on the first try, vs. those with high number of tries. (Success at the first try) 

3. Total number of tries for doing homework. (Number of attempts before correct answer is derived) 

4. Time spent on the problem until solved (more specifically, the number of hours until correct. The difference 

between time of the last successful submission and the first time the problem was examined). Also, the time 

at which the student got the problem correct relative to the due date. Usually better students get the home- 

work completed earlier. 

5. Total time spent on the problem regardless of whether they got the correct answer or not. (Difference 

between time of the last submission and the first time the problem was examined). 



American Journal of Engineering Research (AJER) 2016 
 

 
w w w . a j e r . o r g  

 

 

Page 159 

6. Participating in the communication mechanisms, vs. those working alone. LON- CAPA provides online 

interaction both with other students and with the instructor. Where these used? 

7. Reading the supporting material before attempting homework vs. attempting the homework first and then 

reading up on it. 

8. Submitting a lot of attempts in a short amount of time without looking up material in between, versus those 

giving it one try, reading up, submitting another one, and so forth. 

9. Giving up on a problem versus students who continued trying up to the deadline. 

10. Time of the first log on (beginning of assignment, middle of the week, last min- ute) correlated with the 

number of tries or number of solved problems. A student who gets all correct answers will not necessarily 

be in the successful group if they took an average of 5 tries per problem, but it should be verified from this 

research. At this time we were able to extract the first six features in the PHY183 SS02 data-set that we 

have chosen for the classification experiment. 

 

IV. CLASSIFIERS 
Pattern recognition has a wide variety of applications in many different fields, such that it is not 

possible to come up with a single classifier that can give good results in all the cases.  The optimal classifier in 

every case is highly dependent on the problem domain. In practice, one might come across a case where no 

single classifier can classify with an acceptable level of accuracy. In such cases it would be better to pool the 

results of different classifiers to achieve the optimal accuracy. Every classifier operates well on different aspects 

of the training or test feature vector. As a result, assuming appropriate conditions, combining multiple classifiers 

may improve classification performance when compared with any single classifier. 

The scope of this survey is restricted to comparing some popular non-parametric pattern classifiers and 

a single parametric pattern classifier according to the error estimate. Six different classifiers using the LON-

CAPA datasets are compared in this study. The classifiers used in this study include Quadratic Bayesian 

classifier, 1- nearest neighbor (1-NN), k-nearest neighbor (k-NN), Parzen-window, multi-layer perceptron 

(MLP), and Decision Tree.
2     

these classifiers are some of the common classifiers used in most practical 

classification problems. After some preprocessing operations were made on the dataset, the error rate of each 

classifier is reported. Finally, to improve performance, a combination of classifiers is presented. 

 

V. CMC 
In combining multiple classifiers we want to improve classifier performance. There are different ways 

one can think of combining classifiers: 

• The simplest way is to find the overall error rate of the classifiers and choose the one which has the least 

error rate on the given dataset. This is called an offline CMC. This may not really seem to be a CMC; 

however, in general, it has a better performance than individual classifiers. 

• The second method, which is called online CMC, uses all the classifiers followed by a vote. The class 

getting the maximum votes from the individual classifiers will be assigned to the test sample. This method 

intuitively seems to be better than the previous one. However, when tried on some cases of our dataset, the 

re- sults were not better than the best result in previous method. So, we changed the rule of majority vote 

from “getting more than 50% votes” to “getting more than 75% votes”. This resulted in a significant 

improvement over offline CMC. 

Using the second method, we show in table 4 that CMC can achieve a significant accuracy 

improvement in all three cases of 2, 3, and 9-classes. Now we are going to use GA to find out that whether we 

can maximize the CMC performance. 

 

VI. CMC USING GA 
We used GAToolBox

3 for
 MATLAB to implement a GA to optimize classification performance. Our 

goal is to find a population of best weights for every feature vector, which minimize the classification error rate. 

The feature vector for our predictors are the set of six variables for every student: Success rate, Success 

at the first try, Number of attempts before correct answer is derived, the time at which the student got the 

problem correct relative to the due date, total time spent on the problem, and the number of online interactions 

of the student both with other students and with the instructor. We randomly initialized a population of six 

dimensional weight vectors with values between 0 and 1, corresponding to the feature vector and experimented 

with different number of population sizes. We found good results using a population with 200 individuals. The 

GA Toolbox supports binary, integer, real-valued and floating- point chromosome representations. Real-valued 

populations may be initialized using the Toolbox function crtrp. For example, to create a random population of 6 

individuals with 200 variables each: we define boundaries on the variables in FieldD 

 

 



American Journal of Engineering Research (AJER) 2016 
 

 
w w w . a j e r . o r g  

 

 

Page 160 

We create an initial population with Chrom = crtrp(200, FieldD), So we have for example: 

Chrom = 0.23 0.17 0.95 0.38 0.06 0.26 

  0.35 0.09 0.43 0.64 0.20 0.54 

  0.50 0.10 0.09 0.65 0.68 0.46 

  0.21 0.29 0.89 0.48 0.63 0.89 

 

We used the simple genetic algorithm (SGA), which is described by Goldberg in [9]. The SGA uses 

common GA operators to find a population of solutions which optimize the fitness values. 

 

VII. MUTATION 
A further genetic operator, mutation is applied to the new chromosomes, with a set probability Pm. 

Mutation causes the individual genetic representation to be changed according to some probabilistic rule. 

Mutation is generally considered to be a background operator that ensures that the probability of searching a 

particular subspace of the problem space is never zero. This has the effect of tending to inhibit the possibility of 

converging to a local optimum, rather than the global optimum. 

There are several functions to make mutation on real-valued population. We used mutbga,  which takes 

the real-valued population, OldChrom, mutates each variable with given probability and returns the population 

after mutation, NewChrom = mut- bga(OldChrom, FieldD, MutOpt) takes the current population, stored in the 

matrix OldChrom  and mutates each variable with probability by addition of small random values (size of the 

mutation step). We considered 1/600 as our mutation rate. The mutation of each variable is calculated as 

follows: 

Mutated Var = Var + MutMx × range × MutOpt(2) × delta 

Where   delta is an internal matrix which specifies the normalized mutation step size; MutMx is an 

internal mask table; and MutOpt specifies the mutation rate and its shrinkage during the run. The mutation 

operator mutbga is able to generate most points in the hypercube defined by the variables of the individual and 

the range of the mutation. However, it tests more often near the variable, that is, the probability of small step 

sizes is greater than that of larger step sizes. 

 

Mutation 

Without using GA, the overall results of classifiers’ performance on our dataset, regarding the four 

tree-classifiers, five non-tree classifiers and CMC are shown in the Table 4. Regarding individual classifiers, for 

the case of 2-classes, kNN has the best performance with 82.3% accuracy. In the case of 3-classes and 9-classes, 

CART has the best accuracy of about 60% in 3-classes and 43% in 9-Classes. However, consider, the 

combination of non-tree-based classifiers, the CMC has the best perform- acne in all three cases. That is, it 

achieved 86.8% accuracy in the case of 2-Classes, 71% in the case of 3-Classes, and 51% in the case of 9-

Classes. 

 

Table 4. Comparing the Error Rate of all classifiers on PHY183 dataset in the cases of    2- Classes, 3-Classess, 

and 9-Classes, using 10-fold cross validation, without GA 
 Performance % 

Classifier 2-Classes 3-Classes 9-Classes 

 

 Tree Classifier 

C5.0 80.3 56.8 25.6 

CART 81.5 59.9 33.1 

QUEST 80.5 57.1 20.0 

CRUISE 81.0 54.9 22.9 

 
 

 

 Non-tree Classifier 

Bayes 76.4 48.6 23.0 

1NN 76.8 50.5 29.0 

kNN 82.3 50.4 28.5 

Parzen 75.0 48.1 21.5 

MLP 79.5 50.9 - 

    

CMC 86.8 70.9 51.0 

 

For GA optimization, we used 200 individuals in our population, running the GA over 500 generations. 

We ran the program 10 times and got the averages, which are shown, in table 5. In every run 500 × 200 times 

the fitness function is called in which we used 10-fold cross validation to measure the average performance of 

CMC. So every classifier is called 3  × 10
6  

times for the case of 2-classes, 3-classes and 9- classes. Thus, the 

time overhead for fitness evaluation is critical. Since using the MLP in this process took about 2 minutes and all 

other four non-tree classifiers (Bayes, 1NN, 3NN, and Parzen window) took only 3 seconds, we omitted the 

MLP from our classifiers group so we could obtain the results in a reasonable time. 

 



American Journal of Engineering Research (AJER) 2016 
 

 
w w w . a j e r . o r g  

 

 

Page 161 

VIII. CONCLUSION 
Four classifiers were used to segregate the students. A combination of multiple classifiers leads to a 

significant accuracy improvement in all 3 cases.  Weighing the features and using a genetic algorithm to 

minimize the error rate improves the prediction accuracy at least 10% in the all cases of 2, 3 and 9-Classes. In 

cases where the number of features is low, the feature weighting worked much better than feature select. The 

successful optimization of student classification in all three cases demon- states the merits of using the LON-

CAPA data to predict the students’ final grades based on their features, which are extracted from the homework 

data. 

We are going to apply Genetic Programming to produce many different combinations of features, to 

extract new features and improve prediction accuracy. We plan to use Evolutionary Algorithms to classify the 

students and problems directly as well. We also want to apply Evolutionary Algorithms to find Association 

Rules and De- pendency among the groups of problems (Mathematical, Optional Response, Numerical, Java 

Applet, and so forth) of LON-CAPA homework data sets. 

 

REFERENCE 
[1]. Baker, J. E.  (1987). Reducing bias and inefficiency in the selection algorithm, Proceeding ICGA 2, pp. 14-21, Lawrence Erlbuam 

Associates, Publishers, 1987. 

[2]. Bala J., De Jong K., Huang J., Vafaie H., and Wechsler H. Using learning to facilitate the evolution of features for recognizing 

visual concepts. Evolutionary Computation 4(3) - Spe- cial Issue on Evolution, Learning, and Instinct: 100 years of the Baldwin 
Effect. 1997. 

[3]. Bandyopadhyay, S., and Muthy, C.A. “Pattern Classification Using Genetic Algorithms”, Pattern Recognition Letters, (1995).Vol. 

16, pp. 801-808. 
[4]. De Jong K.A., Spears W.M. and Gordon D.F. (1993). Using genetic algorithms for concept learning. Machine Learning 13, 161-

188, and 1993. 

[5]. Duda, R.O., Hart, P.E., and Stork, D.G. Pattern Classification. 2nd Edition, John Wiley & Sons, Inc., New York NY. (2001). 
[6]. Falkenauer E. Genetic Algorithms and Grouping Problems. John Wiley & Sons, (1998). 

[7]. Freitas, A.A. A survey of Evolutionary Algorithms for Data Mining and Knowledge Discov- ery,See: 

www.pgia.pucpr.br/~alex/papers. A chapter of: A. Ghosh and S. Tsutsui. (Eds.) “Advances in Evolutionary Computation”. 
Springer-Verlag, (2002). 

[8]. Goldberg, D.E.  Genetic Algorithms in Search, Optimization, and Machine Learning, MA, Addison-Wesley. (1989). 

[9]. Guerra-Salcedo C. and Whitley D. “Feature Selection mechanisms for ensemble creation: agenetic search perspective”. In: Freitas 
AA (Ed.) Data Mining with Evolutionary Algo- rithms: Research Directions – Papers from the AAAI Workshop, 13-17. Technical 

Report WS-99-06. AAAI Press, (1999). 

[10]. Jain, A. K.; Zongker, D. “Feature Selection: Evaluation, Application, and Small Sample Performance”, IEEE Transaction on Pattern 
Analysis and Machine Intelligence, Vol. 19, No. 2, February (1997). 


