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ABSTRACT: This study proposes computational intelligence based models for field strength prediction across 

the tropical metropolitan environment of Abuja, the federal capital territory of Nigeria. The three networks 

considered were the Multilayer Perceptron Neural Network (MLP-NN), the Radial Basis Function Neural 

Network (RBF-NN) and the Adaptive Neuro-Fuzzy Inference System (ANFIS). Prediction models based on these 

networks were created, trained and tested for field strength prediction using received power signals recorded at 

an operating frequency of 900MHz from multiple Base Transceiver Stations (BTS) distributed across the city. 

Results indicate that the RBF-NN and the ANFIS based models gave predictions with Root Mean Squared Errors 

(RMSE) values less than 5dBm. The RBF-NN based predictor gave the highest prediction accuracy based on 

RMSE value of 4.41dBm, closely followed by the ANFIS model with 4.69dBm. 

 

I. INTRODUCTION 
On cellular networks, radio signals propagate from transmitter to receiver via multiple paths, based on a 

phenomenon termed multipath propagation. The signals undergo multiple diffractions, refractions, reflections, 

scattering, transmission and absorption. In line of sight situations, part of the signal, known as the direct 

component travels directly to the receiving device. In any case, the radio signal strength reduces as the signal 

propagates towards the receiver and this is called attenuation. Hence, the strength of the signal at the receiver 

depends significantly on the nature of the terrain, atmospheric conditions, transmitting power, transmitting 

frequency, height of transmitter, mobile station height, etc. As a result, it is necessary to determine signal strength 

at various locations away from the transmitter in order to ensure quality delivery of service.  

Quite a number of techniques have been successfully implemented in order to predict received signal 

power at various locations away from the transmitter. Deterministic models are some of the widely used 

techniques for signal strength prediction. As described in [1], these models make use of the laws governing 

electromagnetic wave propagation to determine the received signal power at a particular location. The field 

strength is calculated using the Geometrical Theory of Diffraction (GTD) as a component comprising of direct, 

reflected and diffracted rays at the required position. Deterministic models often require a complete 3-D map of 

the propagation environment. The ray tracing model used by [2] in radio propagation modeling is a typical 

example of deterministic models. 

Recent approaches to field strength prediction are based on computational intelligence as clearly 

documented in [3], [4]. Computational intelligence encompasses various computing techniques including 

artificial neural networks, genetic algorithms, fuzzy sets, neuro-fuzzy systems, etc. These techniques are quite 

efficient in handling problems associated with uncertainty, imprecision, approximation, etc. Hence, 

computational intelligence techniques attempt to find acceptable solutions to complex real world problems such 

as pattern recognition, speech processing, function approximation, signal processing, forecasting, etc.  

The problem of field strength prediction is viewed as a function approximation problem consisting of a 

nonlinear mapping from a set of input variables containing information about the potential receiver onto a single 

output variable representing the predicted field strength [3]. Hence, the study is aimed at exploring the 

remarkable abilities to handle such tasks. The study presents computational intelligence based models for field 

strength determination across Abuja, the federal capital territory of Nigeria. The computational intelligence 

networks considered are the Multilayer Perceptron Neural Network (MLP-NN), the Radial Basis Function 

Neural Network (RBF-NN), and the Adaptive Neuro-Fuzzy Inference System (ANFIS). Models based on these 

networks are created, trained, validated and tested for field strength prediction using received power signals 

recorded at an operating frequency of 900MHz from multiple Base Transceiver Stations (BTS) distributed across 

the city. 
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II. THE MULTI-LAYER PERCEPTRON NEURAL NETWORK 
The artificial neuron or simply neuron is an essential processing unit that processes weighted inputs to 

produce an output. The Multilayer Perceptron Neural Network (MLP-NN) comprises of fully interconnected 

layers of such neurons. The MLP-NN is made up of an input layer, one or more hidden layers and an output 

layer. In such architecture as depicted in Fig. 1, each neuron in a given layer is connected to each neuron in the 

next layer, in such a way that only forward transmission of signals is possible, i.e, from the input layer, through 

the hidden layer and eventually to the output layer. Hence, the MLP-NN is a type of feed forward neural 

network. However, error signals propagate in the opposite direction from the output neuron across the network. 

The MLP-NN is typically trained with the standard back propagation algorithms. The conjugate gradient back 

propagation (traincgb) and the Levenberg-Marquardt back propagation algorithm are typical examples of 

supervised learning methods used in MLP-NN. 
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Figure 1:  Multilayer Perceptron Neural Network with one hidden layer [3] 

 

With one or two hidden layers a MLP-NN can approximate virtually any input to the desired output 

map. According to [5], a neural network with only one hidden layer can approximate any function with finitely 

many discontinuities to an arbitrary precision, provided the activation functions of the hidden units are non-

linear. Problems that require two or more hidden layers are rarely encountered in practice. Even for problems 

requiring more than one hidden layer theoretically, most of the time, using one hidden layer performs much 

better than using two hidden layers in practice [6]. 

As described by Popescu et al, (2001), the output of the MLP-NN is given by (1): 

 

                                                               (1)            

Where: 

-  represents the synaptic weights from neuron j in the hidden layer to the single output neuron, 

-  represents the -th element of the input vector,   

-  and  are the activation function of the neurons from the hidden layer and output layer, respectively,  

-  are the connection weights between the neurons of the hidden layer and the inputs. 

 

The learning phase of the network proceeds by adaptively adjusting the free parameters of the system 

based on the mean squared error E, described by (2) between predicted and measured path loss for a set of 

appropriately selected training examples: 

 

                             (2) 

where,  is the output value calculated by the network and  represents the expected output. When the 

error between network output and the desired output is minimized, the learning process is terminated and the 

network can be used in a testing phase with test vectors. At this stage, the neural network is described by the 

optimal weight configuration, which means that theoretically, it ensures output error minimization. 
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III. THE RADIAL BASIS FUNCTION NEURAL NETWORK 
The Radial Basis Function Neural Network (RBF-NN) is described by [7] as a type of feed-forward 

artificial neural network with three layers as shown in Fig.2: an input layer, a hidden layer and an output layer. 

One neuron in the input layer corresponds to each predictor variable. With respects to categorical variables, n-1 

neurons are used where n is the number of categories. The hidden layer has a variable number of neurons. Each 

neuron consists of a radial basis function centered on a point with the same dimensions as the predictor 

variables. The output layer has a weighted sum of outputs from the hidden layer to form the network outputs.  
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Figure 2:  The Radial Basis Function Neural Network [8] 

 

As described by [8], the output of hidden-nodes are not calculated using the weighted-sum activation 

function; rather the output of each hidden-node, φk is obtained by the closeness of input X to an M-dimensional 

parameter vector µk associated with the k
th

 hidden node. The most popular choice for the function  is a 

multivariate Gaussian function with an appropriate mean and auto covariance matrix. 

The output of a Radial Basis Function Neural Network is given by (3): 

 

                                                                        (3)  

 

Where, 

-  is the input vector 

-  is the connection weight in the second layer (from hidden to output layer) 

- k is the number of hidden nodes 

-  denotes the -th hidden node 

-  is the radial basis activation function. 

As described in [9], the radial basis function is a multi-dimensional function that describes the distance 

between a given input vector and a pre-defined centre vector. The Gaussian function is a type of radial basis 

function given by (4): 

 

                                   (4) 

Where,  denotes the centre vector and  denotes the spread (width) of the function. 

The training of a RBF-NN is in two stages: 

1. Determination of radial basis function parameters, i.e., Gaussian centre and spread width 

2. Determination of output weight by supervised learning. 

 

IV. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS 
An Adaptive Neuro-Fuzzy Inference System (ANFIS) is an intelligent system created by the fusion of 

an Artificial Neural Network (ANN) with a Fuzzy Inference System (FIS).  ANFIS was first proposed by [10] to 

combine the learning ability of ANNs with the ability of fuzzy systems to interpret imprecise information. 

ANNs are quite useful in modeling systems where there is no mathematical relationship between input and 

output patterns. This stems from the fact that, as systems that mimic the human brain, ANNs can be trained 
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using input patterns and target output, and then used to predict a result given new set of inputs.  Based on the 

concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning, FIS is a computational network capable of 

modeling human knowledge and reasoning. Hence, ANFIS is an intelligent adaptive system capable of solving 

complex non-linear problems.  

The ANFIS model considered in this study is based on the model proposed by [11], referred to as the 

First Order Sugeno Fuzzy Model (or simply TS Model) shown in Fig. 3. Fig. 4 presents an ANFIS architecture 

based on the TS model, with two inputs, x and y and one output which is a function of the inputs.  

 

 
Figure 3: First Order Sugeno Model [12] 

 

Based on the TS Model, the two if-then-else rules are as follows: 

i) If (x is A1) and y is B1, THEN  f1 = p1 x + q1 y + r1 

ii) If ( x is A2) and y is B2, THEN  f2 = p2 x + q2 y + r2 

 

The linguistic labels Ai and Bi are fuzzy sets associated with the input nodes x and y respectively, and fi 

is a non-fuzzy function which depends on the inputs x and y. 

As shown in Figure 4, the ANFIS architecture comprises of five layers and each layer is defined by 

specific nodes, which can either be fixed or adaptive. A fixed node is denoted by a circle while a square 

represents an adaptive node.  

 

 
Figure 4: The Architecture of an Adaptive Neuro-Fuzzy Inference System 

 

Layer 1 : In this layer, every node is an adaptive node with a node function given by: 

 

           (5) 

           (6) 
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These functions are defined by Membership Functions (MF) which can either be Bell, Gaussian or 

Triangular. The most widely used MF is the Bell MF given by (7): 
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Layer 2: This layer comprises of fixed nodes and the output of every node is the product of all the incoming 

signals into the node as given by (8). These node outputs are the firing strengths of the rules. 
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Layer 3: This layer also comprises of fixed nodes, which are denoted by N. This is the normalization layer 

where the ratio of the firing strength of each rule is calculated with respect to the sum of the firing strengths of 

all rules, using (9). Hence, the outputs of this layer are referred to as normalized firing strengths.  
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Layer 4: The nodes in this layer are adaptive nodes. The output of each node is the product of the normalized 

firing strength and a first order polynomial (for the first order TS model), given by (10): 
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The parameters pi, qi and ri are called consequent parameters. 

 

Layer 5: This is the output layer and it has a single fixed node labeled ∑. The layer computes the overall output 

as the summation of all incoming signals, to produce a crisp output given by (11): 
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According to Jang (1993), ANFIS uses a hybrid learning algorithm comprising of gradient descent 

back-propagation and the least-squares approximation method. During network training the back-propagation 

algorithm determines the premise parameters while the least-squares approximation method determines the 

consequent parameters.   

 

V. MATERIALS AND METHODS 
5.1 Received Power Measurement and Path Loss Computation 

Received power measurements were recorded from multiple Base Transceiver Stations (BTSs) situated 

within the Central Business District, Maitama and Wuse areas of Abuja, the federal Capital Territory of Nigeria. 

The Base Stations belong to the mobile network service provider, Mobile Telecommunications Network (MTN), 

Nigeria. The instrument used was a Cellular Mobile Network Analyser (SAGEM OT 290) capable of measuring 

signal strength in decibel milliwatts (dBm). Received power (PR) readings were recorded beyond the computed 

Fraunhofer far field radius of 24meters, within the 900MHz frequency band at intervals of 0.05km away from 

the Base Station, after an initial separation of 0.05 kilometer. Mobile Network Parameters obtained from the 

Network Provider (MTN) include Mean Transmitter Height of 28 meters and Mean Effective Isotropic Radiated 

Power (EIRP) of 45dBm. 

 

5.2 Development of Prediction Models  
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The MLP-NN architecture adopted comprises of an input layer with number of neurons dependent on 

data input vector size, one hidden layer, and one linearly activated output layer. The number of neurons in the 

hidden layer and other parameters such as number of training iterations and the desired error goals are all 

determined by trial and error. The adjustable weights are based on the Root Mean Square Error (RMSE). The 

supervised learning algorithm considered is the Levenberg-Marquardt (trainlm) algorithm. Other parameters are 

based on MATLAB default settings. The MLP-NN is created using the MATLAB Neural Network ToolBox 

function newff, and simulated using the function sim. 

The RBF-NN is created using the MATLAB function newrb. The key network parameter is basically 

the spread constant, determined by trial and error.  

Creating the ANFIS network involved specifying the number of network inputs, the number of fuzzy 

membership function (MF) per each input, the type of fuzzy MF, and the number of epochs as described by 

[13]. In this paper, the type of the MF chosen is the bell-shaped function. 

 

VI. RESULTS AND DISCUSSION 
Two distinct approaches to field strength prediction were adopted using the considered computational 

intelligence models. The first involves separately analyzing each base station data by splitting the data into 60% 

training, 10% validation and 30% testing. This is to ensure that the computational networks are trained for 

optimum performance. The second approach involves training the networks with a data set obtained from one 

Base Station and then testing with a set from another Base Station in a random manner [14]. By implication, a 

given data set can both be used for training and testing.  

The statistical indices for model performance evaluation were based on the following: 

i) Root Mean Squared Error (RMSE) given by (12) 

 

                                                                      (12)       

 

Where, M is the Measured received power, P the Predicted received power and N the Number of paired values.  

 

ii) The coefficient of determination (R
2
), also called the square of the multiple correlation coefficients or the 

coefficient of multiple determinations,  given by (13): 

                                                                        (13) 

 

Based on the first comparative approach, Fig. 5 depicts the performance of each of the models on BTS 

7.  It can be observed that the RBF-NN and the ANFIS models exhibit a much closer prediction than the MLP-

NN. Results in Table 1 show that this performance trend is sustained across most of the BTSs. Geometric Mean 

performance across all the BTSs shows that the RBF-NN is the most accurate with an RMSE value of 4.03dBm. 

This is closely followed by the ANFIS model with 4.29dBm. However, the ANFIS model has a higher R
2
 value 

of 0.61, indicting a great fit, resulting from higher correlation. With the highest prediction RMSE value of 

6.83dBm, the MLP-NN is simply not in the class of the other two models. 
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Figure 5: Data splitting into 60% training, 10% validation and 30% testing on BTS 7 

Table 1: Splitting data into 60% training, 10% validation and 30% testing 

BASE TRANSCEIVER STATION  STATS. MLP-NN RBF-NN ANFIS 

BTS1 RMSE(dBm) 7.11 0.88 2.37 

R
2
 0.51 0.99 0.95 

BTS2 RMSE(dBm) 13.25 5.08 7.05 

R
2
 -1.26 0.67 0.36 

BTS3 RMSE(dBm) 5.57 4.93 5.81 

R
2
 0.50 0.61 0.46 

BTS4 RMSE(dBm) 8.89 7.07 5.06 

R
2
 -0.55 0.02 0.50 

BTS5 RMSE(dBm) 2.31 4.74 2.12 

R
2
 0.82 0.24 0.85 

BTS6 RMSE(dBm) 9.61 4.87 4.78 

R
2
 -0.29 0.67 0.68 

BTS7 RMSE(dBm) 7.04 2.71 3.01 

R
2
 0.44 0.92 0.90 

BTS8 RMSE(dBm) 10.99 5.72 5.53 

R
2
 -1.02 0.45 0.49 

BTS9 RMSE(dBm) 5.00 4.48 4.23 

R
2
 0.60 0.68 0.71 

BTS10 RMSE(dBm) 5.55 4.56 5.99 

R
2
 0.12 0.41 0.53 

GEOM. 

MEAN 

RMSE(dBm) 6.83 4.03 4.29 

R
2
 0.01 0.41 0.61 

 

Based on the second approach to field strength prediction, Fig. 6 presents a scenario where the 

networks are trained with BTS 9 data and tested with data from BTS 10. Again, it can be observed that RBF-NN 

and the ANFIS models exhibit a closer prediction than the MLP-NN.  
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Fig.6: Training with BTS 9 data and Testing with data from BTS 10 

 

Similarly, results in Table 2 show that this performance trend is sustained across most of the train/test 

pairings. Geometric Mean performance across all train/test pairings shows that again, the RBF-NN is the most 

accurate with an RMSE value of 4.82dBm and an the highest R
2
 value of 0.9. The RBF-NN is closely followed 

by the ANFIS model with 5.12dBm. The MLP-NN still maintains an RMSE value above 6dBm. 

 

Table 2: Random Training with data from one BTS and Testing with data from another 

TRAIN/TEST PAIRINGS STATS. MLP-NN RBF-NN ANFIS 

BTS7/BTS3 RMSE(dBm) 2.46 5.54 4.97 

R
2
 0.98 0.88 0.90 

BTS2/BTS8 RMSE(dBm) 8.09 5.51 5.32 

R
2
 0.72 0.87 0.88 

BTS10/BT1 RMSE(dBm) 3.75 4.92 3.77 

R
2
 0.95 0.91 0.95 

BTS4/BTS5 RMSE(dBm) 7.12 4.51 4.49 

R
2
 0.80 0.92 0.92 

BTS6/BTS9 RMSE(dBm) 16.09 5.07 5.04 

R
2
 -0.19 0.88 0.88 

BTS1/BTS7 RMSE(dBm) 6.97 3.33 3.83 

R
2
 0.82 0.96 0.95 

BTS8/BTS4 RMSE(dBm) 5.26 5.31 5.85 

R
2
 0.89 0.89 0.86 

BTS3/BTS6 RMSE(dBm) 9.17 5.03 6.80 

R
2
 0.60 0.88 0.78 

BTS5/BTS2 RMSE(dBm) 6.90 5.08 7.76 

R
2
 0.82 0.90 0.77 

BTS9/BTS10 RMSE(dBm) 8.62 4.34 4.64 

R
2
 0.63 0.91 0.89 

GEOM. 

MEAN 

RMSE(dBm) 6.66 4.82 5.12 

R
2
 0.69 0.90 0.88 
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A combined performance assessment based on the two approaches shows that on the geometric mean, 

the same performance trend is observed with the RBF-NN model being the most accurate with an the lowest 

RMSE value of 4.41dBm and the highest R
2
 value of 0.73. Just a fraction less accurate than the RBF-NN 

counterpart is the ANFIS model with an RMSE value of 4.69dBm and an R
2
 value of 0.61. The MLP-NN is the 

least accurate with an RMSE value of 6.74dBm and an R
2
 value 0.08, indicating a poor fit resulting from poor 

correlation. 

 

VII. CONCLUSION 
Field strength prediction models for the metropolitan city of Abuja, Nigeria, created on the bases of 

computational intelligence networks, were trained and tested with received power data recorded at an operating 

frequency of 900MHz from multiple Base Transceiver Stations situated across the city. The three networks 

considered were the Multilayer Perceptron Neural Network (MLP-NN), the Radial Basis Function Neural 

Network (RBF-NN) and the Adaptive Neuro-Fuzzy Inference System (ANFIS). Results indicate that the RBF-

NN based predictor gave the highest prediction accuracy based on RMSE value of 4.41dBm, closely followed by 

the ANFIS model with 4.69dBm. The MLP-NN is the least accurate with an RMSE value of 6.74dBm. 
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