American Journal of Engineering Research (AJER)2016American Journal of Engineering Research (AJER)e-ISSN: 2320-0847 p-ISSN : 2320-0936Volume-5, Issue-8, pp-105-119www.ajer.orgResearch PaperOpen Access

Exergetic Efficiency of Passive Solar Air Heater with Phase Change Energy Storage Material

J.E Igwe^{*} and C.S. Agu

Department of Mechanical Engineering Michaelokpara University of Agriculture Umudike, Abia state, Nigeria.

ABSTRACT: Energy and exergy analysis of solar air heater with phase change material energy storage is considered in this research work. Energy and exergy models for component systems like flat plate solar collector and phase change material in one-dimensional heat conduction in a cylindrical pipe, for storing periods were obtained. Exergy analysis, which is based on the second law of thermodynamics, and energy analysis, under first law, was applied to improve system efficiency. Measured data, for five days, hourly insolation, collector temperature, PCM temperature, environmental temperature and air flow rate were used as an input on the energy and exergy models to determine system performance. The Software, Engineering Equation Solver (EES) was used to solve the generated equation models. The results of the analysis revealed that the average energy and exergy efficiencies were 48% and 35% respectively. **Keywords:** Exergy, Energy, absorber plate, hot air and paraffin, efficiency.

eywords. Exergy, Energy, dosorber plate, not air and parajjin, ejjiciency

I. INTRODUCTION

Storage of solar energy is an important issue as solar radiation is time- dependent energy source. Thermal energy can be stored as sensible heat (water and rock), latent heat (water, ice and salt hydrates), heat of reaction, etc. Parameters such as storage period required, economic viability or operating conditions are important in the selection of these methods.

Latent heat storage system through phase change material (Paraffin wax) is selected in this study. The reason for this selection is the fact that, theuse of PCMs for the thermal energy storage in solar heating systems has received considerable attention in the literature. Major advantages of the system are that, PCMs can store large amounts of heat, changing the phase from solid to liquid. The most important PCMs include Glauber's salt, calcium chloride hex-hydrate, sodium thiosulphate, sodium carbonate decahydrate, fatty acid, and paraffin wax. PCMs are used in application to heat up buildings, dry food stuff for storage etc.

The analysis of quality and quantity of energy in a thermodynamic system is important for energy saving and obtaining efficiency of the system. In this context, the second law of thermodynamics assesses the quality of energy, but the first law focuses on the quantity of energy. Exergy by definition is the maximum work obtained in a reversible system interacting with the environment to attain, equilibrium, considering the environmental parameters (such as temperature and pressure) at the reference state.

There is an increasing interest in the combined utilization of the first and second laws of thermodynamics, using such concepts as exergy (availability, available useful quality energy), entropy generation and irreversibility (exergy destruction) to evaluate the efficiency with the available energy being consumed. Energy analysis allows a thermodynamic evaluation of energy conservation. It provides the necessary tool for a clear distinction between energy losses to the environment and internal irreversibility in the process. Exergy analysis acknowledges the fact that, energy cannot be created nor destroyed, it can be degraded in quality eventually reaching a state in which it is in complete equilibrium with the surroundings and hence of no further use for performing useful task.

Furthermore, a comprehensive exergy analysis assessing the magnitude of exergy destruction identifies the location, the magnitude and the source of thermodynamic inefficiencies in a thermal system. This knowledge is useful in directing the attention of process design researchers and practicing engineers to those components of the system being analyzed, that offer the maximum opportunities for improvement.

In addition, exergy analyses are a method that uses the conservation of mass and energy principles together with the second law of thermodynamics for the design and analysis of energy system. It can reveal whether or not, it is possible to design more efficient energy system by reducing inefficiencies in the system. The exergy method gives information on the quality of the energy transferred in latent heat energy storage systems such as PCMs and finally obtain the energetic and exergetic performance efficiency of PCMs [8]and

[1].They defined exergy as the maximum work potential derived from a reversible engine interacting with the environment to reach a dead state, taking temperature and pressure as the reference state. They employed second law of thermodynamic which emphasizes on irreversibility or entropy generation minimization to improve the performance of machine. They showed that exergy analysis can indicate the possibilities of thermodynamic improvement of any system. Their results recorded more meaningful efficiencies than those obtained using energy analysis alone.

[10]experimentally evaluated the energy efficiency, friction factor and dimensionless exergy loss, of a solar air heater, having five solar sub-collections of same length and width arranged in series in a common case, for various values of Reynolds number.

[11] presented the determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation. This paper proposes an exergy analysis of a flat plate –solar collector based on the assumption that $T_{fi}=T_e = \text{constant} (T_e - \text{environmental temperature})$. The method has proven valuable in the design of solar collectors for the specific climatic insolation conditions of a certain region. And the exergy efficiency of a flat – plate solar collector, $\eta_{ex} = f(m, A_c)$ presents points of local maxima and a point of global maximum.

[6]discussed the performance evaluation of solar air heater for various artificial roughness geometries based on energy, and exergy efficiencies. It is found that artificial roughness on absorber surface effectively increases the efficiencies in comparison with smooth surface. The energy efficiency in general increases in the following sequence: smooth surface, circular ribs, v shaped ribs, wedge shaped rib, expanded metal mesh, rib-grooved, and chamfered rib –groove. The effective energy efficiency based criteria also follow same trend of variation among various considered geometries, and trend is reversed at very high Re. It is found that for the higher range of Re, circular ribs and V shape ribs give appreciable exergy efficiency up to high Reynolds number :while for low Re. chamfered rib -groove gives more exergy efficiency.

[6] considered the exergetic performance evaluation and parametric studies of solar air heater. It was observed that the exergy output depends on heat gain and entropy created term. If the inlet temperature of air is low, then maximum exergy output is achieved.

[8]reported energy and exergy analysis of a latent heat storage system with phase change material for a solar collector. The exergy analysis, which is based on the second law of thermodynamics, and energy analysis, which is based on the first law, were applied for evaluation of the system efficiency for charging period. It was observed that the average net energy and exergy efficiencies are 45% and 2.2% respectively.

[4] considered the performance of a natural circulation solar air heating system with phase change material energy storage. He tested the system experimentally under daytime no- load conditions at Nsukka, Nigeria over the ambient temperature range of 19 -41° C. The results show that the system can be operated successfully for crop drying applications, with suitable values to control the working chamber temperature. It can also operate as a poultry egg incubator.

[5] studied the transient thermal analysis of a natural convections solar air heater. It includes a singleglazed flat –plate solar collector integrated with a paraffin- type PCM energy storage subsystem as an application. [2]studied the energy and exergy efficiencies of different types of solar system like photovoltaic, active and passive solar collectors.

[9]did thermal analysis of flat plate solar collector and derived fin efficiency and useful energy of the collector. [3]did an extensive detailed work on collector design to obtain fin efficiency of the collector, flow factor and heat removal factor. They also worked on the phase change material energy storage to calculate the quantity of energy stored per hour, from solid to liquid phase. [16]did analysis of heat influx on three-dimensional heat conduction coordinate axes, using Fourier law equation.

[12] considered the Performance simulation of a natural circulation solar air heating system with phase change material energy storage for low temperature application.predicted temperatures of the system is compared with the experimental data under daytime no-load condition over the ambient temperature range of $18.5-36.0^{\circ}$ C and daily global irradiation of $4.9-20.1 \text{ MJ/m}^2$ -day. The predicted temperatures agree closely with experimental data to within acceptable limits.

[17] studied the energy and exergy efficiencies of close systems for thermal energy storage. [13] studied Transient Multidimensional Second Law analysis of solar collector subjected to time-varying insolation with diffuse components. The instantaneous optimum flow rates were found to follow the insolation pattern. It was also found that the daily optimum exergetic efficiencies and optimum flow rates were 30% and 10% respectively.

[14] analyzed the Second law optimization of integral type natural circulation solar energy crop dryers. It is shown that operating the dryer at conditions of minimum entropy generation yields a useful criterion for choosing dryer dimensions and is compatible with the desire to maintain allowable limits on crop temperature.

[18] considered the entropy generation in a closed system at a steady flows. They analyzed the entropy flows of different systems, both open and closed ones. Adrian Bejan (1996) studied the entropy generation

minimization. He used second law of thermodynamic mainly on different systems to analyze entropy generation of that system. Rai (2006) looked into how to convert solar energy in different systems from one form to another and other sources of energy conversion. The objective of this research work is to examine the exergetic efficiency of passive solar air heater with phase change energy storage material.

II. MATERIALS AND METHODS

The data used to test the exergy equation model generated in this work was obtained from Obi (2008). This was used on exergy and Energy analyses, in order to calculate daily energy storage of the system.

Descriptions:

Section 1, is the air flow channel to the solar panel, then the exit of the passage B leads to the paraffin cylinder (storage cylinder). The paraffin melts during the sunny-day and gets charged. It discharges when in used, either to heat up house in humid period or to dry agricultural seeds for preservation. The storage chemical gets solidify after discharging.

Fig1 Schematic view of a natural circulation air heater:

2.1 Design Calculations:

Solar air heater panel: this is a panel that absorbed insolation from the sun. It has in-built hollow passage, to allow hot air mass, to flow across.

2.1.3 Energy Analysis of the Absorber Plate (Panel)

Fig 2.1: Energy fluxes on a differential element of the absorber plate [5]

Energy balance equation of the solar collector is given as;

$$\rho_{p}C_{p}\delta_{p}\frac{\partial T_{p}}{\partial t} = K_{p}\delta_{p}\left[\frac{\partial^{2}Tp}{\partial x^{2}} + \frac{\partial^{2}Tp}{\partial z^{2}}\right] + q_{u}$$

Where

 $q_{\mu} = I_{T} \alpha \tau - U_{t} \left(T_{p} - T_{a} \right) - U_{ah} \left(T_{p} - T_{ah} \right)$ $\tag{2}$

www.ajer.org

(1)

The useful heat gain of the absorber plate is given as;

$$Q_{u} = A_{c}\alpha\tau I_{T} - A_{c}U_{t}\left(T_{p} - T_{env}\right) - A_{c}U_{ah}\left(T_{p} - T_{ah}\right)$$
(3)

The useful heat gain of the collector, as a function of the fluid inlet temperature is given as; $Q_{u} = F_{R}A_{c}\left[\alpha\tau I_{T} - U_{t}\left(T_{fi} - T_{env}\right) - U_{ah}\left(T_{ahc} - T_{fi}\right)\right]$ (4)

Energy loss on top of the absorber plate is given as; $Q_o = A_c U_t (T_{fi} - T_{env})$

Heat flowing immediately under the absorber plate is given as; $Q_{ah} = A_c U_{ah} (T_{ahc} - T_{fi})$

Heat input from the sun is given as;

$$Q_{(sun)i} = A_c \alpha \tau I_T$$
(7)

 F_{R} = heat removal factor Collector energy efficiency

$$\eta_{enc} = \frac{Q_{u}}{Q_{(sun)i}} = \frac{Heat \ gain}{Heat \ from \ the \ sun}$$
(8)

Exergy Equation of the Solar Collector is given as;

The Entropy equation is given as;

$$(S_2 - S_1) = m C p_{air} In \frac{T_{fo}}{T_{fi}}$$

$$(10)$$

The rate of entropy generation in the collector then becomes;

$$S_{gc} = \begin{bmatrix} \cdot \\ m Cp_{air} In \frac{T_{fo}}{T_{fi}} \end{bmatrix} - \begin{bmatrix} \frac{Q_{(sun)i}}{T_{su}} - \frac{Q_{o}}{T_{fi}} - \frac{Q_{ahc}}{T_{ah}} \end{bmatrix}$$
(11)

Irreversibility $E_{(irr)c}$ in the collector can also be;

$$E_{(irr)c} = T_{env} \cdot S_{gc}$$
(12)

www.ajer.org

2016

(5)

(6)

$$E_{(irr)c} = T_{env} \left[\begin{array}{c} \cdot \\ m \ Cp \\ air \ In \ \frac{T_{fo}}{T_{fi}} \end{array} \right] - T_{env} \left[\frac{Q_{(sun)i}}{T_{su}} - \frac{Q_{o}}{T_{fi}} - \frac{Q_{ahc}}{T_{ah}} \right]$$

The exergy of incoming solar radiation is given by;

$$E_{(sun)i} = \tau \alpha \ \mathbf{I}_T A_c \left(1 - \frac{T_{env}}{T_{su}} \right)$$
(14)

The exergy of the inlet air is given by;

$$E_{(air)ic} = m C p_{air} \left(T_{fi} - T_{env}\right) - m T_{env} \left(C p_{air} In \frac{T_{fi}}{T_{env}}\right)$$
(15)

while the exergy of the outlet air is given by;

$$E_{(air)oc} = m C p_{air} \left(T_{fo} - T_{env} \right) - m T_{env} \left(C p_{air} In \frac{T_{fo}}{T_{env}} \right)$$
(16)

Thus, the useful exergy of the collector becomes,

$$E_{uc} = E_{(air)oc} - E_{(air)ic}$$

$$(17)$$

Exergy efficiency of the collector is then obtained by dividing the useful exergy by the exergy of the incoming solar radiation, namely;

$$\eta_{exc} = \frac{E_{uc}}{E_{(sum)i}}$$
(18)

3.2 Phase Change Material

Fig. 2.3 Cylinder Containing PCM

The energy balance equation of the PCM is as fellows; The useful energy of the PCM is;

$$\therefore Q_{us} = -kA_{so} \frac{\partial T_s}{\partial r} = h_{so} A_{so} \left(T_{ahs} - T_s \right)$$
(19)

As given by Rajput (2009).

The energy storage of PCM is given as;

$$IF (T_{o} < T_{L}) then$$

$$Q_{stpcm} = V_{s}C_{s}\rho_{s}(T_{o} - T_{s})$$

$$If (T_{o} = T_{L}) then$$

$$Q_{stpcm} = V_{s}[C_{s}\rho_{s}(T_{L} - T_{s}) + x_{1}\rho_{li}X_{L}]$$

$$if (T_{o} > T_{L}) then$$

$$Q_{stpcm} = V_{s}[C_{s}\rho_{s}(T_{L} - T_{s}) + \rho_{li}X_{L} + C_{li}\rho_{li}(T_{o} - T_{L})]$$
(20)

www.ajer.org

2016

(13)

The heat loss to the environment becomes;

$$Q_{L} = V_{so} \left[C p_{li} \rho_{li} (T_{o} - T_{env}) \right]$$
(21)
The resulting energy balance of PCM becomes;

$$Q_{us} = Q_{stpcm} + Q_{loss}$$
(22)

The energy efficiency of the PCM is given by Rosen (1992) as follows;

$$\eta_{enst} = 1 - \frac{energy \ loss \ during \ storing}{energy \ accumulati \ on \ during \ ch \ arg \ ing} = 1 - \frac{Q_{L}}{Q_{stpcm}}$$
(23)

Exergy equation for storing periods.

$$k\left[\frac{\partial^{2}T_{s}}{\partial r^{2}} + \frac{1}{r}\frac{\partial T_{s}}{\partial r}\right]\left(1 - \frac{T_{env}}{T_{s}}\right) - E_{(irr)s} = \left(1 - \frac{T_{env}}{T_{s}}\right)\rho_{s}c_{s}\frac{\partial T_{s}}{\partial t} + \left(1 - \frac{T_{env}}{T_{o}}\right)q_{Loss}$$
(25)

Fig. 2.4 Entropy Generation in the PCM (Sgs)

The entropy generation in the paraffin wax becomes;

$$S_{g(stpcm)} = (S_2 - S_1)_{stpcm} - S_{stpcm}$$

The entropy change at constant pressure between the initial state of paraffin wax and the final state is given as;

$$(S_{2} - S_{1})_{stpcm} = V_{s}Cp_{s}\rho_{s}\ln\left(\frac{T_{o}}{T_{s}}\right)_{at(T_{o} < T_{L})}$$

$$(S_{2} - S_{1})_{stpcm} = V_{s}\left[Cp_{s}\rho_{s}\ln\left(\frac{T_{L}}{T_{s}}\right) + \left(\frac{x_{1}\rho_{ll}X_{L}}{T_{L}}\right)\right]_{at(T_{o} = T_{L})}$$

$$(S_{2} - S_{1})_{stpcm} = V_{s}\left[Cp_{s}\rho_{s}\ln\left(\frac{T_{L}}{T_{s}}\right) + \frac{\rho_{ll}X_{L}}{T_{L}} + Cp_{ll}\rho_{ll}\ln\left(\frac{T_{o}}{T_{L}}\right)\right]_{at(T_{o} > T_{L})}$$

$$(27)$$

the entropy due to heat transfer to the paraffin wax is given as;

$$S_{spem} = \frac{Q_{spem}}{T_{o}}, at (T_{o} < T_{L})$$

$$S_{spem} = \frac{Q_{spem}}{T_{L}}, at (T_{o} = T_{L})$$

$$S_{spem} = \frac{Q_{spem}}{T_{o}}, at (T_{o} > T_{L})$$
(28)

www.ajer.org

(26)

The entropy due to heat loss from the cylinder

$$S_{L} = \left(\frac{1}{T_{o}}\right) V_{s} \rho_{li} C p_{li} (T_{o} - T_{env})$$
(29)

The entropy resulting from useful energy of the system.

$$S_{ahs} = \left(\frac{Q_{us}}{T_{ahs}}\right)$$
(30)

The entropy generation in the cylindrical pipe is given as follows; When the flows is reversible and adiabatic in the cylindrical pipe, then the entropy remains constant, $S_e = S_i$,

$$\therefore (S_e - S_i) = 0$$

$$S_{gs} = 0 - [S_{ahs} - S_{g(spcm)} - S_L]$$

 $E_{(irr)s} = S_{gs}T_{env}$ = irreversibility of the system

The useful exergy in the cylindrical pipe is;

$$E_{us} = \left(1 - \frac{T_{env}}{T_s}\right) kA_{so} \frac{\partial T_s}{\partial r} = \left(1 - \frac{T_{env}}{T_{ahs}}\right) A_{so} h_s \left(T_{ahs} - T_s\right)$$
(32)

The exergy storage of the phase change material is; $IF(T_a < T_L)$ then

$$E_{stpem} = \left(1 - \frac{T_{emv}}{T_0}\right) V_s C_s \rho_s (T_o - T_s)$$

If $(T_o = T_L)$ then

$$E_{stpem} = \left(1 - \frac{T_{emv}}{T_L}\right) V_s [C_s \rho_s (T_L - T_s) + x_1 \rho_{li} X_L]$$
if $(T_o > T_L)$ then
(33)

$$E_{stpcm} = \left(1 - \frac{T_{env}}{T_o}\right) V_s \left[C_s \rho_s \left(T_L - T_s\right) + \rho_{li} X_L + C_{li} \rho_{li} \left(T_o - T_L\right)\right]$$

The exergy loss to the environment is given as;

$$E_{L} = \left(1 - \frac{T_{env}}{T_{0}}\right) \left(V_{so} \rho_{li} C p_{li} (T_{o} - T_{env})\right)$$
(34)

The exergy balance equation in the cylinder becomes;

$$E_{us} = E_{stpcm} + E_{Loss} + E_{(irr)s}$$
(35)

The exergy efficiency of the PCM is givenbyRosen (1992) as;

$$\eta_{exp\ cm} = 1 - \frac{E_L + E_{(irr\)s}}{E_{stpcm}}$$
(36)

3.1 Results

III. RESULT AND DISCUSION

The results of this research work are shown in Table 4.1 to 4.5as obtained after running computer program of energy and exergy models.

www.ajer.org Page 111

(31)

					, -				
eta_enpcm	eta_expcm	E_irrC	E_ah	E_o	E_irrpcm	E_Loss	E_stpcm	E_sunI	E_uc
		[w]	[w]	[w]	[w]	[w]	[w]	[w]	[w]
0.3204	0.1957	0.003615	4.4E-05	0.001533	2.069	0.5227	3.222	0.006861	0.00167
0.5096	0.3989	0.004527	7.33E-05	0.001817	1.347	0.8614	3.674	0.01047	0.004049
0.4846	0.372	0.000759	0.000103	0.001854	1.839	1.392	5.144	0.01222	0.009507
0.2497	0.1197	0.003096	0.000367	0.001892	3.983	1.59	6.331	0.01603	0.01068
0.3082	0.1826	0.002892	0.000293	0.002195	4.044	1.87	7.235	0.01956	0.01418
0.5114	0.3208	0.004314	0.000513	0.002403	4.494	1.944	9.48	0.02274	0.01551
0.5437	0.4355	0.000256	0.000455	0.001381	3.166	1.428	8.14	0.009028	0.006936
0.428	0.3112	0.000339	0.00044	0.001079	1.338	0.9203	3.278	0.005381	0.003523

Table 1 Results of June10, 2006.

E_us I Q_ah Q_loss Q_i Q_o Q_stpcm Q_u Q_us T_D [w] [w/m^2] [w]										
[w] [w/m^2] [w] [w]		Q_i	Q_o	Q_	stpcm	Q_u	Q)_us	T_E)
5.813 255.8 0.00088 50.05 0.09802 0.03065 73.64 0.05252 123.7 6 5.883 390.2 0.001466 41.18 0.1495 0.03633 83.98 0.08826 125.2 10.9 8.374 455.7 0.002053 60.6 0.1746 0.03709 117.6 0.107 178.2 19.9		[w]	[w]	[w]		[w]	[w]	[K]	
5.883 390.2 0.001466 41.18 0.1495 0.03633 83.98 0.08826 125.2 10.9 8.374 455.7 0.002053 60.6 0.1746 0.03709 117.6 0.107 178.2 19.9 10.0 507.7 0.002732 100.6 0.2300 0.02734 144.7 0.1452 252.2 12.9	2	0.09802	0.03065	5 73.	64	0.05252	1	23.7	6	
8.374 455.7 0.002053 60.6 0.1746 0.03709 117.6 0.107 178.2 19.9		0.1495	0.03633	8 83.	98	0.08826	1	25.2	10.9)
		0.1746	0.03709	9 117	7.6	0.107	1	78.2	19.9)
11.9 597.7 0.007332 108.6 0.229 0.03784 144.7 0.1452 253.3 21.5		0.229	0.03784	4 144	4.7	0.1452	2	53.3	21.5	5
13.15 729.2 0.005866 114.4 0.2794 0.0439 165.4 0.1814 279.8 25		0.2794	0.0439	165	5.4	0.1814	2	79.8	25	
15.92 847.9 0.01027 111.2 0.3249 0.04806 227.5 0.2106 338.7 26		0.3249	0.04806	5 227	7.5	0.2106	3	38.7	26	
12.73 336.6 0.009092 84.89 0.129 0.02763 186 0.07288 270.9 17.8		0.129	0.02763	3 186	5	0.07288	2	70.9	17.8	3
5.537 200.6 0.008799 42.86 0.07686 0.02157 74.94 0.03673 117.8 12	5	0.07686	5 0.02157	7 74.	94	0.03673	1	17.8	12	-

T_env	T_ah	T_fi	T_fo	T_h	T_ahs	T_o	T_s	T_Ds
[K]	[K]	[K]	[K]	[hrs]		[K]	[K]	
298.9	307.3	307	313	9	308.7	306	300.3	5.7
299.4	309.5	309	319.9	10	313.1	311.1	304.6	6.5
300.2	310.7	310	329.9	11	322.1	319.1	310	9.1
302.5	315	312.5	334	12	330.1	324.1	312.9	11.2
304.4	318	316	341	13	336	329.8	317	12.8
307.3	323.5	320	346	14	340.7	333.7	317.7	16
305.6	316	312.9	330.7	15	329	325	310.6	14.4
297.3	306	303	315	16	312	309.8	304	5.8

Table 2 Results of June11, 2006.

eta_enpcm	eta_expcm	E_irrC	E_o	E_irrpcm	E_Loss	E_stpcm	E_uc	E_ah	E_sunI
		[w]	[w]	[w]	[w]	[w]	[w]		[w]
0.2398	0.1995	0.003255	0.001453	2.999	0.07804	3.844	0.002037	0.000469	0.007215
0.424	0.3879	0.002738	0.001726	2.795	0.09571	4.722	0.002682	0.000528	0.007674
0.309	0.2702	0.01258	0.001741	5.692	0.1185	7.962	0.005203	0.000563	0.02009
0.4986	0.4641	0.007429	0.002044	5.207	0.1782	10.05	0.01012	0.000657	0.02025
0.5713	0.5385	0.008338	0.001847	4.565	0.1988	10.32	0.01205	0.000446	0.02268
0.5625	0.5296	0.002404	0.001817	3.872	0.1583	8.566	0.008932	0.000364	0.01352
0.5026	0.4683	0.001549	0.001801	4.087	0.1171	7.907	0.004338	0.000364	0.008052
0.3704	0.333	0.001604	0.00168	3.309	0.09645	5.107	0.003203	0.000235	0.006722

E_us	Ι	m_s	Q_i	Q_ah	Q_loss	Q_o	Q_stpcm	Q_u	Q_us
[w]	[w/m^2]	[kg]	[w]	[w]	[w]	[w]	[w]	[w]	[w]
6.921	269	64.6	0.1031	0.01173	63.59	0.03633	83.66	0.04346	147.3
7.613	286.1	64.6	0.1096	0.0132	59.2	0.04314	102.8	0.0421	162
13.77	749	64.6	0.287	0.01408	119.7	0.04352	173.3	0.1812	293
15.43	755	64.6	0.2893	0.01642	109.7	0.05109	218.7	0.1752	328.4
15.09	845.6	64.6	0.324	0.01115	96.33	0.04617	224.7	0.2107	321
12.6	503.9	64.6	0.1931	0.009092	81.56	0.04541	186.4	0.1095	268
12.11	300.2	64.6	0.115	0.009092	85.59	0.04503	172.1	0.04811	257.7
8.513	250.6	64.6	0.09602	0.005866	69.97	0.04201	111.1	0.03804	181.1

T_D	T_env	T_fi	T_fo	T_ah	T_h	T_o	T_ahs	T_s	T_Ds
[K]	[K]	[K]	[K]	[K]	[hr]	[K]	[K]	[K]	
6	296.4	306	312	310	9	307	310	300	7
6.8	297.6	309	315.8	313.5	10	310.6	313	302	8.6
11.6	303.5	315	326.6	319.8	11	319.6	325	305.1	14.5
17.8	304.8	318.3	336.1	323.9	12	329	333	310.7	18.3
20.8	301	313.2	334	317	13	328	331	309.2	18.8
16.9	300.9	312.9	329.8	316	14	322.4	325	306.8	15.6
9.8	299	310.9	320.7	314	15	314.9	318	300.5	14.4
8	298.9	310	318	312	16	312	315	302.7	9.3

eta_enpcm	eta_expcm	E_irrC	E_ah	E_o	E_irrpcm	E_Loss	E_stpcm	E_sunI	E_uc
		[w]	[w]	[w]	[w]	[w]	[w]	[w]	[w]
0.3204	0.1957	0.003615	4.4E-05	0.001533	2.069	0.5227	3.222	0.006861	0.00167
0.5096	0.3989	0.004527	7.33E-05	0.001817	1.347	0.8614	3.674	0.01047	0.004049
0.4846	0.372	0.000759	0.000103	0.001854	1.839	1.392	5.144	0.01222	0.009507
0.2497	0.1197	0.003096	0.000367	0.001892	3.983	1.59	6.331	0.01603	0.01068
0.3082	0.1826	0.002892	0.000293	0.002195	4.044	1.87	7.235	0.01956	0.01418
0.5114	0.3208	0.004314	0.000513	0.002403	4.494	1.944	9.48	0.02274	0.01551
0.5437	0.4355	0.000256	0.000455	0.001381	3.166	1.428	8.14	0.009028	0.006936
0.428	0.3112	0.000339	0.00044	0.001079	1.338	0.9203	3.278	0.005381	0.003523

Table 3 Results of June 12, 2006.

E_us	Ι	Q_ah	Q_loss	Q_i	Q_o	Q_stpcm	Q_u	Q_us	T_D
[w]	[w/m^2]	[w]		[w]	[w]	[w]	[w]	[w]	[K]
5.813	255.8	0.00088	50.05	0.09802	0.03065	73.64	0.05252	123.7	6
5.883	390.2	0.001466	41.18	0.1495	0.03633	83.98	0.08826	125.2	10.9
8.374	455.7	0.002053	60.6	0.1746	0.03709	117.6	0.107	178.2	19.9
11.9	597.7	0.007332	108.6	0.229	0.03784	144.7	0.1452	253.3	21.5
13.15	729.2	0.005866	114.4	0.2794	0.0439	165.4	0.1814	279.8	25
15.92	847.9	0.01027	111.2	0.3249	0.04806	227.5	0.2106	338.7	26
12.73	336.6	0.009092	84.89	0.129	0.02763	186	0.07288	270.9	17.8
5.537	200.6	0.008799	42.86	0.07686	0.02157	74.94	0.03673	117.8	12

T_env	T_ah	T_fi	T_fo	T_h	T_ahs	T_o	T_s	T_Ds
[K]	[K]	[K]	[K]	[hrs]		[K]	[K]	
298.9	307.3	307	313	9	308.7	306	300.3	5.7
299.4	309.5	309	319.9	10	313.1	311.1	304.6	6.5
300.2	310.7	310	329.9	11	322.1	319.1	310	9.1
302.5	315	312.5	334	12	330.1	324.1	312.9	11.2
304.4	318	316	341	13	336	329.8	317	12.8
307.3	323.5	320	346	14	340.7	333.7	317.7	16
305.6	316	312.9	330.7	15	329	325	310.6	14.4
297.3	306	303	315	16	312	309.8	304	5.8

Table 4 Results of June 13, 2006.

eta_enpcm	eta_expcm	E_irrC	E_irrpcm	E_Loss	E_o	E_ah	E_stpcm	E_sunI	E_uc
		[w]	[w]	[w]	[w]	[K]	[w]	[w]	[w]
0.298	0.2355	0.003663	2.038	0.06111	0.000435	0.000587	2.746	0.006672	0.001987
0.2122	0.1465	0.003529	3.093	0.09424	0.000568	0.000616	3.734	0.00893	0.004217
0.3745	0.3148	0.00742	3.224	0.1252	0.000757	0.00066	4.887	0.01561	0.006772
0.595	0.5434	0.002787	4	0.187	0.000946	0.000748	9.17	0.0171	0.01262
0.4903	0.4348	0.004704	4.606	0.1421	0.000378	0.000411	8.401	0.01467	0.009179
0.5412	0.4875	0.004895	3.804	0.1355	0.00036	0.000249	7.687	0.01238	0.006881
0.5152	0.4606	0.005215	3.754	0.1259	0.000341	0.000176	7.193	0.01234	0.006612
0.4804	0.4245	0.005005	3.689	0.1031	0.000189	0.000147	6.589	0.01114	0.005803

E_us	Ι	Q_ah	Q_i	Q_loss	Q_0	Q_stpcm	Q_u	Q_us	T_D
[w]	[w/m^2]	[w]	[w]	[w]	[w]	[w]	[w]	[w]	[K]
4.845	290.2	0.01173	0.1112	42.51	0.008704	60.56	0.0717	103.1	10
6.921	388.4	0.01232	0.1488	64.88	0.01135	82.37	0.09887	147.3	15
8.236	678.9	0.0132	0.2601	67.43	0.01514	107.8	0.1831	175.2	19
13.36	744	0.01496	0.2851	81.91	0.01892	202.3	0.1984	284.2	26.7
13.15	638.2	0.008212	0.2445	94.45	0.007569	185.3	0.1807	279.8	24.7
11.63	538.7	0.004986	0.2064	77.81	0.00719	169.6	0.1534	247.4	21.1
11.07	536.9	0.00352	0.2057	76.93	0.006812	158.7	0.1544	235.6	20.7
10.38	484.7	0.002933	0.1857	75.52	0.003784	145.4	0.1414	220.9	20

T_env	T_ah	T_fi	T_fo	T_h	T_ahs	T_o	T_s	T_Ds
[K]	[K]	[K]	[K]	[hr]	[K]	[K]	[K]	
297.7	304	300	310	9	308	306	301	5
299	306.2	302	317	10	315	311.8	305	6.8
300	308.5	304	323	11	320	317	308.1	8.9
302	312.1	307	333.7	12	330	327.4	310.7	16.7
304	308.8	306	330.7	13	327	323.3	308	15.3
302.8	306.4	304.7	325.8	14	324	321.2	307.2	14
302	305	303.8	324.5	15	322	319.1	306	13.1
302	304	303	323	16	319	316	304	12

eta_enpcm	eta_expcm	E_ah	E_irrC	E_irrpcm	E_Loss	E_o	E_stpcm	E_sunI	E_uc
		[w]	[w]	[w]	[w]	[w]	[w]	[w]	[w]
0.3497	0.1164	0.000675	0.00547	1.887	0.06111	0.000454	2.204	0.007942	0.001343
0.3435	0.1092	0.001203	0.005089	3.887	0.09129	0.0007	4.465	0.009991	0.003
0.4032	0.1774	0.001217	0.005854	3.962	0.1296	0.000719	4.974	0.01262	0.004832
0.4548	0.1258	0.003329	0.004827	10.33	0.1973	0.000795	12.04	0.02165	0.0127
0.7828	0.6107	0.002933	0.00784	4.073	0.1745	0.000568	10.91	0.01835	0.007009
0.7524	0.576	0.002581	0.005993	4.253	0.1568	0.000454	10.4	0.01549	0.006461
0.7623	0.5873	0.002082	0.000939	4.094	0.1524	0.000435	10.29	0.00971	0.006253
0.6159	0.4202	0.002053	0.000267	4.94	0.1399	0.000378	8.761	0.007695	0.004996

Table 5 Results of June 14, 2006.

E_us	Q_ah	Q_i	Q_loss	Q_o	Q_stpcm	Q_u	Q_us	T_h	Ι
[w]	[w]	[w]	[w]	[w]	[w]	[W]	[W]	[hr]	[w/m^2]
4.152	0.01349	0.1135	34.81	0.009083	53.54	0.0718	88.35	9	296.1
8.443	0.02405	0.1427	71.2	0.014	108.4	0.0827	179.6	10	372.5
9.066	0.02434	0.1803	72.1	0.01438	120.8	0.1119	192.9	11	470.6
22.56	0.06658	0.3092	169.4	0.01589	310.7	0.1791	480	12	807
15.16	0.05866	0.2621	57.54	0.01135	264.9	0.1518	322.5	13	684.1
14.81	0.05162	0.2213	62.53	0.009083	252.6	0.1269	315.1	14	577.5
14.53	0.04165	0.1387	59.38	0.008704	249.8	0.0698	309.2	15	362
13.84	0.04106	0.1099	81.72	0.007569	212.8	0.04843	294.5	16	286.9

T_D	T_env	T_ah	T_fi	T_fo	T_ahs	T_o	T_s	T_Ds
[K]	[K]	[K]	[K]	[K]	[K]	[K]	[K]	[K]
10	297.6	304.6	300	310	308	305.9	302	3.9
15	298.3	310.2	302	317	315	310.7	302.8	7.9
20	301.2	313.3	305	325	323.1	318.8	310	8.8
35	306.2	333.1	310.4	345.4	344	333	311.4	21.6
25.8	305.9	328.9	308.9	334.7	332.2	329.6	310.3	19.3
25.1	304.3	324.3	306.7	331.8	328.6	325.6	307.2	18.4
24.7	303.5	320	305.8	330.5	327	324.2	306	18.2
22	302	318	304	326	325.5	321	305.5	15.5

Table 6 Average energy and exergy efficiency.

0	<u> </u>	
AVERAGE ENERGY	AVERAGE EXERGY	T _h (hrs)
EFFICIENCY	EFFICIENCY	
0.42	0.29	9
0.44	0.39	10
0.58	0.42	11
0.43	0.38	12
0.54	0.34	13
0.44	0.4	14
0.52	0.3	15
0.46	0.27	16
48%	35%	

Fig. 2: variation of energy efficiency and exergy efficiency with time of the day.

Fig 3.variation of energy storage with irradiation on time of the day

Fig. 4. Variation of energy efficiency and exergy efficiency on time of the day.

Fig.5.variation of energy storage and irradiation with time of the day

Fig. 6: variation of energy efficiency and exergy efficiency with time of the day.

Fig 7.variation of energy storage with irradiation on time of the day

Fig 8: variation of energy efficiency and exergy efficiency with time of the day.

Fig.9.variation of energy storage with irradiation on time of the day

Fig. 10: variation of energy efficiency and exergy efficiency on time of the day.

Fig. 11.variation of Average energy efficiency and Average exergy efficiency with time of the day.

3.2 Discussion

Energy and exergy analyses were performed for a solar collector with thermal energy system (TES) unit using paraffin wax as a PCM. From the literature, the exergy analysis is a better method to improve system performance efficiency. Analysis of exergy takes into account, the loss of availability of heat in TES. Thus, it reflects the thermodynamic, energy and economic value of the system.

In this study, the experimental data, reported in [12] were used as an input to the energy and exergy model equations. The graphs were plotted, from the results in the tables 1 to 11, which were obtained after running the computer program of the equation model using Engineering equation Solver (software). The graphs and their descriptions are highlighted below:

For June 10, 2006, the energy storage of PCM, and the measured solar radiation are plotted with time of the day as shown in fig. 1. Both variables increase rapidly in the morning and fall after 14 hours.

Fig. 2 shows the graph of energy and exergy efficiency with time of the day. The graph took a parabolic shape. The energy efficiency remained higher than exergy efficiency as predicted. The maximum irradiation was 847.9 (w/m²) and the temperature was 60.7 ($^{\circ}$ C). They fall within the predicted results.

In June 11, 2006's results, the graph of fig. 3 shows the energy storage and irradiation with time of the day. Both increased rapidly in the morning and fall immediately after midday as the insolation dropped.

In fig. 4, The energy efficiency maintained higher values than the exergy efficiency as predicted. The system recorded 56^{0} C as the maximum melting temperature of the day. The maximum temperature was observed to be closed to the predicted temperature. The maximum insolation obtained was 845.6 (w/m²)

From the results obtained in June 12, 2006, Fig .5 shows the graph of energy storage and irradiation with time of the day. The graph increases in the morning as temperature increases and falls after midday due to fall in isolation.

Fig. 6 shows the graph of both efficiencies. They have a parabolic shape. The energy efficiency still maintained higher values than the exergy efficiency. The maximum insolation of the system was 945.6 w/m², while that of temperature was 70.8° C. This figure lies within the expected result from the system.

According to results obtained in June 13, 2006, Fig.7 shows the graph of energy storage and irradiation with time of the day. The graph increases rapidly in the morning and falls slowly after midday due to fall in insolation.

Fig. 8 shows the graph of energy and exergy efficiency with time of the day. Both graphs moves slowly in the morning and rapidly but took a little parabolic shape after 12 hours. The energy efficiency value remained higher than exergy values as predicted. The maximum temperature is 54.4° C, which is below the melting point. So the maximum temperature is closed to the prediction temperature. The maximum insolation for the day is $744(\text{w/m}^2)$.

From the results of June 14 2006, Fig.9 shows the graph of energy storage and irradiation with time of the day. The graph took a dome-bell shape. It increases in the morning and started falling gradually after 12 hours, as the insolation fall.

Fig. 10, increased in the morning till 12 hours, but fall slowly after 13 hours. The energy efficiency remained higher than exergy efficiency as required. The maximum insolation was $807(w/m^2)$, while that of temperature was 60° C. These values are within the predicted values.

In summary of the efficiencies of the system, using Fig.11 the graphs of Average energy with Average exergy efficiency took a parabolic shape. The energy is higher than exergy because of irreversibility that occurred in the system.

From the analysis, the results revealed that the average energy and exergy efficiency were 48% and 35% respectively.

IV. CONCLUSION/RECOMMENDATIONS

A complete analysis of the flat-plate solar collector with phase change material energy storage subjected to time varying insolation was carried out. The analysis of the system which is based on the first and second law of thermodynamics was carried out, such as, the energy of the collector, the exergy of the collector, the entropy generation of the collector, energy of the PCM, the exergy of the PCM and the entropy generation of the PCM. Input parameters reported by Obi (2008) were applied on the equation model, to generate results using computer program. Graphs were plotted for each day, between 9 hours to 16 hours, which reveals the daily amount of energy and exergy storage by the system for ten days.

The energy and exergy efficiencies of PCM are considered with one- dimensional heat conduction in cylindrical pipe for storing periods. Exergy analysis was employed in order to improve system performance efficiency by reducing system irreversibility or internal loss or loss of availability which leads to maximization of energy system performance efficiency. Energy efficiency of the system was improved by minimizing energy losses to the environment. The analysis reveals that solar radiation and temperature are the most effective parameters and the average energy and exergy efficiencies were 48% and 35% respectively.

REFERENCES

- [1]. Bejan A. (1988): Advanced engineering thermodynamics. Wiley inter science publishers.
- [2]. Bjornar S. and Sandness (2003): Energy efficient production, storage and distribution of solar energy:.
- [3]. Duffie J.A and Backman W. A. (1991): Solar engineering of thermal processes: New York; John Wiley and sons.
- [4]. Enibe S.O (2002): Performance of a natural circulation solar air heating system with phase material energy storage: Renewable Energy.27:69-86.
- [5]. Enibe S.O (2003): Thermal analysis of a natural circulation solar air heater with the phase change material energy storage: Renewable Energy. 28.2269-2299.
- [6]. Gupta M.K and Kaushik S.C (2008): Exegetic performance evaluation and Parametric studies of solar air heater. Energy 33, 1691-1702.
- [7]. Gupta M.K and Kaushik S.C. (2009): Performance evaluation of solar air heater for various artificial roughness geometries based on energy, effective and exergy efficiencies; Energy, Vol.34465-476.
- [8]. Kotas T.J. (1985): The exergy method of thermal plant analysis, Butterworth.
- [9]. Kreith F. and Krieder (1978): Principles of heat transfer. 5thed. New York; PWS Publishing Company.
- [10]. Kurbas I. and Durmus A(2004): Efficiency and exergy analysis of a new solar air heater; Renewable Energy 29 (1) 489-501.
- [11]. Luminosu. I and Fara L (2003): Determination of the Optimal Operation Mode of a flat solar collector by exergetic analysis and numerical simulation.
- [12]. Obi A. (2008): Performance simulation of a natural circulation solar air heating system with phase change material energy storage for low temperature application. M.Eng: Project Report: Department of Mechanical Engineering, University of Nigeria Nsukka,
- [13]. Onyegegbu S.O, and Morhenne, J.(1992). Exergy considerations in solar collector design; Proceedings of the 2nd World Renewable Energy Congress Reading, UK, pp 611-616
- [14]. Onyegegbu S.O, and Morhenne, J. (1993). Transient Multidimensional Second Law analysis of solar collector subjected to timevarying insolation with diffuse components. Renewable Energy: Vol.50pp. 85-95.
- [15]. Rai G.D (2006): Non-Conventional Energy Sources; Khanna Publishers.
- [16]. Rajput .R.K. (2005): Heat and mass transfer: S.Chand and Company Ltd. 2009.Renewable Energy 30 731-747.
- [17]. Rosen M.A. (1992). Appropriate thermodynamic performance measures for closed systems for thermal energy storage: 100/vol. 114.
- [18]. Yunus A. and Michael A. (2006): Thermodynamics; an engineering approach; McGraw-Hill Company, Fifth Edition