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ABSTRACT: The Optimal performance and operational parameters of a waste plastic plant for crude oil 

recovery was determined using Response surface method. The operational parameters of the machine 

investigated include temperature of the reactor, waste plastics in the reactor chamber, catalyst and water 

flow rate. While volume of recovered crude oil, time required for proper melting and vaporising the waste 

plastics and time required to properly condense the vapourised crude oil constitutes the performance 

parameters. The interactions of these factors (operational parameters) and responses (performance 

parameters) were evaluated and estimated using full factorial design while desirability function approach 

was the optimization technique applied. The study revealed the reactor temperature (T), quantity of waste 

plastics (Mp), quantity of catalyst (C) and water flow rate (Q) of 370
o
C, 5kg, 2.5kg and 4lit/min respectively 

as the optimal operational parameters of the waste plastic plant for crude oil recovery. While the 

performance analysis showed that the waste plastic plant with the quantity of recovered crude oil (Vc), time 

required to completely vaporize the plastics (tr) and total time required to condense the vaporised oil (tc) of 

the plant were 4.29liters, 41.94mins and 16mins respectively at the optimal factor setting. 

Keywords: Crude oil, response surface, optimal performance, factorial design and plastics. 

 

I. INTRODUCTION 
Plastics play a significant role in the environmental, societal and economical dimensions of 

sustainable development [1]. Plastics are light, durable, clean and versatile and therefore have been 

increasingly used to make packaging, automotive, building, electronic and electrical products. If we use other 

materials to replace plastics, the cost and environmental impacts will more likely to increase. For example, 

Americans use 100 billion plastics bags a year, made from about 12 million barrels of oil; instead, the use of 

10 billion paper bags each year means cutting down 14 million trees [2]. The use of crude oil for producing 

plastics consumes a scarce resource (energy) but the use of paper means the reduction of the capability of the 

planet earth to absorb CO2. 

Plastics have become an indispensable part in today’s world. Due to their light weight, durability, 

energy efficiency coupled with fast rate of production and design flexibility, thus plastics are employed in 

entire industrial and domestic areas. 

Plastics are composed primarily of hydrocarbons but also contain additives such as antioxidant, 

colorants, and other stabilizers. Disposal of the waste plastic, poses a great hazard to the environment and 

effective method has not yet been implemented. Plastics are slowly biodegradable polymers mostly 

containing carbon-hydrogen, and a few other elements like nitrogen. Due to its non-biodegradable nature the 

waste plastic contributes significantly to the problem of waste management. Today about 129million tonnes 

of waste plastic are produced annually all over the world at which 77million tones are produced due to 

economic growth, and consumption change and also the pattern in which things are being produced has 

resulted into rapid increase in the production of waste plastics in the world. 

Due to the incremental of generation of waste, plastic are becoming a major stream in solid waste. 

After food waste and paper waste, plastic waste is the major constituent of municipal and industrial waste in 

the cities. By converting plastic waste to fuel, we solve two issues, one of the large plastic seas and the other 

of the fuel shortage. This benefit though would exist only as long as the waste plastic lasts, but will surely 

provider a strong platform for us to build on a sustainable, clean, and green future. The conversion of waste 

plastic into fuel depends on the type of plastics to be targeted and properties of other waste that might be used 

in the process. 

Recognizing the importance of plastics and the fact that plastics are made of scarce resources, there 

have been a lot of efforts in research and development to make plastics reusable and recyclable. According 
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[3], the UK government has set out to achieve 45% recycling target by 2015. In 2008-09, 27.3 million tonnes 

of municipal waste was collected by UK local authorities but 50.3% was sent to landfill, 36.9% was recycled 

or composted, 12.2% was incinerated for energy recovery [4]. Despite knowing that plastics are difficult to 

be degraded naturally, UK is throwing away four plastic bottles out of every five [7]. There appears to be a 

lack of emphasis and research on the management of the end-of-life (EOL) of products made of plastics and 

other scarce resources. There are a lot of research efforts in many different disciplines attempting to find 

technologies and ways to make a cleaner and sustainable world. From a simple question such as the use 

plastic or paper bags for shopping in the supermarkets to the more complex questions about the most 

sustainable approaches to design, manufacture, distribute, and recycle a product, more research is required to 

help logistics and supply chain managers to make informed decisions. The trouble is that most of the research 

efforts are carried out in isolation without a “cradle-to-grave” or life-cycle approach. Even though recycling 

is believed to conserve materials and reduce greenhouse gas (GHG) emission, recycling activities involve 

transportation and production activities which consume energy and natural resources and simultaneously 

produce emissions/pollutions. Without understanding of the environmental impacts of recycling logistics 

systems, managers will not be able to make better decisions on product design, production, distribution, 

choice of materials, and the design of recycling logistics systems. Understanding of the environmental impact 

of various logistics solutions for managing product life cycle including product end-of-life (EOL) is a crucial 

step towards a cleaner and sustainable world. 

Plastic have woven their way into our daily lives and pose a tremendous threats to the environment, 

over a 100million tones of plastic are produced annually worldwide, and the use products have become a 

common feature at over flowing bins and landfills though work has been done to make futuristic 

biodegradable plastics, there have not been many conclusive step towards cleaning up the existing problems. 

Here the process of converting waste plastic into value added fuels is explained as a viable solution for 

recycling of plastic. Thus two problems such as problem of waste plastic and problem of fuel shortage are 

being tackled simultaneously. The waste plastics are subjected to deploy merisation, pyrolysis, catalytic 

cracking and fractional distillation to obtain different value added fuels such as petrol, kerosene, and diesel, 

lube oil, furnace oil fraction and coke. 

The main purpose of this project is to improve the performance of the existing crude oil recovery 

plant from waste plastics using Response surface method to minimize total reaction time and maximize crude 

oil recovery.  

 

II. MATERIALS AND METHODS 
2.1 Research Materials  

The materials used in the test include: waste plastic to crude oil converter, waste plastics, catalyst, 

thermometer, and bucket filled with distilled water with a control valve, hose, and a beaker. 

The plastic waste converter consists of two distinct units; the cooking pot/reactor and the condenser 

unit. The cooking pot has a feed gate which is the inlet in which the waste plastic is feed into the machine, 

and also an outlet to discharge off the residue. 

The cooking pot also comprises of a heater which heats up the plastic inside the pot. The cooking 

pot is been connected to a condenser via the steam tube where the vapour is been condensed into liquid. 

 

2.2 Data Analysis Procedure 

The choice of the type of experimental design was based on the number of variables available (i.e. 

number of independent and dependent variables), availability of resources, source of data collected, available 

time and cost implication. The effects of four operational parameters – on three performance indicators – 

were studied. The independent variables were coded using the transformation equation given in equation 1 

according to [5].    

                                      Xi =                            (1) 

Where is the independent variable in natural factor, is the independent variable in coded factor, Xlow 

and Xhigh are respectively the minimum and maximum values of the independent variables and. Two-level 

full-Factorial design  is used in this study basically for its economic viability as it permits the analysis of a 

marginally small number experimental runs from a high factorial point. 

The factorial design was generated using MINITAB to first of all, develop a first order model for the 

factors under study. This shows that the responses are individually functions of the factors as follows; 

                         Ym = X1, X2,…..Xi+Ɛ                                                      (2) 
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Where, Y represents the responses in actual (natural) form, m is the number of responses in the 

design, X represent factors in coded forms and i is the number of factors in the design and ε is the error in the 

design. Since four factors were considered in this study, the number of experimental run is given by;  

                    n = 2
k
                                                                           (3) 

For a two-level factorial design with a single replicate and no center point, k is the number of 

factors, the number of experimental runs therefore is. The two-level first order factorial design was analyzed 

with the aid of MINITAB. This design is completely randomized, with both single replicate and block. The 

analysis gave rise to a first order regression model of the form;   

                    y = ᵝoi + ᵝ1  X1i+ᵝ2iX2i +…..ᵝkiXki + Ɛi                             (4) 

Where I = 1,2,3,…n  

Using MINITAB software, the analysis of variance (ANOVA) of the design was conducted to check 

the model adequacy to fit the measured data. If the calculated value of exceeds the tabulated value, that is, , 

the fitted models are said to be adequate approximations of the data. The coefficient of determination (R
2
) 

and adjusted coefficient of determination (adj-R
2
) for each response models were determined using 

MINITAB, to show how well the estimated models fit the measured data. The values of R
2 

lies between zero 

& one (i.e.) and as the value of R
2
 approaches one (1), the estimated model fits the data better. R

2 
which is 

measured in percentage (%), thus, shows the percentage (%) variation of the estimated data) from the 

measure data (The standard error of regression (S) and sum of square of error (SSE) also indicate how closely 

the estimated response approximates the measured response. The smaller the value of the standard error and 

the sum of square of error, the model, approximates the data better [8].  

Normal probability plots of residuals, histogram plots, residual versus fit, residual versus 

observational order generated using MINITAB in a four-in-one format are diagnostic plots employed in the 

model adequacy analysis of the predicted models. The diagnostic plots which show the distribution of the 

residuals in each plot graphically shows the adequacy of the predicted model to fit the measured data well. 

When and p-value < 0.05, the corresponding factor is said to be statistically significant for a two-tailed test, 

hence α = 0.05. The significance of individual factors was also investigated using the main effect plots 

generated using MINITAB. 

Factor interactions and quadratic effects were further created after the critical evaluation of the first 

order models to augment the lapses associated with the first order model. Thus, a second order model of the 

form in equation 3.4 and an improved first order models with interactions of the form in equation 3.5 were 

obtained for the responses. 

                       Y = ᵝo + ᵝiXi + ᵝjXj + ᵝiiXi
2
…+ ᵝijXiXj                                           (5) 

After developing, analysing and validating the improved first order models with interactions for the 

response function, 3-D surface plots and contour plots for each of the responses against any pair of factors, 

were generated using MINITAB software. The optimal settings of each response and the pair of factors were 

visualized on the plots. This method is most suitable when there are only two factors in the design. When the 

model comprises of more than two factors, it’s difficult to estimate exactly the optimal settings of the factors 

for a given response. This is because of the prevalence of more than one surface or contour plots with varying 

topographies for a given response.  

In the bid to obtain a simultaneous solution of the predicted response models, desirability function 

approach was adopted. This was achieved using the response optimizer tool embedded in MINITAB. It’s an 

iterative method which can be used to maximize, minimize, or hit target of the responses. This optimization 

was based on the “target is best” kind [9]. 

   

III. RESULTS AND DISCUSSION 
3.1 Results 

Table 1: Limits of the operational parameters of the machine 

 

 

 

 

 

 

 

 

 

 

s/n Factor Description Factor symbols Factor Values 

Coded Actual High (+1) Low (-1) 

1. Temperature of the reactor (oC) X1 T 370 120 

2. Quantity of Plastics (kg) X2 Mp 5 1.5 

3. Quantity of Catalyst (kg) X3 C 2.5 0.25 

4. Water flow rate (l/s) X4 Q 4 1 
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Table 2: Response Optimization 

Parameters 

 

Response  Goal      Lower          Target     Upper    Weight  Importance 

tc                         Minimum        15.0         35             1           1 

tr                         Minimum         40.0       192            1           1 

Vc                        Maximum        0.9         4.3             1           1 

 

Solution 

                               tc       tr       Vc     Composite 

Solution  x1  x2  x3  x4      Fit            Fit             Fit            Desirability 

1               1    1    1    1    16.5625    41.9375     4.28687      0.967848 

 

Table 3: Model confirmatory Test for response optimization 

Run 

Order 

Coded values of factors Actual Responses Predicted Responses 

x1 x2 x3 x4 Vc Tr Tc Vc Tr Tc 

1 1 1 -1 1 3.9 68 25 4.05 68.63 22.13 

2 1 -1 1 1 1.35 40 15 1.45 41 15.88 

3 -1 -1 -1 1 0.9 170 18 1.02 172.13 18.5 

4 1 -1 -1 1 1.31 53 15 1.24 51.88 14.13 

5 -1 1 1 -1 4.02 150 25 4.02 150.5 25.38 

 

 
Figure 1: Residual plot for Quantity of recovered crude oil 

 

 
Figure 2: Residual plot for Time of Liquefaction of vapourised crude oil 
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Figure 3: Residual plot for Time of vapourising waste plastics 

 

 
Figure 4: contour and surface plot of Vc 

 
Figure 5: contour and surface plot of tr 

 

 
Figure 6: contour and surface plot of tc 
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3.2 Discussion 

The application of response surface analysis in describing the relationship between the performance 

indicators (responses) of the crude oil recovery plant, its operational parameters (factors) and the 

determination of the optimal settings of the parameters involves; Development of appropriate RSM 

experimental plan, fitting, selection, optimization of the best response surface function for the response. The 

performance indicators of the crude oil recovery plant that were evaluated in this investigation are the 

quantity of recovered crude oil (Vc), time required to completely vaporize the plastics (tr) and total time 

required to condense the vaporized oil (tc).  

The independent factors –operational parameters- of the machine under study are the reactor 

temperature (T), quantity of waste plastics (Mp), quantity of catalyst (C) and water flow rate (Q) and with X1, 

X2, X3, X4 as their respective coded symbols are the operational parameters. The limits of the operational 

parameters which influence the performance of the machine as determined experimentally are shown in table 

1. 

The adequacy of the estimated models was tested using MINITAB 17 and the standardized residual 

plots which includes, normal probability plot, histogram of residuals, residual versus fits and residual versus 

observation order as shown in figure 1 to 6 for the quantity of recovered crude oil, total time taken for 

vapourization of the plastics, time taken for condensation/liquefaction of the vapourised crude oil. The plots 

show that the normal curve approximates along the straight line with little deviations, no or little outliers, 

reduced or no skewness, good distribution of residuals and cluster around the mean (zero) line as shown in 

the normal probability plot, histogram of residuals, residual versus fits and residual versus observation order 

of standardized residual which implies that the models fit the data adequately.  

 

3.2.1 Performance Optimization of the Modified Crude Oil Recovery Plant 
The relationship between each of the responses and combination of any two (or pair) of the factors 

was represented in the response surface and contour plots generated using MINITAB 17 as shown in the 

figures below. Only statistically significant predictors were considered in these plots. The topography of each 

of the plots indicates the effect of each pair of factors on each of the responses keeping all others constant. 

The contour curves (fig.4-6) were used to visualize the direction of the optimal settings for the predicted 

models, deeper colouration indicates region of maximum response and light colouration indicates region of 

minimum response with respect to the factors at a time. However, this approach is technically unreliable 

when there are more than one intermediate response and more than two factors. So the response surface and 

contour plot can lead to unnecessary multiplicity of optimal settings. 

A closer look at the shape of the graph (fig. 6) would reveal that some of them for a particular 

response indicate maximum optimal region, others show minimum optimal regions while some are 

intermediate (i.e. showing saddle points). Therefore, there is need to adopt a method that can define the 

optimal settings for all the responses with respect to all the factors simultaneously. The multi-response multi-

factor optimization of the response models was performed using MINITAB 17 response optimizer capability, 

based on principle of Derringer modified Harrington’s desirability function approach which provides a 

combination of the factor settings that simultaneously optimize a set of responses and defines the best 

settings for the solution of set of multivariate objective functions.  

The optimization result in  Table 2 indicates that optimal setting of the quantity of crude oil, time 

required to vaporise the plastics and time required to condense or liquefy the vapourised crude are 

respectively 4.49liters, 41.94mins and 16mins respectively. While the approximate optimal values of the 

reactor temperature, quantity of waste plastics, quantity of catalyst and water flow rate are respectively 

370
o
C, 5kg, 2.5kg and 4lit/s. The optimization results have been tested to establish the adequacy of the 

predicted models as shown in the Table 3. 

Using the point prediction capability of the MINTAB software, the quantity of crude obtained, time 

required to melt the plastics and the time required to properly liquefy the vapourised crude oil of these 

experiments were predicted based on the selected models as shown in table 2. Thereafter, predicted values 

were compared with the actual experimental results by computing the residuals and their percentage errors as 

shown in Table 3. This table shows that the percentage error range between the actual and predicted value for 

Vc, Tr and Tc are as follows; 5.34 to -13%, 2 to -2.5% and 11 to -5.87% respectively. Therefore, the 

empirical models developed are reasonably accurate since the results of the confirmation runs (actual values 

of the responses) are within 95% prediction interval. The 95% prediction interval is the range in which any 

individual value (predicted) is statistically expected to fall into. Thus, the models developed were used to 

determine the optimal setting of the plastic waste to crude oil machine’s performance parameters. 
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IV. CONCLUSION 
This study revealed the reactor temperature (T), quantity of waste plastics (Mp), quantity of catalyst (C) and 

water flow rate (Q) of 370
o
C, 5kg, 2.5kg and 4lit/s respectively as the optimal operational parameters of the 

waste plastic plant used for crude oil recovery. While the performance analysis showed that the waste plastic 

plant with the quantity of recovered crude oil (Vc), time required to completely vaporize the plastics (tr) and 

total time required to condense the vaporised oil (tc) of the plant as 4.49liters, 41.94mins and 16mins 

respectively with these optimal factor setting.  Conclusively it can be showed that for maximum recovery of 

crude oil from waste plastic, the machine should be operated at maximum reactor temperature, maximum 

quantity of catalyst and a corresponding water flow rate. Furthermore, this analysis showed that all the 

factors investigated influenced the performance indicators of the waste plastic plant for crude oil recovery 

significantly. 
 

V. RECOMMENDATIONS 
Based on the findings from this study, it is therefore recommended that; 

1. With the optimal factors setting known, manufacturers are encouraged to adopt them when transforming 

waste plastics into crude oil. 

2. This machine should be adopted and commercialized in order to alleviate the dependence on fossils 

fuels. 

3. The Federal Government should look into waste plastic to crude oil recovery and erect massive 

industries for the processes as an alternative means to fossil fuels. 
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