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ABSTRACT: The flexural wave attenuation property of a periodic laminated beam is examined in this paper. 

The equation of motion of a single laminated beam is firstly derived by Hamilton principle, and then the transfer 

matrix method and Bloch-Floquet boundary condition are applied to determine the flexural wave band-gaps of 

an infinite periodic laminated beam. The vibration transmission characteristic is studied by finite element 

method (FEM), and the numerical result shows that, the band-gaps of an infinite periodic beam from present 

model match very with the transmittance valleys of a finite periodic beam from FEM model, which shows good 

accuracy of the present theoretical model. Studies show that, the periodic laminated beam provides good 

vibration attenuation performance, with broad band-gap widths and strong attenuation ability, thus can be used 

in the vibration and noise control. The present model derived in this paper can also predict the longitudinal 

wave propagation property. The Euler model is also examined to give a simple model for convenient purpose in 

the Engineering applications. The result shows that the simplified model can be used in the low frequency band-

gap prediction, while it will induce errors in the high frequency. 

Keywords: Flexural wave band-gap, Hamilton principle, Transfer matrix method, Periodic laminated beam. 

 

I. INTRODUCTION 
Vibration is a general physical phenomenon when a mechanical structure is excited. Although some 

vibrations bring beneficial effect, most of the vibration will induce disgusting noise or damage to the mechanical 

equipment. Thus in order to reduce the vibration, many methods have been proposed. One of them is using 

periodic structure. Periodic structure consists of periodic identical elements, alternating in the wave propagation 

direction [1]. It is well known that, the waves in the band-pass propagate while the waves in the band-gap 

attenuate, because of the Bragg-scattering effect [2] or locally resonant effect [3]. Attracted by the great 

potential of vibration suppression, extensive studies about periodic structure have been conducted [1, 4, 5].  

As beam-type structure is widely used in the engineering applications, the structure periodicity was introduced 

in the beam-type structure to reduce the vibration in extensive studies. Wen [6] studied the flexural wave 

propagation of a periodic thin straight beam and discussed the band-gap property caused by Bragg-scattering 

effect. Yu [7] and Xiao [8] studied the band-gap property of a beam attached with periodic spring-mass systems 

from numerical simulation and experiment, which gives a physical explanation about the band-gap starting 

frequency and the cut-off frequency. Wen [9] studied the periodic beam attached with multi-oscillators in order 

to improve the band-gap performance. Liu [10] studied the periodic curved beam, and obtained some special 

property compared with the periodic straight beam. There are still a number of works dealing with the periodic 

beam in various points of view [11-14].  

As the composite laminated structure provides high stiffness-to-weight ratio, high strength-to-weight 

ratio and many other attractive properties [15, 16], it is used widely in the aerospace and ship engineering. 

However, most of the previous studies about periodic beam are focused on the single layer beam, while the 

characteristic of periodic laminated beam is not well addressed. In order to solve the vibration control problem 

met in laminated structure, the wave attenuation property of the periodic laminated beam is studied in this paper. 

A theoretical model of a multi-layered beam is established in the paper, which will represent the wave 

propagation and wave attenuation performance. The generally used sandwich structure and the bi-layer structure 

become the special cases of the current model. The periodic model presented in this paper gives theoretical 

support of wave attenuation property in the periodic laminated beam and gives a new sight to the vibration 

control of the composite laminated structure. 

 

II. BAND-GAP FORMULATION BASED ON TIMOSHENKO THEORY 
Fig. 1 has shown the model of a periodic laminated beam with m layers, alternating with Ai and Bi. Hamilton 

principle is used to obtain the vibration equations of a single laminated beam. 
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Figure 1: The structure model of a periodic laminated beam. 

 

The single laminated beam is shown in Fig. 2. Assuming that there’s no axial slip between two layers, 

and all the layers have identical transverse displacement w  and rotation  . The shearing deformation and the 

moment of inertia are considered in the model. The parameters of the i
th

 layer are specified by Young’s module 

i
E , shearing module 

i
G , density 

i
 , shear coefficient 

i
k , length L , width b  and thickness 

i
h . Thus, the 

cross-sectional area is 
i i

A b h  and the moment of inertia is 
3

1 2
i i

I b h , respectively. The transverse 

displacement, longitudinal displacement and the rotation are denoted by w , 
i

u  and  , respectively. 
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Figure 2: Displacements and dimensions of the single laminated beam. 

 

The longitudinal displacement of the i
th

 layer is, 

 
1 1i i

u u h     (1) 

where  
1

1 1

2

2

i

i i j

j

h h h h





    . The kinematic energy, strain energy and the work done by external forces can 

be expressed as, 
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 (4) 

Apply Hamilton principle, then the partial differential equations can be obtained as, 



American Journal of Engineering Research (AJER)      2016 
 

 
w w w . a j e r . o r g  

 
             Page 260 

 

1 1 1

1 1 1 1

1 1 2 2

2

1 1 1 1 1

2 2 1 2

2

1

1 2

0

0

m m m

i i i i i i i i

i i i

m m m m

i i i i i i i i i i

i i i i

m m m m

i i i i i i i i i i i

i i i i

m m

i i i i i

i i

k A G w A w k A G

E A u A u h E A h A

h E A u h A u E I h E A

I h A

 

   

 

 

  

   

   

 

   

    

 
    

 

 
  
 

  

   

   

 







1 1

0

m m

i i i i i i

i i

k A G k A G w 

 




















  




 

  (5) 

and the external general forces are, 
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As the system is assumed in harmonic oscillation， thus    ,
j t

w x t W x e


 ,    1 1
,

j t
u x t U x e


  and 

   ,
j t

x t x e


   . Substituting these expression into (5) gives, 

 
     6 4 2

1 2 3
0W c W c W c W   

  (7) 
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The solution of (7) can be assumed as   0

x
W x W e


 . Substituting this expression into (7) gives the following 

polynomial equation, 

 
6 4 2

1 2 3
0c c c     

  (9) 

Six roots can be obtained as 
1

 、
2

 、
3

 、
4

 、
5

  and 
6

  by solving (9). Taking account of (5-9) gives, 
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If we make  
T

1 2 3 4 5 6
T T T T T Tψ , 

T

0 1,0 0 0 1,0 0 0
U W N M Q  
 

D  and 

T

1, L L L 1, L L LL
U W N M Q  
 

D , we can obtain that, 

 

0

L






D B ψ

D C ψ
  (11) 

where B  and C  are 6×6 matrixes, and 
0

D  and 
L

D  are the state vectors at 0x   and x L . 

The transfer matrix method is used to calculate the band-gap frequency. As shown in Fig. 3, the unit element is 

constituted by cell A and cell B, with length LA and LB. By using (11), the state vectors of cell A can be 

expressed as 
1 0 1 1

D B ψ  and 
1 1 1L

D C ψ , and those of cell B can be expressed as 
2 0 2 2

D B ψ  and 

2 2 2L
D C ψ , respectively.  
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Figure 3: The components of a unit element and the boundary conditions. 

 

The continuous boundary condition (CBC) at the interface between cell A and cell B can be expressed 

as, 

 1 2 0L
D D

  (12) 

and the periodic boundary condition (PBC) between cell A and cell B can be expressed as, 

 1 0 2

iq L

L
e


D D
  (13) 

where q is the wavenumber along the axil direction, with real part representing the wave propagation property, 

and the imaginary part representing the wave attenuation property. The lattice constant is 
A B

L L L  . 

Taking account of (12, 13) gives, 

 
  1

0
iqL

e Τ I ψ
  (14) 

where I  is the identity matrix and 
1 1

1 2 2 1

 
Τ B C B C . 

For a given frequency 
0

f ，we can obtain from  (14) that, 

 
 0

0
iq L

f e Τ I
  (15) 

The wavenumber q  can be obtained by solving the above equation. And then the dispersion curves 

(frequency vs wavenumber) can be obtained and the band-gap property is then determined. The band-gaps of 

both flexural wave and longitudinal wave can be acquired by (15). As the emphases of this paper is on the 

flexural wave, the following text will focus on the flexural wave band-gap property. 

 

III. NUMERICAL EXAMPLE 
A sandwich beam is considered in this numerical example, as it is most widely used among the 

laminated structures. Thus each element is constituted by six components, including A1, A2, A3, B1, B2 and B3. 

The material properties of each component are shown in Table 1. The lengths and widths of cell A and cell B 

are set as LA=0.15m, LB=0.1m and bA=bB=0.015m. From bottom to top, the thicknesses are set as h1=0.003m, 

h2=0.002m and h3=0.002m. 

The flexural wave band-gaps are shown in Fig. 4. In the figure, three band-gaps exist below 2000 Hz, 

and the band-gaps are 55.7~96.0 Hz, 266.3~837.1 Hz and 1059.3~1525.3 Hz, with the band-gap widths of 40.3 

Hz, 570.8 Hz and 466.0 Hz, respectively. This periodic laminated beam performs very well in the band-gap 

property with the total band-gap of 1077.1 Hz, which indicates that, more than half of the wave below 2000 Hz 

are suppressed. The imaginary part of the wavenumber is called decay constant, as it represents the attenuation 

ability of the periodic laminated beam. As shown in Fig. 4(b), the decay constant of the first band-gap is 0.11, 

which is smaller than 0.57 in the second band-gap and 0.37 in the third band-gap. Resulting that the decay 

ability of the first band-gap is weaker than the second and the third band-gap. Also the first band-gap bandwidth 

is very narrow, thus the attenuation performance of the first band-gap is inferior to the second and the third 

band-gaps. Therefore, the second band-gap is most important in the engineering application in general vibration 

control, because of its low frequency, strong attenuation ability and broad band-gap bandwidth. However, for 

the low-frequency line spectrum vibration control, the first band-gap can also have good performance, as the 

target frequency of vibration control is very narrow. 

 

Table 1: Material properties of each component in an element. 
Material property A1 A2 A3 B1 B2 B3 

Young’s module (GPa) 210.6 77.6 210.6 2 4.35 2 

Shear module (GPa) 81 28.7 81 0.72 1.59 0.72 

density (kg/m3) 7780 2730 7780 1142 1180 1142 

Shear coefficient 5/6 5/6 5/6 5/6 5/6 5/6 
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Figure 4: The band gaps of flexural vibration with (a) the real part of normalized wavenumber and (b) the 

imaginary part of normalized wavenumber. 

 

The present model is validated by the FEM analysis with an eight-element finite periodic laminated 

beam, which is shown in Fig. 5. The material and geometry parameters for a unit element are the same as the 

parameters in the above theoretical model. The unit harmonic displacement excitation is applied at the left beam 

end, and the displacement response is measured at the right beam end. The vibration response are shown in Fig. 

6, where the shaded region are the band-gaps calculated from the theoretical model. As shown in the figure, the 

response valleys of the finite periodic beam in the FEM model match very well with the band-gaps of the 

infinite periodic beam in the theoretical model. Thus the present model has a good performance in the band-gap 

predictions. 
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Figure 5: The FEM model of a periodic laminated beam. 

 

As shown in Fig. 6, the periodic laminated beam behaves as a wave filter, with the waves in the band-

passes propagating freely without attenuation and the waves in the band-gaps being attenuated. Thus the present 

periodic laminated beam can be used in the vibration control by designing the band-gaps at the frequency range 

where the vibration need to be controlled. For an eight-element periodic beam, the average attenuation levels in 

the first three band-gaps reach respectively to 19.3 dB, 74.3 dB and 30.9 dB, which shows good attenuation 

performance and are very attractive in the vibration control. 
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Figure 6: The flexural vibration transmission characteristic of a finite periodic sandwich beam. (The shadow 

region are the band gaps obtained from theoretical model.) 
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IV. SIMPLIFIED MODEL 
In the Timoshenko model, the shearing deformation and the moment of inertia are considered, resulting 

a very complicated model, which will induce an ill-conditioned matrix in some frequencies. Thus high 

resolution numerical methods are needed to solve the above problem. In order to make it convenient in the 

engineering application, the simplified Euler mode is also studied to obtain the band-gap property. And a simple 

principle about which model should be used at specific situation is given as a guideline in this section. 

Each layer is considered as an Euler-beam, and the multi-layer beam is modeled as an equivalent single layer 

beam by calculating the equivalent bending rigidity and the equivalent density. The spatial force analysis is 

shown in Fig. 7. 
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Figure 7: The spatial forces analysis sketch of a laminated beam. 

 

From (1), we can obtain that  
1 1i i

u u w h   ( 2 ~i m )，where w   is the derivation of transverse 

displacement w  with respect to x ，and 
1 i

h  is the distance between the midline of the 1
st
 layer and the i

th
 layer. 

From the relation of longitudinal displacement and the strain 
i i

u  , we can obtain 
1 1i i

w h    . Thus the 

axial force of each layer can be expressed as, 

 
 1 1i i i i

N E A w h  
  (16) 

and the axial forces are balanced by 
1

0

m

i

i

N



 . Substituting (16) into the summation gives, 

 

 1 1

1

0

m

i i i

i

E A w h



 
  (17) 

From (17), we can obtain, 

 1
w  

  (18) 

where 
1

1 1

m m

i i i i i

i i

E A h E A

 

    . The total moment of the laminated beam can be expressed as, 

 
1

1 1

m m

i i i

i i

M M N h

 

  
  (19) 

where 
i i i

M E I w   . Substituting 
i

M  and (16) into (19) gives, 

 M E I w     (20) 

where  1 1

1 1

m m

i i i i i i

i i

E I E I E A h h

 

    . Thus the equivalent bending rigidity E I  is determined. As the 

equivalent density can be calculated as 
1 1

m m

i i i

i i

A A 

 

   . Therefore, the equivalent equation of motion 

for a laminated beam can be expressed as, 

 

4 2

4 2

w w
E I A

x t


 
 

    (21) 

According to the plane wave extension method of a single layer beam [6], the band-gap frequency can finally be 

determined. 
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V. PERFORMANCE COMPARISON 
The flexural wave dispersion curves and the band-gaps of the Timoshenko model and the Euler model 

are compared in Fig. 8 and Table 2. As shearing deformation and moment of inertial are ignored, the Euler 

model will bring some errors. As shown in Fig. 8, the first four dispersion curves of the Euler model nearly 

coincidence with those of the Timoshenko model. Thus the Euler model has high accuracy in the first four 

dispersion curves. From the fifth dispersion curve, with the increase curve order, the error of the Euler model 

increases. The frequency difference of the two models reaches as much as about 1000 Hz for the eighth 

dispersion curve. The band-gap frequencies and the band-gap widths for the two models are shown in Table 2. 

We can see that, with the increase of band-gap order, the error increases gradually. From the first to the seventh 

band-gap, the band-gap starting frequency error increases from 0.1 Hz to 509.8 Hz, and the relative error 

increases from 0.2% to 9.2%; the band-gap cut-off frequency error increases from 0.7 Hz to 1007.9 Hz, and the 

relative error increases from 0.7% to 14.4%. 
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Figure 8: The dispersion curves comparison between two models. 

 

Table 2: The band-gap frequency comparison between two models. 
Band-gap 

order 

Starting frequency/Hz Error 

/Hz 

Relative 

Error 

Cut-off frequency/Hz Error 

/Hz 

Relative 

Error Timoshenko Euler Timoshenko Euler 

1 55.7 55.8 0.1 0.2% 96.0 96.7 0.7 0.7% 

2 266.3 268.5 2.2 0.8% 837.1 857.7 20.6 2.5% 

3 1059.3 1093.1 33.8 3.2% 1525.3 1550 24.7 1.6% 

4 1878.3 1912.1 33.8 1.8% 2460.3 2623.1 162.8 6.6% 

5 2831.6 3018.5 186.9 6.6% 4003.7 4249.3 245.6 6.1% 

6 4734.1 4927.3 193.2 4.1% 4743.0 5307.7 564.7 11.9% 

7 5525.3 6035.1 509.8 9.2% 7010.5 8018.4 1007.9 14.4% 

 

Thus we can see, the simplified model gives accurate results for the low frequency flexural wave band-

gaps, and will bring significant error when it comes to high frequency wave band-gaps. That’s because a low 

frequency is associated with a big wave length, and the effects caused by the shearing deformation and moment 

of inertia are relatively small, which can be ignored, thus the Euler model gives an accurate result. While for the 

high frequency wave, the wave length is short, and the shearing deformation and moment of inertia have 

significant effects on the mode frequencies and then on the band-gaps. Ignoring these effects gives rise to 

significant error. When the effects of shearing deformation and moment of inertia are not considered, the 

equivalent bending rigidity is enhanced, resulting that the dispersion curve frequencies are overestimated in the 

Euler model, which can be checked in Fig. 8 and Table 2.  

Therefore, in the engineering application of a periodic laminated beam, when the low frequency band-

gaps are calculated, the Euler model can be used because of its simplicity and satisfactory result. However, 

when the high frequency band-gaps are calculated, the Timoshenko model must be used as it gives more 

accurate result. 

 

VI. CONCLUSIONS 
The band-gap characteristic of the periodic laminated beam is examined with Hamilton principle and 

transfer matrix method. The present theoretical model shows high accuracy and is validated by FEM. For the 

flexural wave, this periodic structure owns excellent band-gap attenuation performance below 2000 Hz, with 

more than half of the waves in frequency domain are attenuated. The first and second band-gap locate at low 
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frequency region, thus the periodic laminated beam gives a new method to solve the low frequency vibration 

control problem. Although the first band-gap is narrow, it still has potentials in the line spectral vibration control. 

The present model derived in this paper can also give the longitudinal wave propagation property, which lays 

the foundation to the future study about the coupled wave propagation property between the flexural and 

longitudinal waves. The simplified Euler model gives accurate result for the first several dispersion curves, thus 

can predict low frequency band-gaps in the engineering application. In the high frequency, the Euler model will 

bring significant error, and the Timoshenko model must be applied.  
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