
American Journal of Engineering Research (AJER) 2016

 American Journal of Engineering Research (AJER)

e-ISSN: 2320-0847 p-ISSN : 2320-0936

Volume-5, Issue-6, pp-146-151

www.ajer.org
Research Paper Open Access

w w w . a j e r . o r g

Page 146

Big Data Analysis Using Hadoop Mapreduce

Dr. Urmila R. Pol
Department Of Computer Science , Shivaji University, Kolhapur,India

ABSTRACT: In recent years, "Big Data" has become a new pervasive term. Big Data is transforming science,

engineering, medicine, healthcare, finance, business, and ultimately our society itself. The age of big data is

now coming. But the traditional data analytics may not be able to handle such large quantities of data. In this

paper, we present a study of Big Data and its analytics using Hadoop MapReduce, which is open-source

software for reliable, scalable, distributed computing.

Keywords: Big Data, Hadoop, MapReduce,HDFS,zettabyte.

I. INTRODUCTION TO BIG DATA
'Big Data' is a data, but with a huge size. 'Big Data' is a term used to describe a collection of data that

is large in size and yet growing exponentially with time. In short,such a data is so massive and complex that

none of the traditional data management tools are able to store it or process it efficiently. The New York Stock

Exchange generates about one terabyte of new trade data per day. Statistic shows that 500+terabytes of new

data gets ingested into the databases of social media site Facebook, every day. This data is mainly generated in

terms of photo and video uploads, message exchanges, putting comments etc.Single Jet engine can generate

10+terabytes of data in 30 minutes of a flight time. With many thousand flights per day, generation of data

reaches up to many Petabytes. Much of the tech industry follows Gartner's '3Vs' model to define Big Data. Big

data' could be found in three forms: Structured ,Un-structured, Semi-structured.

Any data that can be stored, accessed and processed in the form of fixed format is termed as a 'structured' data.

Now days, we are foreseeing issues when size of such data grows to a enormous extent, typical sizes are being

in the range of multiple Zettabyte. 10
21

bytes equals to 1 zettabyte or one billion terabytes forms a zettabyte.Data

stored in a relational database management system is one example of a 'structured' data. A table in a database

is an example of Structured Data.

Any data with unknown form or the structure is classified as unstructured data. In addition to the size

being huge, un-structured data poses multiple challenges in terms of its processing for deriving value out of it.

Typical example of unstructured data is, a heterogeneous data source containing a combination of simple text

files, images, videos etc. Now a days organizations have wealth of data available with them but unfortunately

they don't know how to derive value out of it since this data is in its raw form or unstructured format. Output

returned by 'Google Search' is an example of Unstructured Data.Semi-structured data can contain both the

forms of data. We can see semi-structured data as a strcutured in form but it is actually not defined with e.g. a

table definition in relational DBMS. Example of semi structured data is a data represented in XML file.

II. HADOOP
Apache HADOOP is a framework used to develop data processing applications which are executed in a

distributed computing environment. Similar to data residing in a local file system of personal computer system,

in Hadoop, data resides in a distributed file system which is called as a Hadoop Distributed File system.

Processing model is based on 'Data Locality' concept wherein computational logic is sent to cluster

nodes(server) containing data.

This computational logic is nothing but a compiled version of a program written in a high level

language such as Java. Such a program, processes data stored in Hadoop HDFS. HADOOP is an open source

software framework. Applications built using HADOOP are run on large data sets distributed across clusters of

commodity computers. Commodity computers are cheap and widely available. These are mainly useful for

achieving greater computational power at low cost. Computer cluster consists of a set of multiple processing

units (storage disk + processor) which are connected to each other and acts as a single system.

Apache Hadoop consists of two sub-projects –

American Journal Of Engineering Research (AJER) 2016

w w w . a j e r . o r g

Page 147

1. Hadoop MapReduce: MapReduce is a computational model and software framework for writing

applications which are run on Hadoop. These MapReduce programs are capable of processing massive data

in parallel on large clusters of computation nodes.

2. HDFS (Hadoop Distributed File System): HDFS takes care of storage part of Hadoop applications.

MapReduce applications consume data from HDFS. HDFS creates multiple replicas of data blocks and

distributes them on compute nodes in cluster. This distribution enables reliable and enormously rapid

computations.

Although Hadoop is best known for MapReduce and its distributed file system- HDFS, the term is also

used for a family of related projects that fall under the umbrella of distributed computing and large-scale data

processing. Other Hadoop-related projects at Apache include are Hive, Hbase, Mahout, Sqoop, Flume and

ZooKeeper.

III. HADOOP INSTALLATION
HADOOP (2.6) SINGLE NODE INSTALLATION ON UBUNTU 14.04 LTS(32 bit)GUIDELINES

STEP 1:

open your terminal using(ctrl+alt+t) write down following command

urp@localhost$ sudo apt-get update

STEP 2:

urp@localhost$ sudo apt-get upgrade

STEP 3:

urp@localhost$ sudo apt-get install openssh-server

STEP 4:

First check whether jdk(java set up) is installed in your machine or not with following command

open your terminal using (ctrl+at+t) and write down following command

urp@localhost$java -version

(IF JAVA IS ALREADY INSTALLED THEN NO PROBLEM ,DONT EXECUTE STEP NUMBER 5)

(in my machine java is not installed,so I have to installed first java on my machine with following command)

STEP 5:

for installing java write down following command

urp@localhost$sudo apt-get install openjdk-7-jdk

urp@localhost$ java -version

NOTE: IT WILL SHOW US JAVA 1.7 VERSION IS INSTALLED SUCCESSFULLY

it is installed in file /usr/lib/jvm/java-7-openjdk-i386(this is the java path)

STEP 6:

Download hadoop from following command

urp@localhost$wget http://mirrors.sonic.net/apache/hadoop/common/hadoop-2.6.0/hadoop-2.6.0.tar.gz

(move the hadoop folder into /usr/local file(it means that our hadoop is installed on /usr/local directory)

NOTE: You can install hadoop where you wants for my cases I am installed on /usr/local directory

urp@localhost$sudo tar -zxvf ~/Downloads/hadoop-2.6.0.tar.gz -C /usr/local;

Note: To extract hadoop-2.6.0.tar.gz in /usr/local(location);

urp@localhost$sudo mv /usr/local/hadoop-2.6.0 /usr/local/hadoop;

Note : To rename file

urp@localhost$sudo chown -R urp /usr/local/hadoop;

http://mirrors.sonic.net/apache/hadoop/common/hadoop-2.6.0/hadoop-2.6.0.tar.gz

American Journal Of Engineering Research (AJER) 2016

w w w . a j e r . o r g

Page 148

STEP 7

ADD HADOOP GROUP AND USER

urp@localhost$sudo addgroup hadoop; (hadoop is my user)

urp@localhost$sudo adduser --ingroup hadoop urp;(urp is my hadoop user name)

urp@localhost$sudo adduser urp sudo;

STEP 8

Setup SSH Certificate key genration:

urp@localhost$ssh-keygen -t rsa -P ''

urp@localhost$cat .ssh/id_rsa.pub >> .ssh/authorized_keys

STEP 9 Get your IP Address

urp@localhost$ ifconfig

urp@localhost$ sudo gedit /etc/hosts;

urp@localhost$ sudo gedit /etc/hostname;

urp@localhost$ssh localhost;

Note: Restart the computer(urp@localhost$ sudo reboot)

STEP 10

EDIT bashrc file and write down following code for hadoop

urp@localhost$ sudo nano ~/.bashrc

urp@localhost$ source ~/.bashrc

write down the following code on above file

--

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-i386

export HADOOP_INSTALL=/usr/local/hadoop

export PATH=urp@localhost$PATH:urp@localhost$HADOOP_INSTALL/bin

export PATH=urp@localhost$PATH:urp@localhost$HADOOP_INSTALL/sbin

export HADOOP_MAPRED_HOME=urp@localhost$HADOOP_INSTALL

export HADOOP_COMMON_HOME=urp@localhost$HADOOP_INSTALL

export HADOOP_HDFS_HOME=urp@localhost$HADOOP_INSTALL

export YARN_HOME=urp@localhost$HADOOP_INSTALL

export HADOOP_COMMON_LIB_NATIVE_DIR=urp@localhost$HADOOP_HOME/lib/native

export JAVA_LIBRARY_PATH=urp@localhost$HADOOP_HOME/lib/native

export HADOOP_OPTS="-Djava.library.path"=urp@localhost$HADOOP_INSTALL/lib

--

(NOTE: Here JAVA_HOME is jdk path Here my jdk is installed in /usr/lib/jvm/java-7-openjdk-i386

HADOOP_INSTALL is the path where hadoop is installed in my computer hadoop is installed in

/usr/loca/hadoop)

STEP 10 : configure following xml files

urp@localhost$cd /usr/local/hadoop/etc/hadoop

Edit core-site.xml:

urp@localhost$ sudo gedit core-site.xml

write down following lines

<property>

<name>fs.default.name</name>

American Journal Of Engineering Research (AJER) 2016

w w w . a j e r . o r g

Page 149

<value>hdfs://localhost:9000</value>

</property>

STEP 10.1

configure hdfs-site.xml

urp@localhost$ sudo gedit hdfs-site.xml

write down following lines

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

<property>

<name>dfs.permissions</name>

<value>false</value>

</property>

STEP 10.2

configure mapred-site.xml

NOTE: actualy in /usr/local/hadoop/etc/hadoop folder mapred-site.xml file is not present insted of that mapred-

site.templete file is available,So that we can convert mapred-site.templet into mapred-site.xml file with

following command

CONVERT mapred-site.templete into mapred-site.xml

urp@localhost$ mv mapred-site.xml.template mapred-site.xml

STEP 10.3 Edit mapred-site.xml file

urp@localhost$sudo nano mapred-site.xml

write down following lines

<property>

<name>mapred.job.tracker</name>

<value>localhost:9001</value>

</property>

STEP 10.4 Configure hadoop-env.sh file

urp@localhost$sudo nano hadoop-env.sh

/usr/lib/jvm/java-7-openjdk-i386

(just write down JAVA_HOME path) my jdk is installed in /usr/lib/jvm/java-7-openjdk-i386)

STEP 11:

FORMAT NAMENODE

use following command on terminal :

cd /usr/local/hadoop/bin

write down following command terminal :

urp@localhost$hadoop namenode -format

American Journal Of Engineering Research (AJER) 2016

w w w . a j e r . o r g

Page 150

STEP 12: START ALL THE DEMONS

urp@localhost$ start-all.sh

STEP 13: CHECK WHETHER ALL THE DEMONS ARE RUNNING

write down following command

urp@localhost$ jps

(if all the demons are present then your hadoop installation is sucess othrwise not)

IV. HADOOP MAPREDUCE
Hadoop MapReduce is a software framework for easy writing applications which process huge

amounts of data (multi-terabyte datasets) in-parallel on large clusters (thousands of nodes) of commodity

hardware in a reliable, fault-tolerant manner. A MapReduce job usually splits the input dataset into independent

chunks which are processed by the map tasks in a completely parallel manner. The framework sorts the outputs

of the maps, which are then input to the reduce tasks. Typically, both the input and the output of the job are

stored in a file-system. The framework takes care of scheduling tasks, monitoring them and re-executes the

failed tasks. Typically the compute nodes and the storage nodes are the same, that is, the MapReduce framework

and the Hadoop Distributed File System are running on the same set of nodes[1]

This configuration allows the framework to effectively schedule tasks on the nodes where the data were

already present, resulting in very high total bandwidth across the cluster. The MapReduce framework consistsof

a single master ResourceManager, one slave Node Manager per cluster-node, and MRAppMaster per

application.Minimally, applications specify the input/output locations and supply map and reduce functions via

implementations of appropriate interfaces and/or abstract-classes. These, and other job parameters,include the

job configuration.The Hadoop job client then submits the job (jar/executable etc.) and configuration to the

ResourceManager which then assumes the responsibility of distributing the software/configuration to the slaves,

scheduling tasks and monitoring them, providing status and diagnostic information to the job-client.

Although the Hadoop framework is implemented in Java™, MapReduce applications need not be written in

Java.

 Hadoop Streaming is a utility which allows users to create and run jobs with any executables (e.g. shell

utilities) as the mapper and/or the reducer.

 Hadoop Pipes is a SWIG-compatible C++ API to implement MapReduce applications (non JNI™ based).

Inputs and Outputs

The MapReduce framework operates exclusively on <key, value> pairs, that is, the framework views

the input to the job as a set of <key, value> pairs and produces a set of <key, value> pairs as the output of the

job, conceivably of different types.

The key and value classes have to be serializable by the framework and hence need to implement the

Writable interface. Additionally, the key classes have to implement the WritableComparable interface to

facilitate sorting by the framework.

Input and Output types of a MapReduce job:

(input) <k1, v1> -> map -> <k2, v2> -> combine -> <k2, v2> -> reduce -> <k3, v3> (output)

MapReduce Example

WordCount is a simple application that counts the number of occurrences of each word in a given input

set. WordCount programme is available on https://hadoop.apache.org/docs/current/hadoop-mapreduce-

client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Source_Code.[1]

 Copy code into java file. Execute following commands.

Set Environment Variables

export JAVA_HOME=/usr/java/default

export PATH=urp@localhost${JAVA_HOME}/bin:urp@localhost${PATH}

export HADOOP_CLASSPATH=urp@localhost${JAVA_HOME}/lib/tools.jar

Compile WordCount.java and create a jar:

urp@localhost$ bin/hadoop com.sun.tools.javac.Main WordCount.java

urp@localhost$ jar cf wc.jar WordCount*.class

https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Source_Code
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Source_Code

American Journal Of Engineering Research (AJER) 2016

w w w . a j e r . o r g

Page 151

Assuming that:

 /user/urp/wordcount/input - input directory in HDFS

 /user/urp/wordcount/output - output directory in HDFS

Sample text-files as input:

urp@localhost$ bin/hadoop fs -ls /user/urp/wordcount/input/ /user/urp/wordcount/input/file01

/user/urp/wordcount/input/file02

urp@localhost$ bin/hadoop fs -cat /user/joe/wordcount/input/file01

Hello Hadoop Welcome Hadoop

urp@localhost$ bin/hadoop fs -cat /user/joe/wordcount/input/file02

Hello Hadoop Goodbye Hadoop

Run the application:

urp@localhost$ bin/hadoop jar wc.jar WordCount /user/urp/wordcount/input /user/urp/wordcount/output

Output:

urp@localhost$ bin/hadoop fs -cat /user/urp/wordcount/output/part-r-00000`

Goodbye 1

Hadoop 4

Hello 2

Welcome 1

V. CONCLUSION
Hadoop is an open-source framework that allows to store and process big data in a distributed

environment across clusters of computers using simple programming models. It is designed to scale up from

single server to thousands of machines, each offering local computation and storage. The major advantage of

Hadoop MapReduce is that it is easy to scale data processing over multiple computing nodes. Under the

MapReduce model, the data processing primitives are called mappers and reducers. Decomposing a data

processing application into mappers and reducers is sometimes nontrivial. But, once we write an application in

the MapReduce form, scaling the application to run over hundreds, thousands, or even tens of thousands of

machines in a cluster is merely a configuration change. This simple scalability is what has attracted many

programmers to use the MapReduce model.

REFERENCES
[1]. https://hadoop.apache.org/docs/

https://hadoop.apache.org/docs/

