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ABSTRACT:A comprehensive free vibration analysis of an alround-clamped rectangular thin or thotropic 

plate, was carried out using Taylor- Mclaurin shape function, and Ritz method. The Taylor-Mclaurin shape 

function truncated at the fourth term satisfied all the boundary conditions of the alround-clamped thin 

orthotropic plate. The shape function was substituted into the total energy functional, which was subsequently 

minimized. From the minimized equation, the natural frequency equation for the clamped plate, was derived. 

The resulting equation was used to calculate fundamental natural frequencies of the clamped plate for various 

aspect ratios, p and different combinations of flexural rigidity ratios, φ. The fundamental frequencies for a 

clamped plate vibrating in the first mode are given in Tables1-5, for different flexural rigidities, φ and aspect 

ratios varying from 0.1 to 2 at increments of 0.1. The average percentage difference in the values of natural 

frequency for the flexural rigidity ratios, φ1, φ2, and φ3, are 1.532%,1.367% and 1.425% for different values of 

the aspect ratio, 𝑝 =  
𝑏

𝑎
; and 1.149%, 1.506% and……..for different values of the aspect ratio,𝑝 =  

𝑎

𝑏
 . 

These average percentage differences indicate that the formulated deflection function for the clamped plate, is a 

very good approximation to the exact deflection function of the free vibration of a clamped rectangular thin 

orthotropic plate. 

Keywords:Clamped rectangular plate, free vibration analysis, natural frequency, orthotropic vibrating plate, 

Taylor-Mclaurin method, shape function. 

 

I. INTRODUCTION 
Orthotropic plates are commonly used in the fields of structural engineering and are considered to be 

fundamental structural elements in aerospace, naval and ocean structures [1], [2],[3].The governing equation for 

free vibration of thin rectangular plates, isa fourth order differential equation and the determination of the exact 

solution of a clamped plate by direct integration, is not possible. Some of the works on this subject were carried 

out using other approaches such as numerical and variational methods, which are approximate methods. [4] 

Used the Rayleigh-Ritz method and made some useful contributions. [5] Presented and used Rayleigh- Ritz 

method and decomposition technique, to evaluate the upper and lower bounds of vibration frequencies for an 

alround-clamped rectangular orthotropic plate. [6], first used a method based on superposition of the appropriate 

Levy type of solutions, for the analysis of rectangular plates. Gorman, further applied this method by 

Timoshenko and Krieger, to the free vibration analyses of isotropic plate, [7], thereafter to clamped orthotropic 

plate [8], then to free orthotropic plate, [9].  And finally to point supported or thotropic plates [10]. Before now, 

it was believed that the exact solution of free vibration of an alround-clamped orthotropic plate was not 

achievable until [11] used novel separation of variable to obtain the exact solutions for free vibrations of 

rectangular thin orthotropic plates with all combinations of simply supported and clamped boundary conditions. 

As a matter of fact, the equation by [12], was used for calculating the radian natural frequency of a deformed 

orthotropic vibrating plate. One of the plate cases considered, is the alround-clamped plate.Solutions for an 

alround-clamped plate, were obtained for the first time, even though, it was originally believed it was not 

obtainable. He alsovalidated the results from his work by extensive comparison with results from finite element 

method and other numerical methods available in literature. The new exact solution provided values for other 

researchers that used approximate methods, to compare their results with. It is noteworthy, that none of the 

researchers, has used the Taylor-Mclaurin series in Rayleigh-Ritz method, to evaluate approximate solutions of 

alround-clamped orthotropic rectangular thin plates, and the object of this study is to fill that gap. 
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II. MATHEMATICALFORMULATION 

2.1. Governing Differential Equation of a Thin Plate in Vibration. 

In 2001, [13] derived the fourth-order homogenous partial differential equation governing the undamped, free, 

linear vibration of plates as follows:  

D∇2∇2w x, y, t +  ρh
∂2w

∂t2
 x, y, t = 0                                                                                                               (1) 

D∇4w x, y, t +  ρh
∂2w

∂t2
 x, y, t = 0                                                                                                                    (2) 

where 

∇4 =
∂4

∂x4
+ 2

∂4

∂x2dy2
+  ρh

∂2w

∂t2
 x, y, t = 0                                                                                                    (3) 

 D = flexural rigidity of the plate 

w(x, y, t)  = deflection of the plate 

x = Cartesian co-ordinate in the horizontal direction 

y = Cartesian co-ordinate in the vertical direction 

t = thickness of the plate. 

ρ  =density of the material 

m= mass  

 

2.2. Truncated Taylor Maclaurin Series. 

[14]Expanded the general shape function using the Taylor-Maclaurin series and obtained equation (4) 

w = w x, y =    
F m  x0 F n  y0 

m! n!
(x − x0)m . (y − y0)n                                                     (4)

∞

n=0

∞

m=0
 

whereF m  x0  is the m
th

partial derivative of the function, w, with respect to x and F n  y0  is the 

n
th

partial derivative of the function, w with respect  to y. And m! and n! are the factorials of m and n 

respectively, while x0 and y0 are the points of origin. He truncated the infinite series at m= n =4 and gave shape 

function as: 

w =    Im Jn  xm . yn                                                                                                                         (5)
4

n=0

4

m =0
 

Transforming the x-y co-ordinate system to R-Q coordinate system, yielded 

R =
x

a
  and  Q =  

y

b
, where R and Q are dimensionless quantities. 

Since x = aR and y – bQ and letting am  = Im.a
m
 and bn = Jn.b

n
, Equation (5) reduces to Equation(6). 

w =    am bn  Rm Qn                                                                                                                      (6)
4

n=0

4

m =0
 

The function given by Equation (6) can be further expanded in the following form: 

w R, Q =  a0 + a1R + a2R2 + a3R3 + a4R4  b0 + b1Q + b2Q2 + b3Q3 + b4Q4                         (7) 

Whereai and bi (i= 0,1,2,3 and 4) are unknown constants of the shape function series. 

Here, the Equation (7) is truncated at M=N=4. 

 

2.3. Boundary Conditions for an Alround Clamped Plate. 

Consider a rectangular plate: which is clamped on all edges as shown in Fig 1: 

 

 
 

From Fig 1, the boundary conditions for the orthotropic rectangular plate clamped on all 4 edges and 

represented by CCCC are: 

W R = 0 = 0         (8) 

W R = 1 = 0         (9) 
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W Q = 0 = 0         (10) 

W Q = 1 = 0         (11) 

W′R R = 0 = 0         (12) 

W′R R = 1 = 0         (13) 

W′Q Q = 0 = 0         (14) 

W′Q Q = 1 = 0         (15) 

whereW′R  and W′Q  are the first derivatives of the displacement functions with respect to the R and Q directions 

respectively. 

Substituting successively, the boundary conditions, namely,  W R = 0 = 0; 
W′R R = 0 = 0 ,W Q = 0 = 0, and W′Q Q = 0 = 0 into the Equation (7), yields respectively. 

a0 = 0          (16) 

a1 = 0          (17) 

b0 = 0          (18) 

b1 = 0          (19) 

And, substituting the other boundary conditions, viz, W Q = 1 = 0 and W′Q Q = 1 = 0 into Equation (7) one 

after the other, gives respectively: 

a2+ a3 +a4 = 0         (20) 

2a2+ 3a3 +4a4 = 0         (21) 

Solving simultaneously yields 

a2= a4, and a3=2a4         (22) 

Also, substituting the boundary conditions, W Q = 1 = 0 and W′Q Q = 1 = 0  one after the other, into 

Equation (7) and solving the simultaneous equation gives: 

b2= b4, and b3 = -2b4  

Substituting the constants, a0, a1, a2, a3, a4, b0, b1, b2, b3, and b4 into Equation (7) gives the deflection function, w, 

as follows: 

W= A (R
2
-2R

3
+R

4
) (Q

2
-2Q

3
+Q

4
)        (23a) 

  =AH           (23b) 

where A=a4b4 and H= (R
2
-2R

3
+R

4
) (Q

2
-2Q

3
+Q

4
) 

As a matter of fact, ‘A’ is the amplitude of the deflected shape while ‘H’ is the deflected shape. 

 

III. NATURAL FREQUENCY EQUATION, Λ, FOR A VIBRATING ORTHOTROPIC 

PLATE. 
3.1. Formulation of the Natural Frequency Equation, λ, for a Free Vibrating Alround-clamped 

Rectangular Orthotropic Plate. 

Using a deflection function technique based on the work of [14], derived the equation for the fundamental 

frequency of a vibrating continuum. This was achieved by employing the principle of conservation of energy, in 

which the strain and kinetic energies of the continuum, were derived from the first principles using the theory of 

elasticity. The expressions were subsequently substituted into the potential energy functional, and then 

minimized to determine the fundamental frequency, that is, at mode M=N=1.  

Then, the fundamental frequency is made the subject of the equations after substituting the aspect ratios p=a/b 

and p=b/a, as the case may be. 

First, the strain energy, U, is given as: 

U =
Dx

2b2   [
φ1

p3

1

0

1

0
(
∂2w

R2 )2 + 2 
φ2

p
(

∂2w

∂R ∂Q
)2 +pφ

3
(
∂2w

∂Q2 )2]∂R ∂Q     (24) 

And the kinetic energy, K.E, is given as: 

K.E= 
pb2λ

2
ρt

2
  W21

0

1

0
∂R ∂Q        (25) 

And total potential energy functional represented by the symbol, π 

is expressed by Equation (26) 

Π = U - K.E          (26) 

Substituting Equation (24 ) and (25 ) into Equation (26 ), yields, Equation (27) 

Π=
Dx

2b2   [
φ1

p3

1

0

1

0
(
∂2w

R2 )2+2
φ2

p
(

∂2w

∂R ∂Q
)2 +pφ

3
(
∂2w

∂Q2 )2]∂R ∂Q -
pb2λ

2
ρt

2
  W21

0

1

0
∂R ∂Q   (27) 

Since the deflection function, W = AH, the Equation (27) becomes: 

Π=
Dx A2

2b2   [
φ1

p3

1

0

1

0
(
∂2H

∂R2)2+2
φ2

p
(

∂2H

∂R ∂Q
)2 +pφ

3
(
∂2H

∂Q2)2]∂R ∂Q -
pA2b2λ

2
ρt

2
  H21

0

1

0
∂R ∂Q  (28) 

Minimizing this Equation (28) gives: 
∂Π

∂A
=

Dx A

b2   [
φ1

p3

1

0

1

0
(
∂2H

∂R2)2+2
φ2

p
(

∂2H

∂R ∂Q
)2 +pφ

3
(
∂2H

∂Q2)2]∂R ∂Q -pAb2λ
2
ρt   H21

0

1

0
∂R ∂Q = 0  (29) 
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At this point, the natural frequency squared,λ
2
 is made the subject of the Equation (29). For the aspect ratio, 

p=a/b,λ
2
 can be expressed in terms of φ and b as follows: 

λ
2
 = 

D x A

b 4ρt
  [

φ1
p 4

1
0

1
0 (

∂2H

∂R 2 )2+2
φ2
p 2(

∂2H

∂R ∂Q
)2+pφ3(

∂2H

∂Q 2 )2] ∂R ∂Q 

  H21
0

1
0 ∂R ∂Q

      (30) 

In terms of a and b, Equation (30) becomes: 

λ
2
 =

D x
a 4ρt

  [φ1
1

0
1

0 (
∂2H

∂R 2 )2    +   
2φ2a 2(

∂2H
∂R ∂Q

)2

b 2   +   
φ3a 4(

∂2H

∂Q 2)2

b 4   ] ∂R ∂Q 

  H21
0

1
0 ∂R ∂Q

     (31) 

In terms of p and a, the same expression for λ
2
,becomes: 

λ
2
 =      

D x
a 4ρt

  [φ1
1

0
1

0 (
∂2H

∂R 2 )2+2φ2p2(
∂2H

∂R ∂Q
)2+pφ3p4(

∂2H

∂Q 2 )2] ∂R ∂Q  

  H21
0

1
0 ∂R ∂Q

     (32) 

Similarly, for aspect ratio p = b/a, the expression for natural frequency squared,λ
2
 in terms of a and p, is given 

as follows: 

λ
2
  =      

D x A

a 4ρt
  [φ1

1
0

1
0 (

∂2H

∂R 2 )2     +     
2φ2(

∂2H
∂R ∂Q

)2

p 2     +    
φ3a 4(

∂2H

∂Q 2 )2

p 4   ]  ∂R ∂Q 

  H21
0

1
0 ∂R ∂Q

     (33) 

Where t, is the plate thickness, a and b are the length and width of the plate respectively. 

3.2. Use of Rayleigh – Ritz Method to Determinethe Natural Frequency ,λ, of an Alround-Clamped Plate in Free 

Vibration. 

Let the partial differentials of the deflection functions, W, expressed in terms of dimensionless parameters R and 

Q, be as follows: 

W′R =
∂W(R,Q)

∂R
          (34) 

W′′R =
∂2W (R,Q)

∂R2           (35) 

W′Q =
∂W (R,Q)

∂Q
          (36) 

W′′Q =
∂2W (R,Q)

∂Q2           (37) 

W′′RQ =
∂2W (R,Q)

∂R ∂Q
          (38) 

where W=AH are as defined earlier. 

The parameters,W′′R , W′′Q , W ′′RQ , their squares and double integrals ,are evaluated with respect to R and Q as 

follows: 

  (W′′R )2 = 2R ∂Q =
1

0

1

0
A2 0.8  0.00159 = 0.00127A2     (39) 

  (W′′Q )2 ∂R ∂Q =
1

0

1

0
A2 0.00159  0.8 = 0.00127A2     (40) 

  (W′′RQ )2 = 2R ∂Q =
1

0

1

0
A2 0.01905  0.01905 = 0.00036A2    (41) 

  W2 ∂R ∂Q =
1

0

1

0
(0.0015873)2 = 0.000002519526329A2     (42) 

Substituting these values into the natural frequency squared, λ2, equation, gives 

λ
2
  =      

D x
b 4ρt

[
φ1
p 4∗0.00127 +

2φ2
p 2 ∗0.00036 +φ3∗0.00127  ]

0.000002519526329
      for p= a/b    (43) 

This expression further reduces to Equation (44) 

λ
2
  =  

Dx

b4ρt
[
φ1

p4 ∗ 503.9683 +
φ2

p2 ∗ 285.714 + φ
3
∗ 503.9683]     (44) 

Re-arranging the equation in terms of a and p, gives: 

λ
2
  =  

Dx

a4ρt
[φ

1
∗ 503.9683 + φ

2
∗ 285.714p2 + φ

3
∗ 503.9683p4]    (45) 

Substituting a/b in place of p into Equation (32) yields the expression for λ
2
in termsof a and b. 

λ
2
 =      

D x
a 4ρt

  [φ1
1

0
1

0 (
∂2H

∂R 2 )2  + 
2φ2p 2(

∂2H
∂R ∂Q

)2

b 2  + 
pφ3p 4(

∂2H

∂Q 2 )2

b 4 ] ∂R ∂Q  

  H21
0

1
0 ∂R ∂Q

     (46) 

Therefore, the natural frequency squared, λ
2, equation in terms of aand b is given by: 

λ
2
  =      

D x
b 4ρt

[φ1∗0.00127  + 
2φ2a 2

b 2 ∗0.00036 + 
φ3a 4

b 4 ∗0.00127  ]

0.000002519526329
      (47) 

This can be simplified further to Equation (48) 
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λ
2
  =

Dx

b4ρt
[φ

1
∗ 503.9683 +

φ2a2

b2 ∗ 285.714 +
φ3a4

b4 ∗ 503.9683]    (48) 

When aspect ratio, p=b/a, (i.e. reciprocal of a/b), is substituted into the expression, then Equation (45) becomes: 

λ
2
  =  

Dx

a4ρt
[φ

1
∗ 503.9683 +

φ2

p2 ∗ 285.714 +
φ3

p4 ∗ 503.9683]     (49) 

 

IV. RESULTS AND DISCUSSION 
The equation for natural frequency, λ, of a free vibrating rectangular orthotropic plate clamped on all edges, can 

be obtained from the square roots of Equation (45) and Equation (49) for aspect ratios, p=a/b and p= b/a 

respectively. 

λ =   
Dx

a4ρt
[φ

1
∗ 503.9683 + φ

2
∗ 285.714p2 + φ

3
∗ 503.9683p4]    (50) 

λ =  
Dx

a4ρt
[φ

1
∗ 503.9683 +

φ2

p2 ∗ 285.714 +
φ3

p4 ∗ 503.9683]     (51) 

These equations were used to calculate the natural frequencies of a free vibrating thin rectangular orthotropic 

plate clamped on all edges for various aspect ratios, p=b/a and p= a/b and various combinations of flexural 

rigidities, φ
1
,φ

2
 and φ

3
. The results are shown in Tables 1-5. In addition, graphs of natural frequencies, λ, 

against aspect ratios, p=b/a, were plotted for various combinations of flexural rigidity,φ
1
,φ

2
 and φ

3
 (see Fig 

2)The values of natural frequencies, λ, obtained in this work, were compared withboth the corresponding exact 

solutions by [11] and solutions by Kantorovich in Tables 1-5. 

As shown in Tables 1-3, the percentage differences between the natural frequencies obtained in this work and 

those of [11], range from 1.367 percent to1.532 percent for different aspect ratios, p=b/a.Both results tend to 

converge as the aspect ratio, p, increase, but diverges as the aspect ratio, p decreases. Similar comparison 

indicates higher convergence between the results of the present work and those of Kantorovich. 

 

Table 1: Flexural rigidities, φ
1
=φ

2
 =φ

3
=1, and aspect ratio p = 

𝑏

𝑎
 

S/N P 𝛌2 λ1(Pred) λ2 (Liu) λ3 (Kant) 𝛌𝟏–𝛌𝟐

𝛌𝟏
∗ 𝟏𝟎𝟎% 

𝛌𝟏–𝛌𝟑

𝛌𝟏
∗ 𝟏𝟎𝟎% 

1 0.1 5068758 2251.390     

2 0.2 322627 568.003     

3 0.3 65896.88 256.704     

4 0.4 21975.94 148.243     

5 0.5 9710.317 98.541 97.542 98.324 1.014 0.220 

6 0.6 5186.263 72.016     

7 0.7 3186.051 56.445     

8 0.8 2180.788 46.699     

9 0.9 1624.829 40.309     

10 1.0 1293.651 35.967 35.112 35.999 2.377 0.089 

11 1.1 1084.313 32.929     

12 1.2 945.4211 30.748     

13 1.3 849.4831 29.146     

14 1.4 780.9278 27.945     

15 1.5 730.5016 27.028     

16 1.6 692.4748 26.315     

17 1.7 663.1716 25.752     

18 1.8 640.1596 25.301     

19 1.9 621.7848 24.936     

20 2.0 606.8948 24.635 24.358 24.581 1.124 0.219 

λ1(Pred) – Result obtained from the formulated  

λ2 (Liu) – Liu and Xing (2008) solution 

λ3 (Kant) – Kantorovich solution 

 

Table 2: Flexural rigidities, φ
1
= 1,φ

2
 = 0.5, φ

3
=1, and aspect ratio p = 

𝑏

𝑎
 

S/N P 𝛌2 λ1(Pred) λ2 (Liu) λ3 (Kant) 𝛌𝟏–𝛌𝟐

𝛌𝟏
∗ 𝟏𝟎𝟎% 

𝛌𝟏–𝛌𝟑

𝛌𝟏
∗ 𝟏𝟎𝟎% 

1 0.1 5054473 2248.215     

2 0.2 319055.6 564.850     

3 0.3 64309.58 253.593     

4 0.4 21083.09 145.200     

5 0.5 9138.889 95.598 94.725 95.391 0.913 0.217 

6 0.6 4789.438 69.206     
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7 0.7 2894.507 53.801     

8 0.8 1957.574 44.244     

9 0.9 1448.462 38.059     

10 1.0 1150.794 33.923 33.174 33.917 2.208 0.018 

11 1.1 966.2491 31.085     

12 1.2 846.2148 29.090     

13 1.3 764.9524 27.658     

14 1.4 708.0416 26.609     

15 1.5 667.0096 25.827     

16 1.6 636.6713 25.232     

17 1.7 613.7401 24.774     

18 1.8 596.0679 24.415     

19 1.9 582.2122 24.129     

20 2.0 571.1806 23.899 23.681 23.848 0.912 0.213 

λ1(Pred) – Result obtained from the formulated  

λ2 (Liu) – Liu and Xing (2008) solution 

λ3 (Kant) – Kantorovich solution 
 

Table 3: Flexural rigidities, φ
1
= 1, φ

2
 = 0.5, φ

3
= 0.5, and aspect ratio p = 

𝑏

𝑎
 

S/N P 𝛌2 λ1(Pred) λ2 (Liu) λ3 (Kant) 𝛌𝟏–𝛌𝟐

𝛌𝟏
∗ 𝟏𝟎𝟎% 

𝛌𝟏–𝛌𝟑

𝛌𝟏
∗ 𝟏𝟎𝟎% 

1 0.1 2534631 1592.053     

2 0.2 161565.5 401.952     

3 0.3 33200.42 182.210     

4 0.4 11239.96 106.019     

5 0.5 5107.143 71.464 70.524 71.371 1.315 0.130 

6 0.6 2845.115 53.340     

7 0.7 1845.01 42.954     

8 0.8 1342.378 36.638     

9 0.9 1064.399 32.625     

10 1.0 898.8095 29.980 29.329 29.986 2.171 0.020 

11 1.1 794.1405 28.180     

12 1.2 724.6947 26.920     

13 1.3 676.7257 26.014     

14 1.4 642.4481 25.347     

15 1.5 617.2349 24.844     

16 1.6 598.2215 24.459     

17 1.7 583.5699 24.157     

18 1.8 572.0639 23.918     

19 1.9 562.8765 23.725     

20 2.0 555.4316 23.568 23.399 23.504 0.717 0.272 
 

λ1(Pred) – Result obtained from the formulated  

λ2 (Liu) – Liu and Xing (2008) solution 

λ3 (Kant) – Kantorovich solution 
 

Table 4: Flexural rigidities, φ
1
= 1,φ

2
 = 0.648088, φ

3
= 3.117304 and aspect ratio p = 

𝑎

𝑏
 

S/N P 𝛌2 λ1(Pred

) 

λ2 (Liu) λ3 (Kant) 𝛌𝟏–𝛌𝟐

𝛌𝟏
∗ 𝟏𝟎𝟎% 

𝛌𝟏–𝛌𝟑

𝛌𝟏
∗ 𝟏𝟎𝟎% 

1 0.1 505.9771 22.494     

2 0.2 513.8887 22.669     

3 0.3 533.3587 23.095     

4 0.4 573.8134 23.954     

5 0.5 648.4492 25.465 25.104 25.424 1.418 0.161 

6 0.6 774.2333 27.825     

7 0.7 971.9031 31.175     

8 0.8 1265.967 35.580     

9 0.9 1684.702 41.04     

10 1.0 2260.159 47.541 46.741 47.481 1.683 0.126 

11 1.1 3028.155 55.029     

12 1.2 4028.282 63.469     

13 1.3 5303.899 72.828     

14 1.4 6902.137 83.079     

15 1.5 8873.897 94.201 93.378 93.980 0.874 0.235 

16 1.6 11273.85 106.178     

17 1.7 14160.44 118.998     

18 1.8 17595.88 132.649     

19 1.9 21646.15 147.126     

20 2.0 26381 162.422 161.51 161.95 0.562 0.291 
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λ1(Pred) – Result obtained from the formulated  

λ2 (Liu) – Liu and Xing (2008) solution 

λ3 (Kant) – Kantorovich solution 

 

Table 5: Flexural rigidities, φ
1
= 1,φ

2
 = 0.232019, φ

3
= 0.070766, and aspect ratio p = 

𝑏

𝑎
 

S/N P 𝛌2 λ1(Pred

) 

λ2 (Liu) λ3 (Kant) 𝛌𝟏–𝛌𝟐

𝛌𝟏
∗ 𝟏𝟎𝟎% 

𝛌𝟏–𝛌𝟑

𝛌𝟏
∗ 𝟏𝟎𝟎% 

1 0.1 504.6348 22.464     

2 0.2 506.677 22.509     

3 0.3 510.2234 22.588     

4 0.4 515.4879 22.704     

5 0.5 522.7701 22.864 22.757 22.780 0.468 0.367 

6 0.6 532.4551 23.075     

7 0.7 545.0138 23.346     

8 0.8 561.0025 23.685     

9 0.9 581.0632 24.105     

10 1.0 605.9233 24.616 24.358 24.564 01.158 0.211 

11 1.1 636.396 25.227     

12 1.2 673.38 25.950     

13 1.3 717.8598 26.793     

14 1.4 770.9051 27.765     

15 1.5 833.6715 28.873 28.289 28.869 2.023 0.014 

16 1.6 907.400 30.123     

17 1.7 993.4175 31.517     

18 1.8 1093.136 33.063     

19 1.9 1208.054 34.757     

20 2.0 1339.754 36.603 35.735 36.618 2.371 0.041 

λ1(Pred) – Result obtained from the formulated  

λ2 (Liu) – Liu and Xing (2008) solution 

λ3 (Kant) – Kantorovich solution 

 
Figure2. 

 

V. CONCLUSION 
The fully restrained or (clamped) (CCCC) plates, yielded higher natural frequencies than alround- simply 

supported (SSSS) plates. Besides, the convergence of the graph/results, present solution with the exact solution, 

of plates, shows that the present solution approximates closely than the exact solution. 

It can also be concluded that the use of Taylor series (which overcomes the deficiencies or limitations of other 

methods), is more effective in approximating deformed shape of alround clamped thin rectangular orthotropic 

plate undergoing free vibration. Thus, fully restrained free vibrating plates can simply be analyzed using the 

newly developed method in this work. 
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