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Abstract : This study investigates the analytical effect of torsion on a rectangular cross-sectional timber beam. 

It reviewed the theoretical concept of both isotropic and anisotropic elastic behavior of the rectangular beam to 

torsional load. Finite difference method was used to evaluate the torsional parameters 

 for isotropic and anisotropic elastic material behavior and compared with the result 

obtained from the analytical values from previous research. The finite difference codes and equations together 

with the associated boundary conditions are employed to approximate the stress function and torsional 

parameter derivatives in the differential equation of analytical method. MATLAB programming was used to seek 

solution to the finite difference equations formulated. It was observed that the values obtained by finite 

difference method are approximate to the analytical values. However, the findings through ANOVA Test, 

revealed that there was no significant difference between the finite difference method and the analytical values 

(  at of significant and a strong value of correlation of 

was obtained.  The finite difference method was capable of predicting the stress functions and torsional 

parameters for both isotropic and anisotropic material behavior of the rectangular beam cross-section. 

 

Keywords: Torsion, Finite difference method, Timber, isotropic, anisotropic, analytical 

 

I. Introduction 
All structures are designed to satisfy the requirement of strength, rigidity and stability which is 

essentially for their reliability and safe operation. Structural elements can be deformed under the action of 

external forces, that is, their shape and dimension can change to the extent of warping and distorting. Torsional 

load is a load that subjects a structural member to couples or moments that twist the member spirally (Onouye 

and Kane, 2007) under the action of torque. . Torsion may be induced in a structural timber beam in various 

ways during transfer of load in a structural system. Torsion can be induced in a structural beam when the beam 

is subjected to external transverse load in such a manner that the resultant force acts a distance away from the 

shear centre axis of the beam. Torsion can also be induced in a structural timber beam due to monolithic and to 

satisfy the compatibility condition between members that are joined. In other words, torsion happens because of 

integrity and continuity of members and also under the effect of external loads in timber structures. Shear centre 

is defined as the point in the cross-section through which the transverse load must pass to produce bending 

without twisting. The determination of the torsional moment for any loading in torsion and shear requires 

knowledge of location of the centre of shear in addition to the geometric centroid (Ziegler, 1995). If the timber 

beam is subjected to two opposite turning moments, it is said to be in pure torsion (Rajput, 2004), it will exhibit 

the tendency of shearing off at every cross-section which is perpendicular to longitudinal axis. The induced 

torsional moment or torque tends to twist the beam to give a rotational displacement. When this occurs, the 

beam undergoes deformation by warping and distorting, that is changes in dimension, shape, or both 

simultaneously.   If the timber beam is not properly designed against these torsional shear stresses, a sudden 

fragile fracture can occur, leading to failure of the beam at torsional cracking loads. The consequences of 

torsional effect on timber beams’ cross-section and shape are; reduction in the reliability and safe operations of 

the structure under serviceability. Structural timber beams subjected to torsion are of different shapes such as 

solid saw lumber, I- shaped joists, glue laminated timber joists and open web trusses (Khokhar, 2011) 

The effects of torsional loading can be classified into uniform and non-uniform. When torsional load is 

applied to a structural member, its cross-section may warp in addition to twisting. If the member is allowed to 

warp freely, then the applied torque is resisted entirely by torsional shear stresses (called St Venent’s torsional 

shear stress). If the member is not allowed to warp freely, the applied torque is resisted by St Venant’s torsional 

shear stress and warping torsion (Hoogenboom, 2006). This behavior is called non-uniform torsion. Warping of 
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the cross-section does not allow a plane section to remain as plane after twisting and this phenomenon is 

predominant in thin walled section. Timber beams must be designed against all induced stresses. Through the 

design of wooden structures, we try to avoid torsion of structural beams with different shape and constructive 

measures, and carry all loads through preferably bending. If we can succeed in doing that, we will have only 

tensile and /or compressive normal stresses to which wood corresponds better. Wood is a natural material which 

varies in mechanical properties. Knowledge of these properties is obtained through experimentation either in the 

employment of the wood in practice or by means of special testing apparatus in the laboratory. The shear 

modulus and shear strength are fundamental mechanical properties that are used in general timber design, 

compared to other engineering materials, timber has a relatively low shear stiffness and strength in comparison 

to its modulus of elasticity and so shear deformation contributes a more significant portion of flexural deflection 

(Khokhar and Zhang, 201). 

Problem statement 
The properties of timber can be obtained, theoretically through analytical model and numerical model. 

The problems of elasticity usually require solution of certain partial differential equations with a given boundary 

conditions. Only in simple boundary cases can these equations be treated in a rigorous manner. Very often, we 

cannot obtain a rigorous solution and must resort to approximate methods. It is necessary to realize that 

analytical solution requires quite a lot of theoretical knowledge due to its mathematical exactness and it’s 

convenient only for the simpler cases. Analytical approach has been rarely used due to its complex procedure. 

Finding exact analytical solutions in general more complicated cases is usually very difficult, sometimes even 

impossible. However, the use of finite difference equations with the specified values of the independent 

variables, then lead to a system of simultaneous algebraic equation that can be solved by computer. 

Aims and objectives of this study is to: understand the basic behavior of timber beams subjected to torsional 

loading, review the theoretical concept of torsion in timber beams, evaluate the analytical and numerical 

methods of determining the torsional parameters; stress functions and shear stresses in two-directions of a 

rectangular timber section and compare the results obtained from the two methods. 

The scope and limitations of the study: This study is based on the evaluation of torsion problems in timber 

beams using analytical and numerical models (Finite difference) to determine the stress functions, shear stresses 

induced in a solid rectangular cross-section. The study also discussed the isotropic and anisotropic behavior 

/response of timber beams to torsional effects. The study uses MATLAB computer programming to seek for the 

solution of the finite difference equations derived and compared it with the analytical value 

II. LITERATURE REVIEW 
Wood, as a structural material is subjected to various types of loading conditions. If no external forces act 

upon a timber beam, its particles assume certain relative positions, and it has what is called its natural shape and 

size. If sufficient external force like torque is applied the natural shape and size will be changed. This distortion 

or deformation of the material is known as the Torsional strain. The ability of the timber beam material to 

withstand a twisting load, the ultimate strength of the timber material subjected to torsional loading, and the 

maximum torsional stress that the material sustains before rupture depends on its Torsional strength (Record, 

2004). The design of a timber joists mainly depends upon its stiffness and strength properties. Stiffness is the 

property by means of which a body acted upon by external forces tends to retain its natural size and shape, or 

resists deformation. 

 

Theory of elasticity 

The classical theory of elasticity is based on an idealized ‘Hookean’ solid for which stress is directly 

proportional to strain and the deformation is completely recoverable after release of the force that produces the 

deformation. Furthermore, if the relationship between the applied stresses and the deformation can be assumed 

linear, then the material is said to be linear elastic. This is independent from any other assumption regarding the 

relationship between displacements and strain (Leitao, 1994). Saint Venant, 1855 was the first to provide the 

correct solution to the problem of torsion of bars subjected to moment couples at the ends. He made certain 

assumptions about the deformation of the twisted bar and then show that this solution satisfied the equations of 

equilibrium and the boundary conditions. From the uniqueness of solutions of the elasticity equations, it follows 

that the assumed forms for the displacements are the exact solution to the torsional problems. 

 

Saint-Venant Torsion Theory for non-circular cross-section 

 In order to develop the torsional behavior of non-circular cross section, Saint-Venant made the following 

assumptions (Sadd, 2005 and Sadda, 1993): The member is straight, has constant cross section without taper 

and; The load is pure torque and produced by the shear stresses distributed over the end cross sections; Each 

cross section of member rotates approximately as rigid body and rotation of each cross section varies linearly 
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along the longitudinal direction; Angle of twist must be small for small deformation and that warping must be 

small and the same for each cross section; The member must be homogeneous, isotropic and linearly elastic. 

The torsion problem for a rectangular bar can be solved in terms of either the warping function or the stress 

function. Later in 1903, Ludwig Prandtl suggested that    and  can be taken as a magnitude of a slope of 

stress function surface to their perpendicular planes and Equations  can be written as:        

                                                                                                          (2.1)     

The governing equation for the problem is a Poisson equation. 

                                                                                                                    (2.2)  

Where   is the stress function, represents surface over the cross-section of the torsion member.  And  

represent shear stresses in relative planes to applied torque, angle of twist per unit length of member ( ). 

The stress function can be determined by using an elastic membrane analogy approach (Boresi and Schmidt, 

2003). Torque-rotation relationship can further be simplified by: 

                                                                                                             (2.3) 

The maximum shear stress (   in the cross-section can be obtained as:   

                                                                                                                                           (2.4) 

Torsion Theory of Anisotropic Bars  

 It has long been recognized that deformation behavior of many materials depends upon orientation, that is, the 

stress-strain response of a sample taken from the material in one direction will be different if the sample were 

taken in a different direction. The term anisotropic is generally used to describe such behavior (Sadd, 2005). 

Wood is highly anisotropic due mainly to the elongated shapes of wood cells and the oriented structure of the 

cell walls. In addition, anisotropy results from the differentiation of sizes of cell throughout a growth season and 

in part from a preferred direction of certain cell types (August, 2008), thus, knowledge of stress distributions in 

anisotropic materials is very important for proper use of these high-performance materials in structural 

applications. Applying anisotropic theory to wooden beams of rectangular cross-section under torsion is 

definitely more complex than just assuming isotropic behavior. The two shear Moduli in LR and LT plane have 

fundamental influence on the results for shear strength. For the orthotropic rectangular member bar, the stress 

function or governing equation can be written as (Lekhnitskii, 1981): 

                                                                                                         (2.5) 

 and  are the shear modulus in longitudinal-Tangential (LT) plane (longer side) and longitudinal-Radial 

(LR) plane (short side), respectively of the member).  The maximum shear stresses can be obtained on the centre 

of either the short side or long side as: 

 ;                                                                                                  (2.6) 

             ;                                                                                                (2.7) 

                                                                                              (2.8) 

                                                                                                      (2.9) 

             ;                                                                                              (2.10) 
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                Where                                                                                                                     (2.11) 

        Numerical method for Determination of Torsion effects with Finite Difference Method (FDM)  

The basic idea of the finite difference method is to represent the governing differential equations and the 

associated boundary conditions with finite differential equations. The finite differential equations are employed 

to approximate the derivatives in the differential equations. Combinations of the values of unknown functions at 

the specified locations of the independent variable form the finite difference quotients. The finite difference 

equations with the specified values of the independent variables then lead to a system of simultaneous algebraic 

equations that can be solved by computer. The basic finite difference expression follows logically from the 

fundamental rules of calculus. 

For the empirical study of numerical model on torsion, Stefan et al (2012) and Hsieh (2007) respectively, have 

researched on the numerical determination of torsional parameters and shear stresses of a rectangular timber bar 

using finite difference and finite element methods.  

III. Research Methodology 
The Numerical model will be used in this study to determine the stress function and torsional 

parameters of a rectangular timber beams subjected to torsional effects. Both isotropic and anisotropic nature of 

timber beam will be considered in the numerical model. By means of finite difference method, approximate 

stress function, torsional parameters and shear stresses in rectangular structural members are evaluated using 

MATLAB computer programming and checked against the analytical values. 

 

The analyses of torsion of a rectangular bar section using finite difference technique 
The torsion problem to be modeled is one with rectangular boundary. Such cross-section will be embedded 

in a basic rectangle of length b, in the y-direction and width a, in the x-direction. The length and width are such 

that b is a fraction (or multiple of a.) Then, the length of the cross-section in the x-direction is 1. The origin of 

the x, y coordinate system is assumed to be at the centroid of the basic rectangle. 

a) The Grid: The rectangle is partitioned into a grid, uniform in the x- and y –directions 

respectively, but not necessarily with equal x and y increments as shown in figure 3.1 below. 

 

 

 

 

 

                           

 

 

 

 

                               

The N grid points in x- and M grid points in y- respectively, have coordinates 
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Figure 3.1, the finite difference grid for the basic rectangle R domain. The circles depict the 

computational molecule (of equation below). 
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b) The finite difference equations: The interior constitutes all the grid points with indexes 

 the values of  are specified on the boundary point 

 Let the net function 

  be the numerical values at the grid points of the sought after solution . The 

equations for   are found by substituting the governing Poisson’s equations, evaluated at each point 

 domain by finite difference formulae respectively.  

For Isotropic nature of timber beam:   

The governing equation for the problem is a Poisson equation as in (2.2): ,  

And substituting it with the finite difference equations and codes gives 

                                                                               

Assuming that    Resulting into: 

  

The solution of the finite difference equation is obtained by rewriting the above equation as: 

               ;                                                  

For Anisotropic nature of timber beam:  

The governing equation for the problem is a Poisson equation as in (2.5) is: .  

Substituting it with the finite difference equations and codes gives: 

            

 ;   Considering equal division points:               

                           

The iteration process:  

By starting the iteration process with  everywhere, the boundary conditions are automatically satisfied. 

This process is considered in both isotropic and anisotropic behavior respectively. 

For k=2:k 

       For j=2:M-1 

             For i=2:N-1 

                       

              End 

        End 

End 
 

A fixed number of passes (K) equal to the product of number of grid points N and M in the x- and y-direction 

respectively, which is enough for the system to converge. 

The numerical computation of the stresses and other torsional parameters are obtained from the 

numerical stress function   using the following formulas: 



American Journal of Engineering Research (AJER) 2016 
 

 
w w w . a j e r . o r g  
 

Page 92 

The stresses are evaluated using the following: 

i. For the bottom and top of the rectangle,  

;    

  On these two boundaries 

ii. For the left and right ends of the rectangle;  

                                                               

iii. The torsional parameters for anisotropic rectangular cross-section   are obtained as follows: 

 ;               

            << 

IV. PRESENTATION OF RESULTS 
            To validate the finite difference method formulated, three examples will be evaluated for verification of 

the results.  Analytical and numerical (finite difference method) models developed will be employed to evaluate 

the values on rectangular timber beam of isotropic and anisotropic material behavior of timber.  In order to 

provide the accuracy and efficiency of the finite difference method, the results obtained from the numerical 

model program will be compared with those of the analytical method which is available from previous works of 

 and (Hsiehk, 2007).  
 

Example 1: Torsional Parameters for Isotropic material behavior of Rectangular Cross 

Sections.  The verification example is from textbook . The 

value of the torsional parameter from the previous researcher is compared with the value obtained from the 

Finite difference method (FDM). The values of   and , depends on cross section/ aspect ratio of rectangular 

bar.  

Table 4.1 evaluation of  and value between analytical and finite difference method (FDM) results for 

isotropic behavior which depend on the ratio of the sides of the rectangular cross-section of the beam (y-z 

direction) 

 1.0 1.5 2.0 2.5 3.0 4.0 6.0 10.0 

 

 

0.141 0.196 0.229 0.249 0.263 0.281 0.299 0.312 

 

 

0.1404 0.1962 0.2288 0.2493 0.2635 0.2808 0.2988 0.3055 

 

 

0.208 0.231 0.246 0.256 0.267 0.282 0.299 0.312 

 

 

0.2082 0.2314 0.2461 0.2557 0.2668 0.2819 0.2988 0.3124 

Example 2: Torsional coefficients for anisotropic rectangular cross-section with two orthogonal shear properties 

in different directions of timber beam axis. The values of , and , depends on aspect ratio of the cross 

section and shear Modulus of rectangular bar 

Table 4.2 evaluation of   between analytical (Lekhnitskili 1981) and finite 

difference method results for anisotropic behavior depending on the ratio of shear Moduli and the ratio of the 

sides of the rectangular cross-sectional beam 

 
1.0 1.5 2.0 2.5 3.0 4.0 5.0 10 20 

 

 

0.141 0.196 0.229 0.249 0.263 0.281 0.291 0.312 0.323 

 

 

0.1407 0.1968 0.2285 0.2478 0.2626 0.2812 0.2902 0.3101 0.3215 
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 4.804 4.330 4.068 3.882 3.742 3.550 3.430 3.202 3.098 

 

 

4.8023 4.3071 4.0783 3.8819 3.7584 3.5745 3.4897 3.2128 3.0662 

 4.804 3.767 3.234 2.975 2.538 2.644 2.548 2.379 2.274 

 

 

4.8023 3.7948 3.2184 2.9785 2.5260 2.6249 2.5716 2.3609 2.2805 

 Example 3: The shear stress distribution of full-sized specimen measuring  under 

torsion for all three structural composites lumber (SCL) material; laminated veneer lumber (LVL), parallel 

strand lumber (PSL) and laminated strand lumber (LSL) by (Gupta and Siller, 2005) . A constant torque value of 

 was applied to each sample. Shear Moduli of the materials are: LSL (GRL = 318 Mpa, GTL = 782 

Mpa), LVL (GRL = 407 Mpa, GTL = 593 Mpa) and PSL (GRL = 310 Mpa, GTL = 398 Mpa) 

Table 4.3: Comparing the longitudinal tangential and radial shear stresses between Gupta and Siller (2005) 

experimental work, and finite difference method for both isotropic and anisotropic.  

  

 

 

 

Figure 4.1 stress distribution from numerical solution for isotropic behavior:  (a) shear 

stress  distribution in the  (b) shear stress ( ) distribution in the  e (c) the 

stress function contour for rectangular section   view and (d)  view  (from MATLAB) 
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V. DISCUSSION ON FINDINGS 
The torsional parameters for rectangular cross-sectional timber beam  were determined 

using the finite difference method of numerical analysis with MATLAB programming and compared with the 

analytical model from previous research work for both isotropic and anisotropic material behavior of timber 

beam.   

Tables 4.1 present the torsional parameters  for isotropic material behavior of rectangular cross-

section for both analytical and finite difference method (FDM).  The result indicates that finite difference 

method values are not exact, but approximately to the values obtained from analytical calculation. Observations 

indicated that, through ANOVA Test; there was evidence at 0.05 levels of significance that there was no 

significant difference between analytical and numerical values, statistically. The result shows that   

 

. , 

variance of 0.000841 for     

 Tables 4.2 present the torsional parameters  respectively, for anisotropic material behavior 

of rectangular cross-section for analytical and finite difference methods. It was observed that the values obtained 

by finite difference method are not exact, but approximate when compared with the analytical calculated 

values. From the ANOVA Test conducted, there was indication at 0.05 levels of significance that there was no 

significant difference between analytical and finite difference methods statistically.  

,  AVOVA Test conducted for  also confirmed that 

there was no significant difference between analytical method and finite difference method.  It was found that 

the torsional parameters, obtained using the two methods, have a very strong correlation as  was found about 

0.998. 

 Table 4.3 presents the shear stress distribution of structural composite lumber (LVL, LSL and PSL) for 

both isotropic and anisotropic behavior to torsional load. Solving the problem for various materials, it was 

observed that some values of longitudinal tangential and radial shear stresses matched the experimental work of 

Gutpa and Siller (2005) for both isotropic and anisotropic material behavior, but the process is not convergence. 

The values obtained from finite difference method developed for tangential and radial shear stresses are 

approximate to that of Gupta and Siller (2005).    

Comparing the isotropic and anisotropic shear stress distribution in figures 4.1 and 4.3, the shear stress 

distribution in isotropic timber beam behavior depends only on the ratio of the rectangular cross-sections  ( ) 

thereby having a uniform stress distribution  with equal number of iteration (passes) on the longitudinal 

tangential and radial directions as shown in figure 4.1. However, in the anisotropic timber beam behavior, shear 

stresses are not only dependent on the rectangular side ratio, but also on the ratio of the two shear Moduli in 

longitudinal tangential  and radial  directions as shown in figure 4.2. In other words, the two shear 

Moduli in   plane have fundamental influence on the results for shear strength. The higher the aspect 

ratio, more anisotropic the material   behaves. 

Convergence of the finite difference method using MATLAB  

Figure 4.3 stress distribution for anisotropic material behavior of timber subjected to torsional loading, 

 (from MATLAB) 
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The values of torsional parameters depend on the distance between the points laying on the boundary 

and the neighbor point inside the section domain ( . Smaller values lead to better estimation of the 

torsional parameters and an increase size of unknown system.  The utilization of variable distance between mesh 

points ( ), leads to a more accurate estimate of the torsional parameters, using smaller number of grid 

point. This is in line with the results gotten by Stefan et al in the literature review. 

 

VI. Conclusion 
The finite difference model developed in this study is capable of predicting the torsional shear stress 

distributions and torsional parameters of rectangular timber beam subjected to torsional load, for both isotropic 

and anisotropic material behavior. The finite difference method allows the study of stress distribution for 

sections and boundary conditions in which an analytical approach is difficult. The knowledge of stress 

distributions in anisotropic material behavior is very important for proper use of those high-performance 

materials in structural application. The isotropic material behavior neglected those effects of directional-

dependent behavior of wood, thus resulting in a material that behaves the same in all directions. Good 

agreement was found between the finite difference method and previous results. 
 

Recommendations 
The study was limited to finite difference method. Further research needs to be conducted to evaluate the 

torsional parameters using finite element model or any other numerical models. Further study should be carried 

out on other shapes like L-shaped, I-shaped and open web trusses. Another area that needs further study is on 

the best way of making the finite difference method converge easily using MATLAB programming.  
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