American Journal of Engineering Research (AJER)2015American Journal of Engineering Research (AJER)e-ISSN: 2320-0847 p-ISSN : 2320-0936Volume-4, Issue-11, pp-13-25www.ajer.orgResearch PaperOpen Access

Optimization of the Production Mixture of Selected Raw Material for Plastic Production: A Case Study of Louis Carter Plastic Manufacturing Industry

Okolie Paul Chukwulozie¹*, Chukwuneke Jeremiah Lekwuwa¹, Okoli Ndubuisi Celestine², Azaka Onyemazuwa Andrew¹ and Sinebe Jude Ebieladoh¹

*Corresponding Author Email:pc.okolie@unizik.edu.ng ¹Mechanical Engineering Department, Nnamdi Azikiwe University, Awka ²Industrial Production Engineering Department, Nnamdi Azikiwe University,Awka

Abstract: Statistical experiment design and analysis as tools for production have being developed specifically for the purpose of optimizing mixes, such as plastic products, in which the final product properties depend on the relative proportions of the components rather than their absolute amounts. Although mixture methods have been used in industries to develop products such as gasoline, metal alloys, detergents and foods, they have seen little application in the plastic industry. This paper describes an analysis in which a statistical mixture design tool called response surface design optimization tool was used to optimize the six mixture components of 25mm waste pipe, in order to obtain the optimal mixture ratio and their corresponding product yield. The results obtained show an optimal mixture ratio of PVC (45442.820), Stabilizer (1514.760), Calcium carbonate (0.0), Steric acid (151.480), Titanium (12.120), and Pigment (1.4079) for 25mm waste pipe. The optimal yield and composite desirability for 25mm waste pipe are 51990kg and 0.99990. The objective of the study from the result above was to reduce the wastage of raw materials, so as to increase the profitability of the final products. In addition, the model in use is recommended to the case company for effective utilisation of their various products raw material mixes so as to obtain various optimal solutions of their raw materials mix and their various production yields.

Keywords- Optimization, production, Raw materials, Surface Response

I. INTRODUCTION

For many manufacturers the task of meeting the ever rising demand and customer expectations and lowering production costs in an environment of more products, more complexity, more choice and competition is placing great stress on the effectiveness of the production mixture ratio of the different chemicals used in the production of their different product and the quantity of the products gotten from the mixture. Organizations have already adopted solutions with varying degree of production mixture ratios, operations executive acknowledged that this mixture ratio does not give an optimum yield as a result of wastes encountered during the production.

Loius carter plastic industry limited is one of the impending plastic industries in Nigeria, the work within the market of different plastic product like extrusion product for both domestic and industrial use, sales of their product carry a sturdy seasonality effect; the peak is during the dry season and the raining season is the period of building inventory. Products are customer correlated, so that no production to inventory occurs without an explicit manufacturing authority from customers. Because of this, it is expedient for the company to know how much number of products is expected to be achieved from a given quantity of raw material mix in order to be able to react to customers' needs as at when needed and hence optimization of the raw material mix.

[1] Exemplified how linear programming was applied to determine the feed mix to maintain a balanced ratio that includes calcium, protein, and fibre in the right proportion by the Ozark Poultry Farm. [2] Attempted to show the effectiveness of adopting the linear programming model in maintenance and manpower planning using data from a cocoa processing industry in Akure, Ondo State of Nigeria. Their result shows that only four maintenance crew out of the 19 employees are needed in that section to effectively carry out maintenance jobs in the industry. But in their own contributions, [3] Tried to reveal that risk analysis is necessary in order to

2015

maximize resources allocation efficiency and minimize the effects of risk environment. They used data from a sample of a company's products taking risk into account as the objective function. The result proposed that producing 5 units of X₁ generates 36% loss possibility. If decision makers aim risk not to exceed certain limits, then, variances should be used as constraints. The model recommends that producing 3 units of X_1 will decrease the objective function from \$432 to \$287. [4] In their work Optimized Profit with the Linear Programming Model: A Focus on Golden Plastic Industry Limited, Enugu, Nigeria. They determined the product mix of Golden Plastic Industry Limited, Emene. In the process, they established optimal quantities of the various PVC pipes to be produced within the study period in order to maximize profit. Also the status of the resources and the unit worth of each resource to the objective function were known. [5] In his work on Production Scheduling Optimization of a Plastics Compounding Plant with Quality Constraints where the scheduling of parallel production units was considered. A mixed integer program was developed and implemented in GAMS. The model allows that jobs performed on different units may be shifted or resequenced according to the quantity of demand and the product the job performs. [6] In their work Moving Average Analysis of Plastic Production Yield in a Manufacturing Industry states that a close examination of the production pattern and the behavior of the production system based on the data analyses shows that the production industry is organizing production with a clear focus to meet the customers" requirements and stiff competitors in the plastic manufacturing industry. However, greater percentages of the customers are not served as and when due leading to queues and waiting before customers are served. However, the tool developed can help the company to remedy this situation.

This study intends to examine Loius Carter Plastic Industry Limited, to analyse the opportunity of adopting response surface design and its optimization tool in determining the quantity of products to have been produced over a given period of time from a given quantity of raw material mix. It is one of the most important industrial sites in Nigeria because of its strategic location with a cluster of industries. The choice of response surface design and its optimization tool is informed by the ability of the technique to solve problems relating to quantity of products that is to be achieved by a given quantity of raw material mix over a given period of time, and it is in a better position to determine waste over that period of time. The aim of the study is to optimize the production extent of products from a given quantity of raw material mixture over a given period of time, determining the accurate mixture ratio of the respective components of the raw material to be mixed in order to give optimum production. The objective function of this project is to determine the optimal number of products that can be gotten from a given quantity of raw material mix. With this value, the case study company can determine whether or not it has been operating within this optimal range and if not, plan for a way to increase their production yield by reducing waste of their raw material.

II. RESEARCH METHODOLOGY

2.1 Data Collection and Regression Model

The production mixture data of Louis carter Plastic Industry Limited were collected. Regression analysis was used to statistically investigate the relationships between variables. Regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. Regression analysis is also used to understand which among the independent variables are related to the dependent variable, and to explore the forms of these relationships. In restricted circumstances, regression analysis can be used to infer causal relationships between the independent and dependent variables.

Many techniques for carrying out regression analysis have been developed. Familiar methods such as linear regression and ordinary least squares regression are parametric, in that the regression function is defined in terms of a finite number of unknown parameters that are estimated from the data.

Nonparametric regression refers to techniques that allow the regression function to lie in a specified set of functions, which may be infinite-dimensional. The performance of regression analysis methods in practice depends on the form of the data generating process, and how it relates to the regression approach being used. Since the true form of the data-generating process is generally not known, regression analysis often depends to some extent on making assumptions about this process. These assumptions are sometimes testable if a sufficient quantity of data is available. Regression models for prediction are often useful even when the assumptions are moderately violated, although they may not perform optimally. However, in many applications, especially with small effects or questions of causality based on observational data, regression methods can give misleading results. [7].

Regression models involve the following variables: The unknown parameters, denoted as β , which may represent a scalar or a vector .

The independent variables , X .

The dependent variable, Y.

2015

In various fields of application , different terminologies are used in place of dependent and independent variables. A regression model relates Y to a function of X and β .

 $Y \approx f(X,\beta)$

(1)

The approximation is usually formalized as E

 $(Y | X) = f(X, \beta)$. To carry out regression analysis, the form of the function f must be specified. Sometimes the form of this function is based on knowledge about the relationship between Y and X that does not rely on the data. If no such knowledge is available, a flexible or convenient form for f is chosen.

Assume now that the vector of unknown parameters β is of length k. In order to perform a regression analysis the user must provide information about the dependent variable Y : If N data points of the form (Y, X) are observed, where N < k, most classical approaches to regression analysis cannot be performed: since the system of equations defining the regression model is underdetermined, there are not enough data to recover β . If exactly N = k data points are observed, and the function f is linear, the equations Y = f (X, β) can be solved exactly rather than approximately. This reduces to solving a set of N equations with N unknowns (the elements of β), which has a unique solution as long as the X are linearly independent. If f is nonlinear, a solution may not exist, or many solutions may exist. The most common situation is where N > k data points are observed. In this case, there is enough information in the data to estimate a unique value for β that best fits the data in some sense, and the regression analysis provides the tools for: (i) Finding a solution for unknown parameters β that will, for example, minimize the distance between the measured and predicted values of the dependent variable Y (also known as method of least squares), and (ii) Under certain statistical assumptions, the regression analysis uses the surplus of information to provide statistical information about the unknown parameters β and predictors predicted values of the dependent variable Y.

2.2 Response Surface Methodology

Response surface methodology is an empirical statistical approach for modeling problems in which several variables influence a response of interest. In RSM, an approximate relation between a single response and multiple variables is modeled as a polynomial equation obtained through regression analysis. The equation is called a response surface and is generally represented graphically on a contour plot for analyzing an optimal solution. Usually, a low-order polynomial in some regions of variables is used [8]. Assume that y denotes the response and xg denotes the variables, g = 1, ..., N. When a linear function of variables can effectively model a response, then the response surface is a first-order model, as follows.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_N x_N$$
⁽²⁾

where $_g$ is the regression coefficients, g = 1, ..., N.

When specifying curvature of a response surface, a polynomial of a high order is appropriate for the response surface. For instance, a second-order model of the response surface is

$$\hat{y} = \hat{\beta}_0 + \sum_{g=1}^N \hat{\beta}_g x_g + \sum_{g=1}^N \hat{\beta}_{gg} x_g^2 + \sum_{g < f} \sum \hat{\beta}_{gf} x_g x_f$$
(3)

The fitted response surface is an adequate approximation of the true response function when an appropriate model is selected. Furthermore, model parameters are estimated effectively when proper experimental designs are used to obtain experimental data. Details of experimental designs for fitting response surfaces are found in [9] and [8].

III. DATA PRESENTATION AND ANALYSIS

Table 1: Presentation of 2010-2011 Monthly Data on Production Output

Year	Month	M. Units	25mm Waste pipe
			(units)
2010	Jan	1	0
	Feb	2	47,303.00
	Mar	3	37,413.00
	April	4	33,641.00
	May	5	27,374.00
	June	6	38,750.00
	July	7	50,588.00

	Aug	8	61,203.00
	Sept	9	70,105.00
	Oct	10	75,209.00
	Nov	11	5,964.00
	Dec	12	93693
2011	Jan	13	77,964.00
	Feb	14	65,755.00
	Mar	15	62,349.00
	April	16	8,885.00
	May	17	79,724.00
	June	18	36,343.00
	July	19	55,114.00
	Aug	20	85,009.00
	Sept	21	69,522.00
	Oct	22	29,138.00
	Nov	23	25,063.00
	Dec	24	0

Source: Louis Carter grouped data

 X_1 = 32mm Pressure pipe, X_2 = 25mm Waste pipe

3.1 Method of data analysis

Response Surface Design and optimization methods were used to model, design and to optimize the production mixture of Louis Carter manufacturing industry to observe the optimum production output of the raw materials.

Table 2: Presentation of 2010-2011 Monthly	V Data on Production	Output of 25mm Waste Pipe

25mm Waste	25mm Waste	PVC	Stabilizer	Calcium	Steric acid	Titanium	Pigment
Pipe (units)	Pipe(0.9kg)	1.0	Studinizer	Carbonate		dioxide	1.6
0	0	0	0	0	0	0	0
31535	28381.8	22942.82	764.7607	4588.564	76.47607	6.118086	3.059043
24942	22447.8	18145.99	604.8664	3629.198	60.48664	4.838931	2.419465
22427	20184.6	16316.5	543.8834	3263.3	54.38834	4.351067	2.175534
18249	16424.4	13276.89	442.5631	2655.378	44.25631	3.540504	1.770252
25833	23250	18794.46	626.482	3758.892	62.6482	5.011856	2.505928
33725	30352.8	24536.11	817.8702	4907.221	81.78702	6.542962	3.271481
40802	36721.8	29684.58	989.4859	5936.915	98.94859	7.915887	3.957944
46737	42063	34002.21	1133.407	6800.442	113.3407	9.067256	4.533628
50139	45125.4	36477.74	1215.925	7295.549	121.5925	9.727398	4.863699
3976	3578.4	2892.649	96.42164	578.5299	9.642164	0.771373	0.385687
62462	56215.8	45442.82	1514.761	9088.564	151.4761	12.11809	6.059043
51976	46778.4	37813.97	1260.466	7562.794	126.0466	10.08372	5.041862
43837	39453	31892.38	1063.079	6378.476	106.3079	8.504635	4.252317
41566	37409.4	30240.41	1008.014	6048.081	100.8014	8.064109	4.032054
5923	5331	4309.388	143.6463	861.8776	14.36463	1.14917	0.574585
53149	47834.4	38667.6	1288.92	7733.52	128.892	10.31136	5.15568
24229	21805.8	17627.02	587.5674	3525.404	58.75674	4.700539	2.350269
36743	33068.4	26731.3	891.0433	5346.26	89.10433	7.128347	3.564173
56673	51005.4	41230.92	1374.364	8246.185	137.4364	10.99491	5.497456
46348	41713.2	33719.44	1123.981	6743.889	112.3981	8.991852	4.495926
19425	17482.8	14132.46	471.0821	2826.493	47.10821	3.768657	1.884329
16709	15037.8	12156.01	405.2005	2431.203	40.52005	3.241604	1.620802
0	0	0	0	0	0	0	0

Source: Louis Carter grouped data

IV. DATA ANALYSIS AND DISCUSSION

4.1 Response Surface Regression: 25mm Waste Pipe versus PVC, Stabilizer, ...

Estimated Regression Coefficients for 25m	- ·	-	_
Term	Coef	SE Coef	T
Constant	28108	0 2.13266	E+07
0.000	0.64.60		04.071
PVC	26462	757	34.961
0.000	201	100	1
Stabilizer	-294	189	-1.556
0.195	1075	750	0.471
Calcium Carbonate	1875	759	2.471
0.069	70	24	0.056
Steric acid	72	24	2.956
0.042	4	2	1.400
Titanium dioxide	-4	3	-1.496
0.209	•		0.1.65
Pigment	-2	1	-3.165
0.034	101501	00000	1 - 4 - 5
PVC*PVC	-421734	272759	-1.546
0.197	550404	200004	1.026
Stabilizer*Stabilizer	558404	289984	1.926
0.126	1001	0.50	4.000
Calcium Carbonate*Calcium Carbonate	4221	872	4.839
0.008	150551	25662	4 4774
Steric acid*Steric acid	-159551	35662	-4.474
0.011	11100	7510	1 477
Titanium dioxide*Titanium dioxide	-11103	7518	-1.477
0.214	10.44	0.50	1 700
Pigment*Pigment	-1364	853	-1.599
0.185	7.0000	450000	1 686
PVC*Titanium dioxide	760032	459022	1.656
0.173	72010	100500	0.400
PVC*Pigment	73819	183598	0.402
0.708	1004500	500 (70)	1 000
Stabilizer*Titanium dioxide	-1004598	502670	-1.999
0.116	111146	170000	0.645
Stabilizer*Pigment	111146	172388	-0.645
0.554	070064	50404	1.667
Steric acid*Titanium dioxide	272964	58484	4.667
0.010	160.40	10262	0 200
Steric acid*Pigment	46242	19363	2.388
0.075 Titonium diavida*Diamant	6197	2001	2,002
Titanium dioxide*Pigment	-6187	3091	-2.002
0.116			

$$\begin{split} S &= 0.00116064 \\ PRESS &= 0.00186542 \\ R-Sq &= 100.00\% \\ R-Sq(pred) &= 100.00\% \end{split}$$

2015

Р

R-Sq(adj) = 100.00%

	e (kg)= $\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_1^2$ $\beta_0 X_4^2 + \beta_{11} X_5^2 + \beta_{12} X_6^2 + \beta_{13} X_1 X_5 + \beta_{14} X_1 X_6 + \beta_{15} X_2 X_5 + \beta_{18} X_4 X_6 + \beta_{19} X_5 X_6$	+
(4) PVC	$=X_1$	
Stabilizer	$=X_1$ = X_2	
Calcium Carbonate	$=X_3$	
Steric acid	$=X_4$	
Titanium dioxide	$=X_5$	
Pigment	$=X_6$	
Constant	$=\beta_0$	
Coefficient	$=\beta$	

From the data presented in Table 2, the Surface Plots are represented in Fig.(1-16)

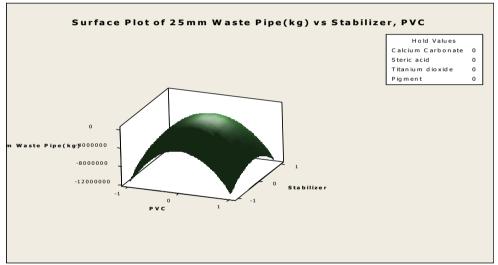
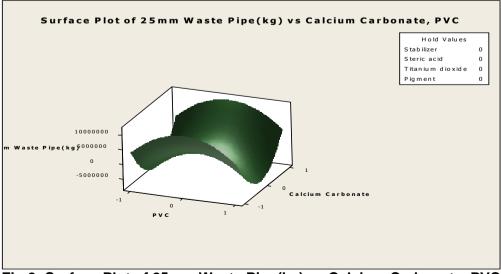



Fig.1: Surface Plot of 25mm Waste Pipe(kg) vs Stabilizer, PVC

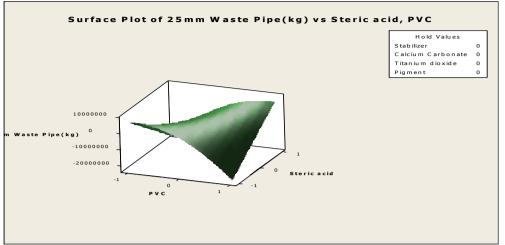


Fig.3: Surface Plot of 25mm Waste Pipe(kg) vs Steric acid, PVC

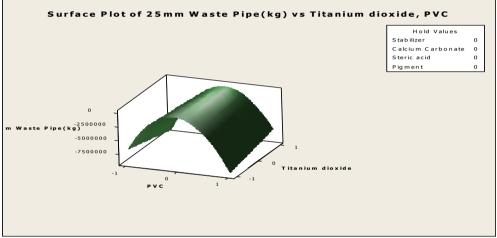


Fig.4: Surface Plot of 25mm Waste Pipe(kg) vs Titanium dioxide, PVC

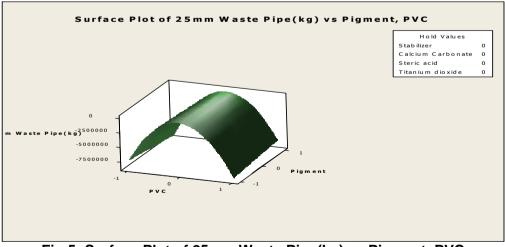


Fig.5: Surface Plot of 25mm Waste Pipe(kg) vs Pigment, PVC

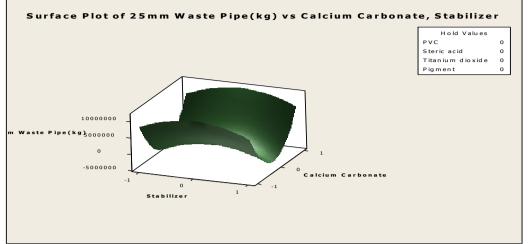


Fig.6: Surface Plot of 25mm Waste Pipe(kg) vs Calcium Carbonate, Stabilizer

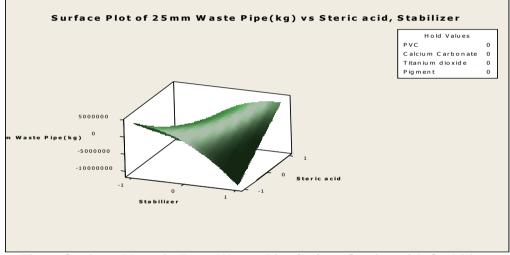


Fig.7: Surface Plot of 25mm Waste Pipe(kg) vs Steric acid, Stabilizer

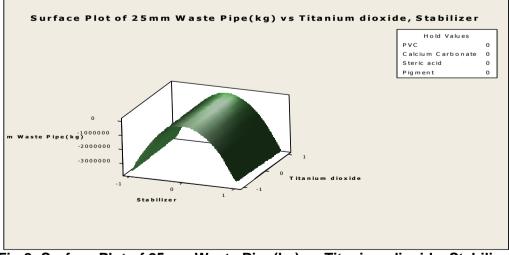


Fig.8: Surface Plot of 25mm Waste Pipe(kg) vs Titanium dioxide, Stabilizer

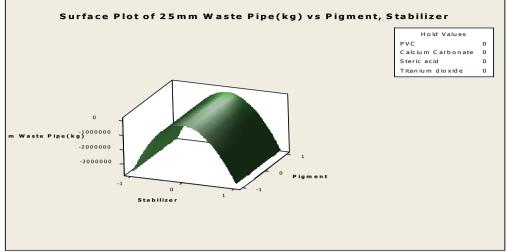


Fig.9: Surface Plot of 25mm Waste Pipe(kg) vs Pigment, Stabilizer

Fig.10:Surface Plot of 25mm Waste Pipe(kg) vs Steric acid, Calcium Carbonate

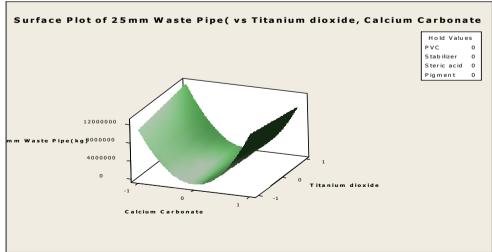


Fig.11: Surface Plot of 25mm Waste Pipe(kg) vs Titanium dioxide, Calcium Carbonate

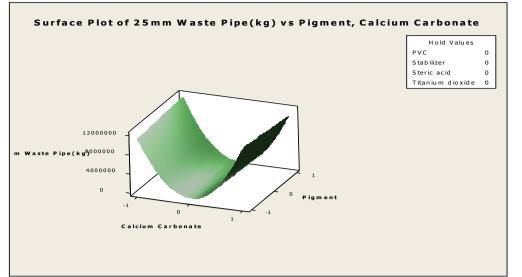
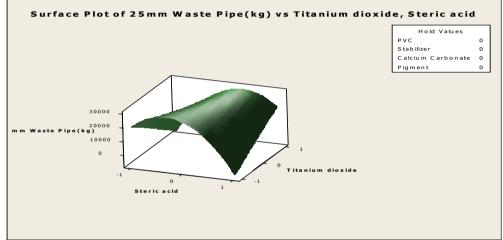



Fig.12: Surface Plot of 25mm Waste Pipe(kg) vs Pigment, Calcium Carbonate

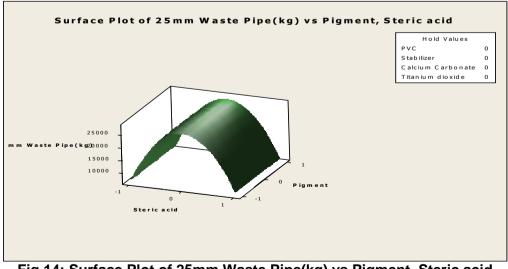


Fig.14: Surface Plot of 25mm Waste Pipe(kg) vs Pigment, Steric acid

www.ajer.org

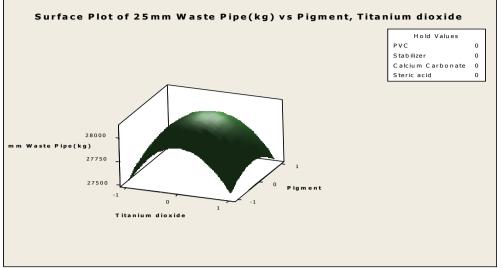


Fig.15: Surface Plot of 25mm Waste Pipe(kg) vs Pigment, Titanium dioxide

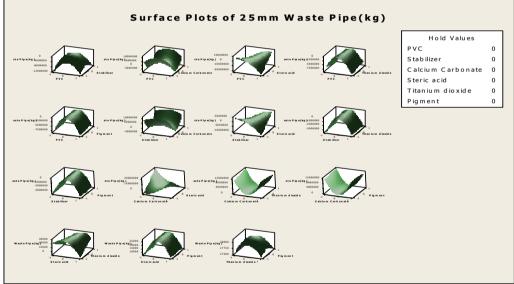


Fig.16: Surface Plots of 25mm Waste Pipe(kg)

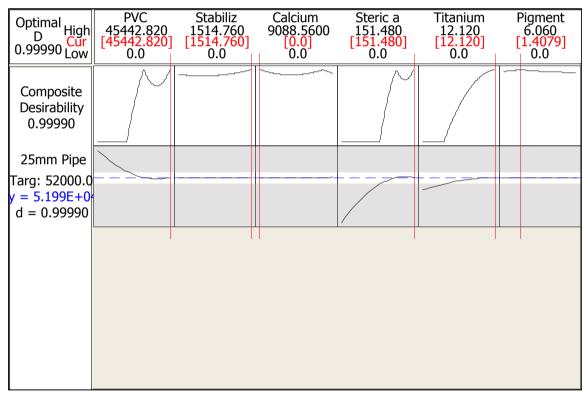
4.2 Response Optimization

Parameters

25mm waste	Goal	Lower	Target	Upper	Weight	Import
Pipe	Target	1000	52000	100000	1	1

Table 3: Lo	ocal Solutions	Table
-------------	----------------	-------

S /	PVC	STABLIZER	CALCIUM	STERIC	TITANIUM	PIGMENT
Ν			CARBONATE	ACID	DIOXIDE	
1	45442.8	1514.76	0	151.48	12.12	1.40788
2	45442.8	1514.76	9088.55	151.097	11.6424	0
3	45442.8	1514.76	0.0001670	151.480	12.1200	60.5738
4	45442.8	1514.76	9088.56	151.480	12.1200	6.05685
5	45442.8	0	9088.56	151.459	12.12	0.0703254


www.ajer.org

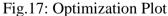

Ame	erican Jour	rnal of Engi	neering Resear	rch (AJER)		2015
6	45442.8	0	0	151.457	12.12	0.0743382
7	45442.8	0.0025821	0.0004172	151.479	12.1200	6.00280
8	45442.8	0.0026424	9088.56	151.479	12.1200	5.99895
9	22721.4	757.38	4544.28	75.74	6.06	3.02937
10	0.0002108	1514.76	9088.56	0	0	0
11	0.0003063	1514.76	0	0	0	0
12	0.0070180	0.0005276	9088.56	0.0052626	0	
13	1079.88	0	0	0	0	0
14	0	0	9088.56	2.73378	0	3.31244
15	0	0	0	5.23173	2.19678	2.81976
16	0	1514.76	9088.56	1.13804	0	2.30648
17	0	1514.76	0	1.34309	0	1.63020
18	45442.8	0	9088.56	150.789	2.06027	6.06
19	45442.8	0	0	150.613	2.50444	6.06
20	45442.8	1514.76	9088.56	150.482	2.88153	6.06
21	45442.8	1514.76	0	150.415	3.07537	6.06
22	45442.8	1514.76	9088.56	150.150	3.36754	0.485057
23	45442.8	1514.76	0	150.076	3.55214	0.511846
24	45442.8	0	9088.56	150.053	3.61434	1.05102
25	45442.8	0	0	149.982	3.79266	1.10610
26	0	1514.76	9088.56	2.96286	3.84594	0
27	0	1514.76	0	3.15960	3.35380	0
28	0	0	9088.56	3.87216	1.70613	0.0571311
29	0.0009029	0	0	5.88235	2.48085	2.20986
30	0	0	9088.56	4.49556	2.04860	4.54440
31	0	0	0	5.00512	1.30813	4.41359
32	0	1514.76	9088.56	4.19395	2.38954	2.31145
33	0	1514.76	0	4.50495	1.87758	1.87799
34	45442.8	1514.76	0	151.48	12.12	1.40788

Table 4: Table of Predicted Responses

S/N	25mm WASTE PIPE	DESIRABILITY	COMPOSITE
			DESIRABILITY
1	51994.8	0.999898	0.999898
2	53235.4	0.974263	0.974263
3	53744.2	0.963662	0.963662
4	56215.8	0.912171	0.912171
5	47033.4	0.902615	0.902615
6	44575.8	0.854428	0.854428
7	60728.5	0.818157	0.818157
8	63191.4	0.766846	0.766846
9	28107.9	0.531527	0.531527
10	8931.38	0.155517	0.155517
11	6459.81	0.107055	0.107055
12	2471.57	0.028854	0.028854
13	2000.01	0.019608	0.019608
14	2883.76	0.03637	0.036937
15	2458.30	0.028594	0.028594
16	3728.61	0.053502	0.053502

17	2906.71	0.037386	0.037386	
18	2000.01	0.019608	0.01906	
19	5689.19	0.091945	0.091945	
20	5953.29	0.097123	0.097123	
21	5916.80	0.096408	0.096408	
22	5896.38	0.096007	0.096007	
23	5849.03	0.095079	0.095079	
24	5831.77	0.094741	0.04741	
25	5776.23	0.093652	0.093652	
26	4338.62	0.065463	0.065463	
27	3745.99	0.053843	0.0543843	
28	3230.40	0.043733	0.043733	
29	2867.81	0.036624	0.036624	
30	4021.64	0.059248	0.059248	
31	2611.93	0.031606	0.031606	
32	4677.16	0.072101	0.072101	
33	399074	0.058642	0.058642	
34	51994.8	0.999898	0.999898	

4.3 Discussion

These results express the optimal production mix of the raw materials in the selected products. The use of response surface model was applied to show the optimal production of the products over the month. The models show that there is a good relationship between the dependent variables and the independent variables and the coefficient of the relationships of the models (R-Sq) is approximately 100%. It also shows from the surface plot, the relationship between the selected products and two different raw materials. The 25mm waste pipe vs Stabilizer, PVC shows increase in the product, then decreases at some point, and increases the Stabilizer, and finally in the 25mm waste pipe vs Steric acid, PVC shows that increase in the product and decreases in the PVC,

2015

and an increase in the Steric acid. However, the optimal solution of the 25mm waste pipe above shows an optimal production of 51990kg for the monthly production of the products. The company can achieve the results if the case study will be mindful of their wasted raw materials during production. The model is therefore recommended to the case study company for its applicability for the production of their products in other to achieve its optimal production mixture for the raw materials.

V. Conclusion

The study has successfully determined the product mix of the raw material of Louis carter Plastic Industry Limited for 25mm waste pipe. This was done using response surface design and its optimization tool. In the process, the optimal quantities of the various PVC raw materials to be mixed within the study period in order to maximize profit were established. This is the advantage of going beyond mere knowledge of existing decision making tools of using wishful mental analysis to actual practical utilization of good engineering powerful tools in decision making of industries. Another issue becomes how the managerial cadre of the case study company could employ this technique in arriving at the objective function of the study. This can go a long way to assisting the management, at least, in the short run. However, in the long run, the case study company would probably gain more from having more permanent employees who can suggest opportunities to utilize these new techniques. There should be people not just one person who can effectively and efficiently interpret the results of mathematical analysis in the company's particular context, as well as possess the necessary competence in the utilization of computers for easy handling of the complex mathematical techniques involved. From the discussion of the study above, it can be seen that response surface model was used to optimize the production mix of the raw materials of selected products and this shows that the case study company wastes some of their raw materials. For this reason, we are recommending this model for the Case Study Company and also advices the company to look into their production system in order to reduce this wastage if they must optimize profit which is the objective function of every enterprise.

References

- [1] Taha, H., (2008), "Operations Research: An Introduction", 110001 PHI Learning Private Limited, New Delhi, p25.
- [2] Kareem, B and A. Aderoba, (2008), "Linear Programming based Effective Maintenance and Manpower Planning Strategy", *International Journal of the Computer, the Internet and Management*, vol.16 pp.26-34.
- [3] Nedim M.Sirakaya, Alemdar, and Sibel (2002), "A sample of Determination of Product combination with Linear Programming in Risk Environment", *European Journal of Economics, Finance and Administrative Sciences*, p 30.
- [4] Benedict I. Ezema (2012),Optimizing Profit with the Linear Programming Model, Interdisciplinary Journal of Research in Business, Vol. 2, Issue. 2, pp.37-49.
- [5] Michelle Leung, Production Scheduling Optimization of a Plastics Compounding Plant with Quality Constraints, MSc thesis University of Waterloo, Ontario, Canada, 2009
- [6] Ezeriola C.D, Onyechi P.C, Chiwnuko E.C, Chukwumuanya E.O. (2013), Moving Average Analysis of Plastic Production Yield in a Manufacturing Industry, International Journal of Multidisciplinary Sciences and Engineering, Vol. 4, Issue. 2, pp. 65-73.
- [7] David L. Kurtz, Louis E.Boone (1992), "Principles of Management", McGraw-Hill Inc., USA, p.28.
- [8] Montgomery, D. C.(2001), *Design and Analysis of Experiments*, JohnWiley and Sons, New York, NY, p30.
- [9] Khuri, A. I. and Cornell, J. A. (1987), "Response Surfaces: Designs and Analyses", pp50-56