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Abstract:- In recent years, many more of the numerical methods were used to solve a wide range of mathematical, 

physical, and engineering problems linear and nonlinear. This paper applies the homotopy perturbation method 

(HPM) to find exact solution of partial differential equation with the Dirichlet  and Neumann boundary conditions. 
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I. INRODUCTION 

The notion of homotopy is an important part of topology and thus of differential geometry. The homotopy 

continuation method or shortly speaking homotopy was known as early as in the 1930s. Thus, in 1892,  

Lyapunov [1] introduced the so called ―artificial small parameters method‖ considering a linear differential 

equation with variable coefficient in the form     ( ) u
d u

M t
d t

  

with ( )M t  a time periodic matrix. He replaced this equation with the equation ( ) u
d u

M t
d t

 . 

To get the solution of the last equation, Lyapunov developed the power series over   for the variable u  and 

then setting 1  . 

Later, this method was used by kinematicians in the 1960s in the US for solving mechanism synthesis 

problems [29]. The latest development was done by Morgan at General Motors [3]. There are also two 

important literature studies by Garcia and Zangwill [5] and Allgower and Georg [8]. The HPM was introduced 

by Ji-Huan He of Shanghai University in 1998, [9-13]. The HPM is a special case of the homotopy analysis 

method (HAM) developed by Liao Shijunin 1992 [25]. HPM has been applied  by many authors,  to solve 

many  types of the linear and nonlinear equations in science and engineering,  boundary value problems [2,11], 

Cauchy reaction–diffusion problem [4], heat transfer[6],nonlinear wave  equations [9], non-linear oscillators 

with discontinuities [12], Sumudu transform[21], and to other fields [13-28]. 

The method employs a homotopy transform to generate a convergent series solution of linear and 

nonlinear partial differential equations. The homotopy perturbation method  is combination of  perturbation and 

homotopy method 

II. HOMOTOPY PERTURBATION METHOD 
To illustrate the basic idea of this method, we consider the following non-linear differential equation: 

( ) (r) 0 ,   rA u f                          (1) 

With the following boundary conditions: 

, 0 ,   r
u

B u
n

 
   

 

 (2) 

Where A is a general differential operator,  B is a boundary  operator,  (r)f  is a known analytical function 

and    is the boundary of the domain  . The operator A can be decomposed into a linear and a non-linear, 

designated as L and N  respectively. The equation (1)can be written as the following form. 

https://en.wikipedia.org/wiki/Shanghai_University
https://en.wikipedia.org/wiki/Homotopy_analysis_method
https://en.wikipedia.org/wiki/Homotopy_analysis_method
https://en.wikipedia.org/wiki/Homotopy_analysis_method
https://en.wikipedia.org/wiki/Liao_Shijun
https://en.wikipedia.org/wiki/Homotopy
https://en.wikipedia.org/wiki/Partial_differential_equation
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( ) ( ) ( ) 0L u N u f r        (3) 

Using homotopy perturbation technique, we construct a homotopy  ( , ) : 0,1v r p    R which satisfies  

     0
( , ) 1 ( ) ( ) ( ) ( ) 0H v p p L v L u p A v f r      (4) 

Where (0 ,1)p  is an embedding parameter,  
0

u  is an initial approximation solution of (1), which satisfies the 

boundary, form equation (4) we obtain 

0
( , 0 ) ( ) ( ) 0H v L v L u        (5)  

( ,1) ( ) ( ) 0H v A v f r       (6) 

Changing the process of p from zero to unity, a change ( , )v r p from 
0

( )u r to ( )u r . 

 In topology, this is called homotopy. According to the HPM, we can first use the embedding parameter p  as a 

small parameter, and assume that the Solutions of equation (4)  can be written as a power series in p as the 

following  
2 3

0 1 2 3
v v p v p v p v         (7) 

Setting 1p   results in the approximate of equation (7), can be obtained  

0 1 2 3
1

lim .
p

u v v v v v


                 (8) 

 

 

III. Applications 
In this section, we apply Homotopy perturbation method for solving linear and nonlinear problems. 

 

Example 1. 

Use the Homotopy perturbation method to solve the Laplace equations: 

 

0 ,    0 < x , y<

(0 , ) 0 ,     u ( ,y )= s in h  s in y

( , 0 ) 0 ,     u (x , )= 0

u ux x y y

u y

u x



 



 















    (9) 

 

Using HPM, we construct a homotopy in the following form 

 

22 2 2

0

2 2 2 2
( , ) (1 ) 0

uv v v
H v p p p

y y x y

     
        

     

    (10) 

We select 
0

( , ) s in h xu x y y as in initial approximation that satisfies the two conditions.  Substituting 

equation (7) into equation (10) end equating the terms with identical powers of  p , we drive  

2 2

0 0

0 2 2

0 0

0 ,   
:   

v ( , 0 ) 0 ,     v (0 ,y )= 0

v u

p y y

x

  
 

 




     (11) 

 

 

2 22

0 01

1 2 2 2

1 1

0 ,   
:   

v ( , 0 ) 0 ,     v (0 ,y )= 0

u vv

p y y x

x

  
  

  




(12) 
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2 2

2 1

2 2 2

2 2

0 ,   
:   

v ( , 0 ) 0 ,     v (0 ,y )= 0

v v

p y x

x

  
 

 




 (13) 

 
2 2

3 2

3 2 2

2 2

0 ,   
:   

v ( , 0 ) 0 ,     v (0 ,y )= 0

                        

v v

p y x

x

  
 

 






 (14) 

 

Consider 
0 0

( , ) s in h .v u x y y x   Form equations (12),(13) and (14), we have  

3

1
s in h

3 !

y
v x   

5

2
s in h

5 !

y
v x  

7

3
s in h

7 !

            

y
v x 



 

Therefore , the solution of equation(9) when 1p  we will be as follows: 

3 5 7

( , ) y s in h x s in h x  s in y
3 ! 5 ! 7 !

y y y
u x y

 
      
 

  

Because the boundary conditions are Neumann boundary conditions, an arbitrary constant must be added. 

Therefore, the exact solution in will be as follows: 

( , ) s in h x  s in y Cu x y   . 

 

Example .2 

Use the Homotopy perturbation method to solve the inhomogeneous wave equation 

 

 

2

2

2 0 ,    0 < x < ,  t> 0

( 0 , ) 0 ,     u ( ,t )=

( , 0 ) ,     u (x ,0 )=  s in x

t t x x

t

u u

u t

u x x



 

  












 

(15) 

Using HPM, we construct a homotopy in the following form 

 

22 2 2

0

2 2 2 2
( , ) (1 ) 2 0

uv v v
H v p p p

t t x t

     
          

     

(16) 

We select 
2

0
( , t ) t s in xu x x  as in initial approximation that satisfies the three conditions.  Substituting 

equation (7) into equation (16) end equating the terms with identical powers of  p , we drive  

2 2

0 0

00 2 2

2 2

0 0

0 ,  v (0 ,t)=  0  
:   

v ( , 0 ) ,     v ( ,t)=

v u

p t t

x x  

  
 

 




                                  (17) 
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2 22

0 01

1 12 2 2

1 1

2 0 ,  v (0 , ) 0   
:   

v ( , 0 ) 0 ,     v ( ,t)= 0

u vv
t

p t t x

x 

  
    

  

 

                                    (18) 

 

2 2

2 1

2 22 2

2 2

2 0 ,  v (0 ,t)=  0  
:   

v ( , 0 ) 0 ,     v ( ,t)= 0

v v

p t x

x 

  
  

 

 

                                             (19) 

 
2 2

3 2

3 32 2

3 3

2 0 ,  v (0 , t) 0  
:   

v ( , 0 ) 0 ,     v ( ,t)= 0

                        

v v

p t x

x 

  
   

 

 



(20) 

 

Consider 
2

0 0
( , t ) t  s in x .v u x x    Form equations (18),(19) and (20), we have  

3

1
s in

3 !

t
v x   

5

2
s in

5 !

t
v x  

7

3
s in

7 !

            

t
v x 



 

Therefore , the solution of equation(15) when 1p  we will be as follows: 

3 5 7

2 2
( , t) s in x s in t  s in x

3 ! 5 ! 7 !

t t t
u x x t x

 
        

 

  

Because the boundary conditions are Neumann boundary conditions, an arbitrary constant must be added. 

Therefore, the exact solution in will be as follows: 
2

( , t) s in t  s in x Cu x x   . 

 

Example.3 

Use the Homotopy perturbation method to solve the Burgers equation 

 

0 ,    ( , 0 )
t x x x

u u u u u x x     (21) 

  

Using HPM, we construct a homotopy in the following form 

 

2

0

2
( , ) (1 ) 0

uv v v v
H v p p p v

t t t x x

     
        

       

         (22) 

  Substituting equation (7) into equation (22) end equating the terms with identical powers of p , we drive  

0 0 0

0
:   0 ,  v (x ,0 )=  x

v u
p

t t

 
 

 

   (23) 

 

2

1 0 0 01

0 12
:   0 ,  v (x , 0 ) 0   

u v vv
p v

t t x x

   
    

   

(24) 



American Journal of Engineering Research (AJER) 2015 
 

 
w w w . a j e r . o r g  

 
Page 131 

 

2

2 02 1 1

0 1 22
:   0 ,   v (x ,0 )=  0  

vv v v
p v v

t x x x

   
   

   

          (25) 

 

2

3 3 02 1 2

0 1 2 32
:   0 ,  v (x , 0 ) 0  

v vv v v
p v v v

t x x x x

    
     

    

         (26) 

 

    
 

Consider 
0 0

( , ) ,v u x t x  as a first approximation for solution that satisfies the initial conditions. Form 

equations (24),(25) and (26), we have  

1
v x t   

2

2
 v x t  

3

3

            

v x t 



 

Therefore , the solution of equation(21) when 1p  we will be as follows: 

 
2 3

( , t) 1 ,  1
1

x
u x x t t t t

t
      


  

Because the boundary conditions are Neumann boundary conditions, an arbitrary constant must be added. 

Therefore, the exact solution in will be as follows: 

( , t) ,    1 .
1

x
u x C t

t
  


 

 

Example.4 

Use the Homotopy perturbation method to solve the homogeneous KdV equation 

 

6 0 ,    ( , 0 ) 6
t x x x x

u u u u u x x            (27) 

  

Using HPM, we construct a homotopy in the following form 

 

3

0

3
( , ) (1 ) 6 0

uv v v v
H v p p p v

t t t x x

     
        

       

          (28) 

  Substituting equation (7) into equation (28) end equating the terms with identical powers of  p , we drive  

0 0 0

0
:   0 ,  v (x ,0 )=  6 x

v u
p

t t

 
 

 

      (29) 

 

3

1 0 0 01

0 13
:   6 0 ,  v (x , 0 ) 0   

u v vv
p v

t t x x

   
    

   

   (30) 

 

3

2 02 1 1

0 1 23
:   6 6 0 ,   v (x ,0 )=  0  

vv v v
p v v

t x x x

   
   

   

      (31) 

 

3

3 3 02 1 2

0 1 2 33
:   6 6 6 0 ,  v (x , 0 ) 0  

v vv v v
p v v v

t x x x x

    
     

    

      (32) 
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       
 

Consider 
0 0

( , ) 6 ,v u x t x  as a first approximation for solution that satisfies the initial conditions. Form 

equations (30),(31) and (32), we have  

 
3

1
6v x t  

5 2

2
6  v x t  

7 3

3
6  

            

v x t



 

Therefore , the solution of equation(1) when 1p  we will be as follows: 

    
2 33 5 2 7 3 6

( , t) 6 6  6  6  6 1 3 6 3 6  3 6 ,  3 6 1
1 3 6

x
u x x x t x t x t x t t t t

t
           


 

 

Because the boundary conditions are Neumann boundary conditions, an arbitrary constant must be added. 

Therefore , the exact solution in will be as follows: 

6
( , t) ,    3 6 1 .

1 3 6

x
u x C t

t
  


 

IV. Conclusion 
In this paper,  linear and nonlinear partial differential  equations are solved by using Homotopy Perturbation 

Method. Analytical solution obtained by this method is satisfactory same as the exact results to these models. 

The homotopy perturbation method is powerful and efficient technique to find the solution of linear and non-

linear equations. 
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