
American Journal of Engineering Research (AJER) 2015

American Journal of Engineering Research (AJER)

e-ISSN: 2320-0847 p-ISSN : 2320-0936

Volume-4, Issue-6, pp-144-151

www.ajer.org
Research Paper Open Access

w w w . a j e r . o r g

Page 144

Implementation of RSA Encryption Algorithm on FPGA

Amit Thobbi
1
ShriniwasDhage

2
Pritesh Jadhav

3
 Akshay Chandrachood

4

1234
Department Of Electronics & Telecommunication, PVG’s college of Engineering & Technology, Pune,

India.

ABSTRACT: This paper presents a scheme for implementation of RSA encryption algorithm on FPGA. A 64

bit cipher text is accepted and using 128 bit public key RSA encryption technique, a 64 bit encrypted message is

generated. Each block is coded using VHDL and the code is synthesized and simulated using Xilinx ISE Design

Suite 14.7.Unlike previous approaches we have systematically provided timing, area and power measures for

Spartan 3 and Virtex 6 FPGA using Pre and Post synthesis simulations. The design is optimized for either speed

or power and a tradeoff is presented between speed, power and space. If the design is optimized for power then

fewer resources are consumed but the maximum usable frequency is also reduced. Spartan 3 FPGAs are best

suited for low power designs. As a major practical result we show that it is possible to implement RSA algorithm

at secure bit lengths on a single commercially available FPGA.

KEYWORDS: RSA Encryption, Virtex6 FPGA, Spartan3 FPGA, Montgomery Algorithm

I. INTRODUCTION
The art of keeping messages secure is Cryptography. Cryptography plays an important role in the

security of data. It enables us to store sensitive information or transmit it across insecure networks so that

unauthorized persons cannot read it. [5]

The RSA algorithm was introduced in the year 1978 by Ron Rivest, Adi Shamir, and Leonard

Adleman. It is a public key cryptography algorithm. It is a secure, high quality algorithm. [5] It can be used as a

method of exchanging secret information such as keys and producing digital signatures. However, the RSA

algorithm is computationally intensive, operating on very large (typically thousands of bits long) integers. [2]

Figure 1: Public key cryptography

The rising growth of data communication and electronic transactions has made system security to

become the most important issue. To provide modern security features Public key cryptosystems are used; one

such cryptosystem is the RSA algorithm. A public key stored in the hardware, itself improves security greatly.

American Journal of Engineering Research (AJER) 2015

w w w . a j e r . o r g

Page 145

II. IMPLEMENTATION METHOD

a) Block Diagram of RSA

Figure 2: Implementation of RSA

The blocks shown in figure 2 are implemented in Xilinx ISE 14.7 using VHDL. The Top module of the

implemented code is as shown in figure 3.

Figure 3: Top block of the implemented code

The steps involved in the implementation procedure, as shown in figure 2 are

1. Selection of the prime nos. ‘a’ and ‘b’

 The prime no’s ‘a’ and ‘b’ are 32 bit each. These are the system inputs.

 ‘13’ and ‘17’ are the two numbers taken for explanation purpose

American Journal of Engineering Research (AJER) 2015

w w w . a j e r . o r g

Page 146

2. Generation of the Public Key modulus (n)

n is generated by multiplying the two 32 bit prime nos.’ a’ and ‘b’ resulting into the 64 bit modulus ‘n’.

This multiplication is performed by the Booth’s algorithm.

This is the U1 component. ‘13’ and ‘17’ are the inputs given and output generated is 221

3. Generation of the totient (t).

The totient is generated by multiplying (a-1) and (b-1), which gives a 64 bit totient. This multiplication is

accomplished by Booth’s algorithm.

 This is accomplished by the U2 component.’12’ and ‘16’ are inputs and ‘192’ is output generated.

4. Generation of public key exponential (e).

‘e’ is a 64 bit prime number which is co prime to ‘t’. The modular block checks this condition. Modular

multiplication is carried out between e and t i.e. (e mod t) resulting into a 64 bit output denoted as ‘o1’. The

public key exponential is chosen by the user. Number ‘17’ is chosen as the public key exponent. This is

given to the U3 component and the public key condition is checked.

5. Encryption of the data.

 In this stage the encryption of user data is carried out by modular and exponential operations

i.e. outp = Cin
e
mod n.

This step results into a 64 bit encrypted message. The U4 component performs this operation. The public key

exponent and modulus is given to the component and Cin is the user message. ‘Outp’ is the output generated.

The public key exponent taken is ‘17 ‘and public key modulus taken is ‘221’.

b) Functional verification of RSA Algorithm (Behavioral Simulation)

Figure 4: Behavioral simulation result of RSA Algorithm

Figure 4 shows the simulation results. Table I shows the parameters used for checking the correctness of the

design i.e. behavioral simulation. The result is verified using theoretical calculation.

Parameter Description Value

cin User input message 20

n Public key modulus 221

e Public key exponential 17

outp Encrypted message output 37

Table I : Input Parameters for behavioral Simulation

Operation performed is outp = cin
e
 mod n

Substituting the values

outp = 20
17

 mod 221

outp=37

American Journal of Engineering Research (AJER) 2015

w w w . a j e r . o r g

Page 147

Figure 5: Result verified using Wolfram Alpha

III. TEST CONDITIONS

Device used : Spartan3 XC3s400fg320-4, Virtex6 XC6vlx75tff484-1

Design and Analysis Tool : Xilinx PlanAhead 14.7

Results were achieved for the following synthesis and implementation settings shown in Tables II and III.

Parameter Spartan 3 Virtex 6

Power Speed Power Speed

Opt mode area speed area speed

Opt level 1 2 1 2

FSM Encoding gray Speed1 gray Speed1

lc N.A. N.A. area auto

Netlist hierarchy As_optimised Rebuilt As_optimised Rebuilt

Table II. Synthesis Settings

Parameter Spartan 3 Virtex 6

Power Speed Power Speed

pr none b none b

ir off off off off

cm area speed N.A N.A

Logic_opt on off on off

Global_opt on off on off

lc on off on off

Ol(map) none none none none

Mt(map) N.A N.A on on

Power(map) on off on off

Ol(par) std none std none

Power(par) on off on off

Table III: Implementation Settings

American Journal of Engineering Research (AJER) 2015

w w w . a j e r . o r g

Page 148

IV. RESULTS

a) Synthesis results

 Figure 6: synthesis result for spartan3 power optimized Figure 7: synthesis result for spartan3 speed optimized

 Figure 8: synthesis result for Virtex6 power optimized Figure 9: synthesis result for Virtex6 speed optimized

b) Maximum Frequency (PAR result)

The below figures show the PAR result i.e. the maximum usable frequency. A Timing score of zero indicates

design has met all constraints. [6]

Figure 10: PAR Result for Virtex6 speed optimized and power optimized design

American Journal of Engineering Research (AJER) 2015

w w w . a j e r . o r g

Page 149

Figure 11: PAR Result for Spartan3 speed optimized and power optimized design

c) Timing result

Figure 12: Timing result for Spartan3 power optimized design

 Figure 13: Timing result for Spartan3 speed optimized design

Figure 14: Timing result for Virtex6 power optimized design

American Journal of Engineering Research (AJER) 2015

w w w . a j e r . o r g

Page 150

Figure 15: Timing result for Virtex6 speed optimized design

d) Power analysis results

Figure 16: Power result forSpartan3 power optimized design

Figure 17: Power result forSpartan3 speed optimized design

Figure 18: Power result for Virtex6 power optimized design

Figure 19: Power result for Virtex6 speed optimized design

American Journal of Engineering Research (AJER) 2015

w w w . a j e r . o r g

Page 151

e) Tabular description and comparison of results

Parameter Spartan 3 Virtex 6

Power Speed Power Speed

Number of slices used / Total Available 420/3584 625/3584 187/93120 201/93120

Number of LUTs used / Total Available 714/7168 851/7168 241/46560 251/46560

Utilization 9 % 11 % 0.51 % 0.54 %

Max Frequency 67.696MHz 78.920 MHz 203.046 MHz 224.568 MHz

Timing Simulation Result 147.2311 µs 126.285 µs 35.1156 µs 31.6081 µs

Power Consumption 0.086 Watts 0.097 Watts 1.349 Watts 1.355 Watts

Table IV: Results Summary

The synthesis reports show that when optimized for speed the number of slices and number of LUTs is increased.

Virtex 6 FPGA has more resources compared to Spartan 3 and hence Virtex 6 should be used for larger designs. The PAR

report shows maximum usable frequency [6]. Maximum Frequency has been achieved for Virtex 6 FPGA when optimized

for speed.

 Timing Simulation Results are obtained using Isim Simulator [6]. It shows the time required to obtain the final

output. Virtex 6 is faster due to high clock frequency. Hence Virtex 6 FPGAs should be used to obtain faster results. The

power reports are obtained using Xilinx Power Analyzer [6]. The reports indicate that Virtex 6 FPGAs consume more

power. The clock frequency also consumes significant power. Increasing clock frequency increases power consumption.

Hence for power conscious designs Spartan 3 FPGAs can be used.

V. CONCLUSION
The RSA algorithm can be effectively implemented on FPGA .The arithmetical operations necessary for the RSA

algorithm are time consuming as the number of bits used is usually large. However as the length of public key and message

increases the utilization of FPGA resources also increases.

The design on FPGA can be optimized for power or speed but not both by changing synthesis & implementation

settings. Optimizing design for power uses fewer resources but offers less speed. Optimizing design for speed uses more

resources and offers more speed. Thus for large designs power optimized designs should be used.

For better security, FPGAs with more resources should be used. Also a dedicated ASIC prototype can be developed which

can be used to encrypt data in Communication equipments, Set Top Boxes, Personal computers.

REFERENCES
[1]. Sushanta Kumar Sahu and Manoranjan Pradhan “FPGA Implementation of RSA Encryption system”, International Journal of

Computer Applications, Volume 19- No.9,2011
[2]. Perovic N.S; Popovic-Bozovic : “FPGA implementation of RSA crypto algorithm using shift and carry algorithm “,IEEE

Telecommunications Forum (TELFOR), 2012 pages (1040-1043)

[3]. Nibouche O. Nibouche M.Bouridane A. Belatreche A. : “Fast architectures for FPGA Architectures of RSA Encryption
Algorithm”,IEEE Conference Field programmable technology,2004 (pages 271-278)

[4]. C-Chao Yang ; Tian-Sheuan Chang ; Chein-Wei Jen, “A new RSA Cryptosystem hardware design based on Montgomery's

algorithm”, Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on (Volume:45 No 7,2010)
[5]. Cetin Kaya Koc, High speed RSA algorithm, RSA laboratories, version 2, 1994

[6]. Xilinx user guide 612- timing closure user guide 2012
[7]. Xilinx user guide 625- constraints user guide 2012

