American Journal of Engineering Research (AJER)	2015
American Journal of Engineering Resea	arch (AJER)
e-ISSN: 2320-0847 p-ISSN	: 2320-0936
Volume-4, Issue-6	, pp-144-151
<u>Y</u>	www.ajer.org
Research Paper	Open Access

Implementation of RSA Encryption Algorithm on FPGA

Amit Thobbi¹ ShriniwasDhage² Pritesh Jadhav³ Akshay Chandrachood⁴

¹²³⁴Department Of Electronics & Telecommunication, PVG's college of Engineering & Technology, Pune,

India.

ABSTRACT: This paper presents a scheme for implementation of RSA encryption algorithm on FPGA. A 64 bit cipher text is accepted and using 128 bit public key RSA encryption technique, a 64 bit encrypted message is generated. Each block is coded using VHDL and the code is synthesized and simulated using Xilinx ISE Design Suite 14.7. Unlike previous approaches we have systematically provided timing, area and power measures for Spartan 3 and Virtex 6 FPGA using Pre and Post synthesis simulations. The design is optimized for either speed or power and a tradeoff is presented between speed, power and space. If the design is optimized for power then fewer resources are consumed but the maximum usable frequency is also reduced. Spartan 3 FPGAs are best suited for low power designs. As a major practical result we show that it is possible to implement RSA algorithm at secure bit lengths on a single commercially available FPGA.

KEYWORDS: RSA Encryption, Virtex6 FPGA, Spartan3 FPGA, Montgomery Algorithm

I. INTRODUCTION

The art of keeping messages secure is Cryptography. Cryptography plays an important role in the security of data. It enables us to store sensitive information or transmit it across insecure networks so that unauthorized persons cannot read it. [5]

The RSA algorithm was introduced in the year 1978 by Ron Rivest, Adi Shamir, and Leonard Adleman. It is a public key cryptography algorithm. It is a secure, high quality algorithm. [5] It can be used as a method of exchanging secret information such as keys and producing digital signatures. However, the RSA algorithm is computationally intensive, operating on very large (typically thousands of bits long) integers. [2]

Figure 1: Public key cryptography

The rising growth of data communication and electronic transactions has made system security to become the most important issue. To provide modern security features Public key cryptosystems are used; one such cryptosystem is the RSA algorithm. A public key stored in the hardware, itself improves security greatly.

II. IMPLEMENTATION METHOD

a) Block Diagram of RSA

Figure 2: Implementation of RSA

The blocks shown in figure 2 are implemented in Xilinx ISE 14.7 using VHDL. The Top module of the implemented code is as shown in figure 3.

begin

The steps involved in the implementation procedure, as shown in figure 2 are 1. Selection of the prime nos. 'a' and 'b'

The prime no's 'a' and 'b' are 32 bit each. These are the system inputs.

'13' and '17' are the two numbers taken for explanation purpose

- 2. Generation of the Public Key modulus (n) n is generated by multiplying the two 32 bit prime nos.' a' and 'b' resulting into the 64 bit modulus 'n'. This multiplication is performed by the Booth's algorithm. This is the U1 component. '13' and '17' are the inputs given and output generated is 221
- 3. Generation of the totient (t).

The totient is generated by multiplying (a-1) and (b-1), which gives a 64 bit totient. This multiplication is accomplished by Booth's algorithm.

This is accomplished by the U2 component.'12' and '16' are inputs and '192' is output generated.

4. Generation of public key exponential (e).

'e' is a 64 bit prime number which is co prime to 't'. The modular block checks this condition. Modular multiplication is carried out between e and t i.e. (e mod t) resulting into a 64 bit output denoted as 'o1'. The public key exponential is chosen by the user. Number '17' is chosen as the public key exponent. This is given to the U3 component and the public key condition is checked.

5. Encryption of the data.

In this stage the encryption of user data is carried out by modular and exponential operations

i.e. $outp = Cin^e \mod n$.

This step results into a 64 bit encrypted message. The U4 component performs this operation. The public key exponent and modulus is given to the component and Cin is the user message. 'Outp' is the output generated. The public key exponent taken is '17 'and public key modulus taken is '221'.

b) Functional verification of RSA Algorithm (Behavioral Simulation)

Figure 4: Behavioral simulation result of RSA Algorithm

Figure 4 shows the simulation results. Table I shows the parameters used for checking the correctness of the design i.e. behavioral simulation. The result is verified using theoretical calculation.

Parameter	Description	Value
cin	User input message	20
n	Public key modulus	221
e	Public key exponential	17
outp	Encrypted message output	37

Table I : Input Parameters for behavioral Simulation

Operation performed is outp = $cin^e \mod n$ Substituting the values outp = $20^{17} \mod 221$ <u>outp=37</u>

www.ajer.org

2015

Figure 5: Result verified using Wolfram Alpha

III. TEST CONDITIONS

Device used:Spartan3 XC3s400fg320-4, Virtex6 XC6vlx75tff484-1Design and Analysis Tool:Xilinx PlanAhead 14.7

Results were achieved for the following synthesis and implementation settings shown in Tables II and III.

Parameter	Spartan	3	Virtex 6		
	Power Speed		Power	Speed	
Opt mode	area	speed	area	speed	
Opt level	1	2	1	2	
FSM Encoding	gray	Speed1	gray	Speed1	
lc	N.A.	N.A.	area	auto	
Netlist hierarchy	As_optimised	Rebuilt	As_optimised	Rebuilt	

Table II. Synthesis Settings Parameter Spartan 3 Virtex 6 Power Power Speed Speed none b none b pr off off ir off off speed N.A N.A cm area off Logic_opt off on on Global_opt on off on off lc off off on on Ol(map) none none none none N.A N.A Mt(map) on on Power(map) off on on off Ol(par) none std std none Power(par) off on off on

Table III: Implementation Settings

2015

2015

IV. RESULTS

a) Synthesis results

Selected Device : 3s400fg320-4					Selected Device : 3s400fg320-4				
Number of Slices:	420	out of	3584	11§	Number of Slices:	625	out of	3584	17%
Number of Slice Flip Flops:	425	out of	7168	5%	Number of Slice Flip Flops:	563	out of	7168	78
Number of 4 input LUTs:	714	out of	7168	98	Number of 4 input LUTs:	851	out of	7168	11§
Number used as logic:	710				Number used as logic:	847			
Number used as Shift registers:	4				Number used as Shift registers:	4			
Number of IOs:	196				Number of IOs:	196			
Number of bonded IOBs:	196	out of	221	888	Number of bonded IOBs:	196	out of	221	888
Number of GCLKs:	1	out of	8	128	Number of GCLKs:	1	out of	8	128
Selected Device : 6vlx75tff484-1					Selected Device : 6vlx75tff484-1				
Slice Logic Utilization:					Slice Logic Utilization:	~			
Number of Slice Registers:	187	out of	93120	08	Number of Slice Registers:	205	out of	93120	0\$
Number of Slice LUTs:	241	out of	46560	08	Number of Slice LUTs:	253	out of	46560	08
Number used as Logic:	239	out of	46560	08	Number used as Logic:	251	out of	46560	0\$
Number used as Memory:	2	out of	16720	08	Number used as Memory:	2	out of	16720	08
Number used as SRL:	2				Number used as SRL:	2			
Figure 8: synthesis result for Virte	хб pow	er optin	nized	F	igure 9: synthesis result for Virtex6	speed	optimiz	ed	

b) Maximum Frequency (PAR result)

The below figures show the PAR result i.e. the maximum usable frequency. A Timing score of zero indicates design has met all constraints. [6]

Name	Part	Constraints	Strategy	Status	Progress		Start	Elapsed	Util (%)	FMax (MHz)	Timing Score
⊕- √ synth_4	xc6vlx75tff484-1	constrs_1	PlanAhead Defaults (XS	XST Complete!		100%	5/29/15 6:43 PM	00:00:28	0.000	228.595	
🗄 v synth_5 (active)	xc6vlx75tff48	constrs_1	PlanAhead Defaults	XST Complete!		100%	5/29/15 4:13 PM	00:00:25	0.000	228.595	
impl_2 (active)	xc6vlx75tff48	constrs_1	ISE Defaults (ISE 14)	Implementation Out-of-date		100%	5/29/15 4:27 PM	00:01:52	1.000	224.568	0
🗄 🖞 synth_6	xc6vlx75tff484-1	constrs_1	implaxsat (XST 14)	XST Complete!		100%	5/30/15 1:23 PM	00:00:38	0.000	228.595	1
🗄 刘 synth_7	xc6vlx75tff484-1	constrs_1	implaxsat (XST 14)	XST Complete!		100%	5/31/15 2:10 PM	00:00:29	0.000	228 595	-
√ impl_6	xc6vlx75tff484-1	constrs_1	impl4 (ISE 14)	PAR Complete!		100%	5/31/15 2:18 PM	00:02:05	1,000	203.046	0

Figure 10: PAR Result for Virtex6 speed optimized and power optimized design

Name	Part	Constraints	Strategy	Status	Progress	Start	Elapsed	Util (%)	FMax (MHz)	Timing Score	l
🖯 🖞 synth_4	xc3s400fg320-4	constrs_1	PlanAhead Defaults (XS	Synthesis Out-of-date	100%	4/11/15 6:27 PM	00:00:25	9.000	71.355		
[_] _ <mark>√</mark> impl_4	xc3s400fg320-4	constrs_1	ISE Defaults (ISE 14)	Implementation Out-of-date	100%	5/28/15 5:47 PM	00:01:08	9.000	66.854	(0
🗄 🖞 synth_5	xc3s400fg320-4	constrs_1	TimingWithIOBPacking (Synthesis Out-of-date	100%	5/28/15 7:24 PM	00:00:32	11.000	86.730		
└ <mark>\v</mark> impl_5	xc3s400fg320-4	constrs_1	ParHighEffort (ISE 14)	Implementation Out-of-date	100%	5/28/15 7:57 PM	00:00:44	11.000	78.920		0
= 🗸 synth_6 (active)	xc3s400fg320.	constrs_1	synth4spartan (XST	XST Complete!	100%	5/30/15 11:21 PM	00:00:28	9.000	71.355		
	xc3s400fg320.	. constrs_1	impl4sprtan (ISE 14)	PAR Complete!	100%	5/31/15 9:14 AM	00:01:18	9.000	67.696		0

Figure 11: PAR Result for Spartan3 speed optimized and power optimized design

c) Timing result

Figure 12: Timing result for Spartan3 power optimized design

Figure 13: Timing result for Spartan3 speed optimized design

								35,115.6	514 ns
Name	Value		34,200 ns	34,400 ns	34,600 ns	34,800 ns	35,000 ns		35,200 1
🕨 🎆 cin[63:0]	20	2			20				
	0								
Ug rst	0	1 Constant and						579269593	
Ug strt	1								
🕨 🎆 outp[63:0]	37	1		20				37	
🕨 🍢 n[63:0]	221				221	¥			
U d	1								2
Clk_period	5000 ps				5000 ps				

Figure 14: Timing result for Virtex6 power optimized design

2015

10						51,000,105 13	
Name	Value	. F	31,000 ns	31,200 ns	31,400 ns	31,600 ns	31,800 ns
🕨 🥂 cin[63:0]	20				2		
	0	***					
Un rst	0						
1 strt	1	-					
🕨 🎆 outp[63:0]	37	*	20				37
🕨 🎆 n[63:0]	221				22		
1 <mark>6</mark> d	1						-
le clk_period	4500 ps				450	ps	

Figure 15: Timing result for Virtex6 speed optimized design

d) Power analysis results

Device			On-Chip	Power (W)	Used	Available	Utilization (%)
Family	Spartan3		Clocks	0.000	1		
Part Package	xc3s400 fg320		Logic	0.000	774	7168	11
			Signals	0.000	974		-
Temp Grade	Commercial	-	lOs	0.026	196	221	89
Process	Typical	-	Leakage	0.060			
Speed Grade	-4		Total	0.086			

Figure 16: Power result forSpartan3 power optimized design

Device			On-Chip	Power (W)	Used	Available	Utilization (%)
Family	Spartan3	Spartan3		0.000	1		
Part	xc3s400		Logic	0.000	848	7168	12
Package	fg320	fg320		0.000	1247		-
Temp Grade	Commercial	-	IOs 🛛	0.037	196	221	89
Process	Typical	-	Leakage	0.060			
Speed Grade	-4	23	Total	0.097			

Figure 17: Power result forSpartan3 speed optimized design

Device		On-Chip	Power (W)	Used	Available	Utilization (%)
Family	Virtex6	Clocks	0.012	1	-	
Part Package	xc6vtx75t	Logic	0.001	208	46560	0
	ff484	Signals	0.002	338		
Temp Grade	Commercial	🖵 10s	0.040	196	240	82
Process	Typical	Leakage	1.294			-4
Speed Grade	-1	Total	1.349			

Figure 18: Power result for Virtex6 power optimized design

Device			On-Chip	Power (W)	Used	Available	Utilization (%)
Family	Virtex6		Clocks	0.013	1		-
Part	xc6vbx75t		Logic	0.001	208	46560	0
Package	ff484		Signals	0.002	338		i i i i i i i i i i i i i i i i i i i
Temp Grade	Commercial		lOs	0.044	196	240	82
Process	Typical		Leakage	1.294		: :	
Speed Grade	-1	1000	Total	1.355			

Figure 19: Power result for Virtex6 speed optimized design

2015

21 600 162 pc

e) Tabular description and comparison of results

Parameter	Spartan 3		Virtex 6	
	Power	Speed	Power	Speed
Number of slices used / Total Available	420/3584	625/3584	187/93120	201/93120
Number of LUTs used / Total Available	714/7168	851/7168	241/46560	251/46560
Utilization	9 %	11 %	0.51 %	0.54 %
Max Frequency	67.696MHz	78.920 MHz	203.046 MHz	224.568 MHz
Timing Simulation Result	147.2311 µs	126.285 µs	35.1156 µs	31.6081 µs
Power Consumption	0.086 Watts	0.097 Watts	1.349 Watts	1.355 Watts

Table IV: Results Summary

The synthesis reports show that when optimized for speed the number of slices and number of LUTs is increased. Virtex 6 FPGA has more resources compared to Spartan 3 and hence Virtex 6 should be used for larger designs. The PAR report shows maximum usable frequency [6]. Maximum Frequency has been achieved for Virtex 6 FPGA when optimized for speed.

Timing Simulation Results are obtained using Isim Simulator [6]. It shows the time required to obtain the final output. Virtex 6 is faster due to high clock frequency. Hence Virtex 6 FPGAs should be used to obtain faster results. The power reports are obtained using Xilinx Power Analyzer [6]. The reports indicate that Virtex 6 FPGAs consume more power. The clock frequency also consumes significant power. Increasing clock frequency increases power consumption. Hence for power conscious designs Spartan 3 FPGAs can be used.

V. CONCLUSION

The RSA algorithm can be effectively implemented on FPGA. The arithmetical operations necessary for the RSA algorithm are time consuming as the number of bits used is usually large. However as the length of public key and message increases the utilization of FPGA resources also increases.

The design on FPGA can be optimized for power or speed but not both by changing synthesis & implementation settings. Optimizing design for power uses fewer resources but offers less speed. Optimizing design for speed uses more resources and offers more speed. Thus for large designs power optimized designs should be used.

For better security, FPGAs with more resources should be used. Also a dedicated ASIC prototype can be developed which can be used to encrypt data in Communication equipments, Set Top Boxes, Personal computers.

REFERENCES

- [1]. Sushanta Kumar Sahu and Manoranjan Pradhan "FPGA Implementation of RSA Encryption system", International Journal of Computer Applications, Volume 19- No.9,2011
- [2]. Perovic N.S; Popovic-Bozovic : "FPGA implementation of RSA crypto algorithm using shift and carry algorithm ",IEEE Telecommunications Forum (TELFOR), 2012 pages (1040-1043)
- [3]. Nibouche O. Nibouche M.Bouridane A. Belatreche A. : "Fast architectures for FPGA Architectures of RSA Encryption Algorithm", IEEE Conference Field programmable technology, 2004 (pages 271-278)
- [4]. C-Chao Yang ; Tian-Sheuan Chang ; Chein-Wei Jen, "A new RSA Cryptosystem hardware design based on Montgomery's algorithm", Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on (Volume:45 No 7,2010)
- [5]. Cetin Kaya Koc, High speed RSA algorithm, RSA laboratories, version 2, 1994
- [6]. Xilinx user guide 612- timing closure user guide 2012
- [7]. Xilinx user guide 625- constraints user guide 2012