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ABSTRACT: Selection of proper materials for new products and continuous improvement of existing ones to 

meet the ever changing service requirements in order to gain and or maintain competitive edge is a challenging 

task. The material selected for a component determines its performance in terms of functionality, 

manufacturability, maintainability, environmental imparts and life cycle costs. Material selection requires 

multi-criteria decision analysis approach that is able to take the relative importance of each criterion and the 

deviations of the achievement levels of each criterion from their respective ideal values into account 

simultaneously. In this paper, the Minkowski distance metric as used in compromise programming is adapted to 

solve material selection problem. Two examples are presented to illustrate the potential of the proposed 

approach. The results show that the proposed method is effective for material selection and sensitive to the level 

of intensity of the designer’s concern over the deviations of achievement levels from their respective ideal values 

and provides useful insights on optimal trade-offs among the alternative materials. 

KEYWORDS: Compromise programming, Distance metric, Material selection, Multi-criteria decision 

making, Trade-off, Utopia  

 

I. INTRODUCTION 
Material selection is an important element in product design. It is the task of identifying the material(s) 

that after being manufactured have the properties, dimensions and shape needed for the product to serve its 

purpose in the most effective and efficient manner and also at minimum costs to the manufacturer, user and the 

environment/society [1-4]. The material selected for a component or product determines its performance in 

terms of functionality, manufacturability, maintainability, environmental impact and life cycle costs [3,4-6]. 

Hence, it is crucial to select appropriate material for a particular design.  

Material selection is not limited to the design of new products. Existing products are often redesigned in order to 

gain and/or maintain a competitive edge in the market and most of such redesigns necessitate the use of new materials. 

Service requirements of products are not static. They are ever changing; for instance, turbine discs for aero-engines 

developed in the 1950’s were made of forged steel components when turbine gas temperatures were relatively low, typically 

4500C. The steel disc met all requirements at this temperature, but strength and oxidation resistance fell rapidly at higher 

temperatures. Higher temperatures are needed in order to increase the thermodynamic cycle efficiency, induce fuel savings 

and reduce the emission of pollutants. To meet this requirement of higher temperature, Ni-Fe alloys replaced forged steel 

discs in the mid 1960’s. With continuous improvement, the 1970’s saw a further increase in the disc temperature to over 

6000C where the stability of Ni-Fe alloys became inadequate. In order to extend disc capability above 6000C, Ni-based 

superalloys with increased precipitation hardening and higher thermal stability were introduced. Efficiency of aero-engine 

turbine is proportional to temperature; hence the research community in turbine machinery and power plants are seeking 

means to further drive temperature higher [7-9]. The operating temperatures of the rim sections of present day high-pressure 

turbine discs now approach 7600C and even as high as 8150C for some specialized military applications [10,11]. Hence, 

material selection is very crucial for new product design and the continuous improvement drive for existing products in order 

to gain technical and commercial benefits in the present day market [5].    
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Material selection presents a big challenge in product design and development for many reasons: (1) 

Material selection focuses on the entire product/component life cycle including manufacturing, operation and 

maintenance and product retirement. Manufacturing costs, total cost of ownership over the life of the product,  

including retirement and environmental impact are becoming increasingly important to manufacturers/business 

owners, customers/product users and regulatory agencies. The selection of materials that best meet the technical, 

economic and environmental criteria over the life of the product is not a trivial problem [3,12-17]. (2)   Over 

40,000 metal alloys and almost the same number of non-metals, ceramics, polymers and composites are at the 

designers’ disposal. A plethora of new materials with varying degrees of properties improvements has been 

discovered by the research community in the last decade. Today, materials are developing faster than any other 

time in history and as a consequence the design space is ever expanding. It is difficult for designers, although 

educated in the fundamentals of materials and engineering, to still be able to make optimum decisions on 

materials to satisfy design problems given the vast range of materials available and new materials being 

developed [5, 17,18].  (3) The requirements the product/component is expected to meet are numerous and 

conflicting. For instance, the material must meet the service requirements and for a mechanical design, these 

may depend on many properties such as creep, wear resistance, ultimate tensile strength, toughness, etc… Since 

the material has to be processed to achieve the dimensions and shape needed for the component to serve its 

purpose in the most cost effective manner, other criteria such as manufacturability (weldability, castability, 

machinabilty, etc…) and economic factors (unit cost, cost-to-mass ratio, recoverability, etc…) must be 

considered. These requirements are of different degrees of importance and often incompatible because it is not 

possible to improved one requirement without reducing the satisfaction of one or more of the other 

requirements. (4) Apart from the conflict among the numerous requirements, there is also conflict among 

stakeholders.   An instance is a case where the designer’s interest is in composite light weight material with 

extreme strength-to-mass ratio while the interest of the recycler is in pure and easy-to-recycle material [19-23]. 

The challenge confronting the designer is how to choose from the vast number of materials, the one 

that best fulfill the numerous conflicting requirements. This requires systematic approach/mathematical tool to 

guide the designer in the material selection decision.  Material selection is ultimately a multi-criteria decision 

making process involving assessment of trade-offs among various conflicting and divergent performance criteria 

[16,24]. Since it is not possible to achieve the ideal values of all the criteria simultaneously, the designer needs 

an approach that will give the best compromise solution [25,26].  

An appreciable number of research works has appeared on material selection using different multi-

criteria decision making (MCDM) methods. Athawale and Chakraborty [27] presented a review and 

comparative study of various MCDM methods such as VIKOR, ELECTRE, TOPSIS, PROMETHEE, simple 

additive weighting (SAW), Weighted product method  (WPM), grey relational analysis (GRA), range of value 

method and graph theory and matrix approach. Various extensions of these methods either applied singly or in 

combination with other methods have also appeared in the literature [16,17,28]. Complex proportional 

assessment of alternatives (COPRAS) and its extensions, genetic algorithm with neural networks, desirability 

function, and multi-objective optimization on the basis of ratio analysis (MOORA) have also been used for 

material selection [6, 29-32].  

These approaches mostly consider three characteristics of the material selection problem: (a) 

performance criteria (b) relative importance of each criterion and (c) alternatives. The alternatives are ranked 

and the one that gives the best compromise among the criteria is then selected for the given application. 

However, there is an aspect of performance criteria which has not been fully addressed in the literature. Criteria 

are assigned weights to reflect their relative importance, but the preferences of the designer concerning the 

deviations are often not taken into consideration. For instance, in some material selection situations it may be 

only the largest deviation that counts. In other words, the intensity of his concern over large deviations is high. 

In some other situations the designer may weigh all the deviations equally which implies the intensity of his 

concern over large deviations is low. He may also weigh the deviations in proportion to their magnitudes 

depending on his needs. Therefore, a fourth characteristic of material selection problem which is the intensity of 

designer’s concern over deviations should be included in the material selection model. Although a plethora of 

multi-criteria methods has been proposed for material selection, there is still a need for simple as well as a 

systematic approach that incorporates the intensity of designer’s concern over the large deviations and also 

provides opportunities for trade-off explorations based on these concerns. In this paper, an approach developed 

from the normLP   as used in the compromise programming (CP) method is proposed for the selection of 

most suitable material for a given engineering application.  
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II. MATERIAL SELECTION PROBLEM 
Material selection problem has the following characteristics; (i) there exist a finite set of performance 

criteria, usually conflicting, with non-commensurable units and different order of magnitudes (ii) the criteria are 

of varying degree of importance and weights are assigned to each to reflect their relative importance (iii) there 

exist a finite set of alternative materials from which the most appropriate/best is to be selected (iv) the intensity 

of the designer’s concern over the large deviations. The problem is that of selecting the best material from the 

set of alternative materials while taking the existing situations into account such that there is a maximum 

realization of designer’s objectives. The problem will be trivial if there exists a material that achieves the ideal 

performance levels of all criteria simultaneously. Unfortunately, it is often not feasible to get such material, so a 

compromise is needed to resolve the problem. A procedure for identifying the material that gives the best 

compromise is proposed in the following section. 

 

III. THE PROPOSED APPROACH 
Compromise programming (CP) was first proposed by Zeleny [33,34] and has become one of the 

widely used multi-criteria decision making (MCDM) methods [25,26,36-38]. The basic idea in CP is to identify 

the utopian solution, which in our case is the material that achieves the ideal values of all criteria 

simultaneously. Achievement of utopia is not practically feasible because of the inherent conflict in the criteria 

but may be used as a base point. The designer therefore seeks a compromise solution. His decision is based on 

Zeleny’s axiom of choice where the solutions that are closer to the utopian are preferred to those that are farther 

[33,34]. To achieve this closeness, Minkowski distance metric ( normLP  ) is introduced into the analysis. 

The normLP   is used to calculate the distances between the achievement levels belonging to the solution set 

and the utopian point to identify the one that is closest to the utopia. We shall adapt the Minkowski distance 

metric as used in CP to material selection problem. The procedural steps on its adaptation are presented below: 

 

Step 1: Identification of performance criteria.  

Identify the set I of all performance requirements/criteria on which the evaluation of the materials will 

be based. The set I has the following properties: (i) there is a set B I of beneficial criteria for which higher 

values indicates better performance (ii) there also exist a set C I of non-beneficial criteria of which lower 

values imply better performance (iii) observe that B∩C=Φ since a criterion is either beneficial or non-beneficial 

and not both.  

 

Step 2: Assignment of weight to criteria. 

Assign weight   1,0, cb ww  to each criteria bB and cC to reflect their relative importance 

using the appropriate method. Analytical hierarchy process (AHP) and entropy methods are commonly used for 

criteria weighting [28]. The authors have proposed a method for criteria weighting but its description is beyond 

the scope of this paper. Observe that; 

 

1 
 ICc

c

IBb

b

Ii

i www                                                                                                                            (1) 

 

Step 3: Assignment of aspiration levels and veto thresholds. 

Assign aspiration levels and veto thresholds to each of the identified criteria. For each beneficial 

criterion, determine the largest/best performance value {
max

bx |bB} that is practically attainable and the 

smallest/worst performance value {
min

bx |bB} that is admissible. Recall that for beneficial criteria, larger 

values imply better performance. Hence, {
max

bx |bB} and {
min

bx |bB} are the aspiration levels and veto 

thresholds respectively. Similarly, for non-beneficial criteria, determine the smallest/best performance level {
min

cx |cC} that is practically achievable and the largest/worst performance value {
max

cx | cC} that is 

acceptable. {
min

cx |cC} and {
max

cx |cC} are the respective aspiration levels and veto thresholds for non-

beneficial criteria. In order to adapt the normLP   as used in compromise programming to material selection, 

we shall call UB,asp. = {
max

bx |bB} and UC,asp. = {
min

cx |cC} the ideal/anchor values of the beneficial and 

non-beneficial criteria respectively while UB,veto = {
min

bx |bB} and UC,veto  = {
max

cx |cC} are denoted as the 



American Journal of Engineering Research (AJER) 2015 
 

 
w w w . a j e r . o r g  

 
       Page 115 

anti-ideal/nadir values of the beneficial and non-beneficial criteria respectively. Material that satisfies all criteria 

at their ideal/aspiration levels is the utopian. Observe that the utopian U point is given by; 

 

 U = {UB,asp. ,UC,asp.} = { ,max

bx min

cx |bB and cC}                                                                                           (2) 

 

The utopian is practically not feasible, so according to Zeleny’s axiom of choice we seek for a material whose 

performance rating on all the criteria is closest to it. 

 

Step 4: Sorting through material database. 

Sort through the material database to identify the set A of alternative materials that meet these 

performance requirements. Any material whose achievement level on beneficial criteria falls below the veto 

threshold 
min

bx  for any bB is screened out while for non-beneficial criteria; a material is screened out if its 

achievement level is above the veto threshold 
max

cx  for any cC. Note that only the materials which fulfill the 

membership conditions as stated in Eq. (3) below are included in A. The set A may also be referred to as the 

solution set.  

 

Achievement level (AL) = {
maxmin , cacbab xxxx  | (bB and cC) }, a=1,2,…,m.                                  (3)  

 

where abx  is the achievement level of material  “a” on beneficial criterion “b” and acx is the achievement level 

of material “a” on non-beneficial criterion “c”. Next, the alternative materials are ranked in order to identify the 

best.  

 

Step 5: Developing the distance metrics. 

Develop the normLP  /Minkowski distance metrics.  Let abD  be the deviation/distance of the 

achievement of material “a” from the aspiration level, 
max

bx  of beneficial criterion “b”. Then abD  is given by; 

 

abbab xxD  max
                                                                                                                                                 (4) 

 

Because of non-commensurable units and different order of magnitudes of the criteria, normalized distances are 

used rather than the absolute distances [25]. The normalized distance     (
N

abD ) is given by; 

 





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








minmax

max

bb

abbN

ab
xx

xx
D ;  and 10  N

abD                                                                                                          (5) 

 

Equation (5) above shows how far the performance rating of material “a” on criterion “b” is from the aspiration 

level. The degree of closeness, 
N

abDC  to the aspiration level may be expressed as; 

 





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






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minmax

max

11
bb
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N
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xx

xx
DDC                                                                                                        (6) 

 

Simplification of Eq. (5) gives, 

 















minmax

min

bb

babN

ab
xx

xx
DC  and 10  N

abDC                                                                                                     (7) 
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The degree of closeness 
N

abDC  may also be express as percentage in which case the value of
N

abDC  lies 

between 0 and 100% (i.e. %1000  N

abDC ). If the level of achievement of criterion “b” is at the veto 

threshold, then 0N

abDC , and 100N

abDC if achievement is at the aspiration level. Note that while Eq. (5) 

expresses how far the achievement is from the aspiration level, Eq. (7) expresses how close it is to the aspiration 

level. 

Similarly, the degree of closeness, 
N

acDC  of the achievement of material “a” with respect to the non-

beneficial criterion “c” is given by;  

 

                  (8)    

 

The value of 
N

acDC  also lies between 0 and 100%. Because of the divergent nature of the criteria, it is not 

feasible to get a material which achieves the aspiration levels of all performance criteria simultaneously. Hence, 

we seek for a material within A whose overall achievement with respect to all criteria is closest to U. So 

aggregate the normalized degrees of closeness to obtain the composite degree of closeness to U. The degree of 

closeness of overall achievement of material “a” to U is given by; 

p

ICc

p

cbc

acc
c

p
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bab

IBb

bap
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xx
w
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
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














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











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






 



                                                                    (9) 

where 1p and 1 
 ICc

c

IBb

b ww  

The properties of apL ,  are:  

Property i: The weights   1,0, cb ww  express the relative importance of each beneficial and non-beneficial 

criterion respectively. 

Property ii: According to Eq. (9), it is obvious that 0, apL . Since apL , is normalized by the exponent 
p

1    it 

can be guaranteed that 1, apL , hence, 10 ,  apL  for all aA. If the degree of closeness is expressed as 

percentage then, %1000 ,  apL .   

Property iii: the parameter p explicitly expresses the intensity of the concern of the designer over the deviations 

from the aspiration levels. The distance from U decreases as p increases. On the other hand, the degree of 

closeness increases with increasing value of p. All the possible distances are bounded by aL ,1  (i.e. p = 1; 

Manhattan distance) and aL ,  (i.e. p = ; Tchebycheff distance). Note that, the value of parameter p is chosen 

to express the designer’s preferences regarding the larger deviations. Manhattan distance is used when the 

deviations of the achievement from their respective aspiration values are of equal concern to the designer. If 

only the largest deviation counts to the designer, then the Tchebycheff distance is used and the problem 

becomes a mini-max problem. If the designer weighs each deviation in proportion to its magnitude, then the 

Euclidean distance (p = 2) is used to rank the materials. The greater the concern of the designer over the 

maximum deviation the larger the value of parameter p; when   p =   the largest deviation completely 

dominates the distance measure [25, 38, 39].   





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
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Step 6: find material “a” from the solution set A, so as to maximize apL , .  To achieve this, compute apL ,  for 

each aA and rank the materials in descending order of  apL ,  values. The material whose overall achievement 

(AL) corresponds to  maL aPa ,...,2,1max ,   is the closest to the utopia U.   

IV. NUMERICAL EXAMPLE 
In this section, material selections for some given engineering applications are used to demonstrate the 

feasibility of the proposed approach to evaluate and find the best material. Two examples will be used: (i) 

Material selection for non-heat-treatable cylinder cover from the literature [41] and (ii) material selection for 

armature shaft. 

 

Example 1: Non-heat-treatable cylinder cover material 

In this example, the problem of selecting the best material for non-heat-treatable cylinder cover is 

considered using the procedure described in section 3. Firstly, all necessary performance criteria were identified 

based on service requirements of the non-heat-treatable cylinder cover as well as the manufacturability and cost 

requirements. A total of twelve criteria were listed out of which eight were beneficial while four are non-

beneficial. The criteria with their respective weights, aspiration levels and veto thresholds are presented in Table 

1. Eight alternative materials that fulfilled the conditions of Equation (3) were selected (see Table 2) and their 

respective properties/achievement on each criterion is presented in Table 3. 

 

Table 1: Material Selection Data for Non-heat-treatable Cylinder Cover 

Criteria Criteria Type Aspiration 

Level 

Veto 

threshold 

Criteria 

Weight (%) 

Density, D (Mg/m3) Non-beneficial 2.67 8.95 5.3 

Compressive strength, CS (MPa) Beneficial 690 50 8.9 

Ultimate tensile strength, UTS (MPa)  Beneficial 1030 210 7.3 

Spring back index, SBI  Non-beneficial 0.08 1.55 10.3 

Bending force index, BFI Non-beneficial 1355 20317 10.3 

Static load index, SLI Beneficial 2916 260 8.7 

Hardness, H (Vickers) Beneficial 380 45 6.7 

Yield strength, YS (MPa) Beneficial 800 50 9.4 

Elastic modulus, EM (GPa) Beneficial 205 73.59 7.4 

Thermal diffusivity, TD (cm2/h) Beneficial 741 174 8.2 

Thermal conductivity, TC (W/m K) Beneficial 398 17 11.2 

Cost of base material, C (CAN$/kg) Non-beneficial 1.04 18.64 6.5 

   Source: Shanian and Savadogo, (2006) 

 

Table 2: List of Alternative Materials 

Alternative materials Code 

Copper-2-beryllium (cast) UNS C82400 A1 

Copper-cobalt-beryllium (cast) UNS C82000 A2 

Electrolytic tough-pitch, h.c. copper, soft (wrought) UNS C11000 A3 

Electrolytic tough-pitch, h.c. copper, hard (wrought) UNS C11000 A4 

Wrought aluminum alloy 5052 H34 A5 

Wrought austenitic stainless steel AISI 304, HT grade D A6 

Commercial bronze, cuzn10, soft (wrought) UNS C22000 A7 

Carbon steel (annealed) AISI 1020 A8 

Source: Shanian and Savadogo, (2006) 
 

Table 3: Material properties (achievement level for each criterion) 

Alt. Mat. D CS UTS SBI BFI SLI H YS EM TD TC C 

A1 8.25 560 940 0.78 15183 2916 380 560 138 465 105 18.64 

A2 8.65 460 600 0.71 12472 2395 220 460 125 465 205 13.99 

A3 8.94 50 210 0.08 1355 260 45 50 122 460 398 3.00 

A4 8.95 340 380 0.48 9218 1770 115 340 135 460 390 3.46 

A5 2.67 190 295 0.25 20317 1966 87 191 73.59 741 152 2.81 

A6 8.06 690 1030 1.55 5909 2174 350 800 190 189 17 5.99 

A7 8.63 95 270 0.17 2711 520 63 100 116 174 185 3.22 

A8 7.08 267 355 0.48 1957 720 110 265 205 329 50 1.04 

Source: Shanian and Savadogo, (2006) 
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Using Equation (9), the degree of closeness to the utopian were computed for different values of parameter, p 

(i.e. p = 1, p = 2, p = 10 and p = 100). The degree of closeness as percentages and the ranking are presented in 

Table 4a below. For material selection situation where the deviations are of equal concern to the designer (i.e.

normL 1 ) the ranking of alternative materials obtained was 75382416 AAAAAAAA 

. 6A , 1A  and 4A are the 1
st
, 2

nd
 and 3

rd
 choice materials respectively. When the deviations are weighed in 

proportion to their magnitude (i.e. normL 2 ), the ranking was

72854136 AAAAAAAA  . The same 6A  remains the best choice but 3A that ranked 6
th

 

when normL 1  was used is now 2
nd

 and 1A that ranked 2
nd

 is now ranked 3
rd

.  The ranking obtained with 

normL 10
 is 24715863 AAAAAAAA  . The normL 10

 expressed the increased 

concern (high intensity) of the designer over larger deviations, and alternative material 3A that ranked 6
th

 

became the best choice instead of  6A  which is now 2
nd

 and 8A  3
rd

. The normL 100
 shows that the 

intensity of the designer’s concern over the large deviations is higher compared to his concern when the 

normL 10
 was used. The ranking of the alternatives with the normL 100

 is

27458163 AAAAAAAA  . The alternative materials 3A , 6A  and 1A  are ranked 1
st
, 

2
nd

 and 3
rd

 respectively when compared to the ranking obtained with the normL 10  where 8A  is ranked 3
rd

. 

The suitability of this approach to reflect the preferences of the designer concerning the larger deviations is 

made clearer by Table 4b. The differences in the rankings at different intensity levels of the designer’s concern 

show the necessity of incorporating the concern of the designer into the material selection process. It is clear that 

the level of designer’s preferences regarding larger deviations determines the ranking of candidate materials. 

Hence rankings obtained without the incorporation of the intensity of designer’s concern regarding the large 

deviations may be misleading.  

Table 4a: Degree of Closeness ( apL , ) and Ranking of alternatives 

Alt. Mat. 
1L (p = 1) 2L  (p = 2) 10L  (p = 10) 

100L  (p = 100) 

Closeness (%) Rank Closeness (%) Rank Closeness (%) Rank Closeness (%) Rank 

A1 54.58 2 62.74 3 84.62 5 98.15 3 

A2 49.55 4 52.13 7 64.15 8 78.44 8 

A3 44.45 6 63.26 2 89.72 1 98.86 1 

A4 53.22 3 59.08 4 80.24 7 95.78 6 

A5 43.32 7 57.23 5 84.64 4 98.02 5 

A6 57.99 1 71.34 1 89.13 2 98.65 2 

A7 35.52 8 51.12 8 80.97 6 92.03 7 

A8 45.97 5 57.20 6 85.87 3 98.07 4 

Table 4b: Sensitivity of sL ap ',  to the intensity of designer’s concern over deviations 

 

 

 

 

 
Example 2: Armature shaft material 

Following the procedure of Section 3, ten criteria were identified out of which seven were beneficial 

and three were non-beneficial. The list of criteria with their respective aspiration level, veto threshold and 

weights is presented in Table 5. The list of materials that fulfilled the selection criteria of Eq. (3) are presented 

in Table 6 while Table 7 shows the properties or achievement levels of the alternative materials on each 

criterion. Next, Eq. (9) was used to compute the apL ,   values for (p = 1, 2, 10 and 100) and the alternatives 

were ranked in descending order of  apL ,  (see Table 8a). 

 

 

 

Rank Example 1:  Non-heat-treatable Cylinder  Cover 

1L  2L  10L  
100L  

1st  A6 A6 A3 A3 

2nd  A1 A3 A6 A6 

3rd  A4 A1 A8 A1 
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Table 5: Material Selection Data for Armature Shaft 

Criteria Criteria Type Aspiration 

Level 

Veto 

threshold 

Criteria 

 Weight (%) 

Ultimate tensile strength, UTS (MPa)  Beneficial 790 330 14.4 

Yield strength, YS (MPa) Beneficial 605 140 14.4 

Elastic modulus, EM (GPa) Beneficial 202 105 11.0 

Ductility, DU (%) Beneficial 55 10 8.4 

Hardness, H (Vickers) Beneficial 93 55 11.6 

Density, D (Kg/m3) Non-beneficial 7.80 8.44 6.2 

Thermal conductivity, TC (W/m K) Beneficial 120 16.2 9.2 

Thermal diffusivity, TD (cm2/h) Beneficial 415.4 127.3 6.8 

Thermal expansion, TE ( mKm / ) Non-beneficial 11.5 15.7 8.8 

Cost of base material, C ($/Kg) Non-beneficial 3.94 7.98 9.3 

    

Table 6: List of Alternative Materials (Armature shaft) 

Alternative materials Code 

Carbon Steel SAE 1006 B1 

Carbon Steel SAE 1010 B2 

Carbon Steel SAE 1020     B3 

Carbon Steel SAE 1030 B4 

Carbon Steel SAE 1070     B5 

Carbon Steel SAE 1090 B6 

Carbon Steel SAE 1117     B7 

Carbon Steel SAE 1547 B8 

Stainless Steel AISI 201    B9 

Forging Brass, UNS C 37700 B10 

 

Table 7: Material properties (Armature shaft) 

Alt. Mat. UTS YS EM DU H D TC TD TE C 

B1 330 285 200 20 55 7.872 64.9 171.4 12.6 5.90 

B2 365 305 200 20 60 7.872 51.9 147.2 12.6 7.08 

B3 420 205 200 15 73 7.872 51.9 135.7 11.9 5.59 

B4 525 440 200 12 80 7.872 48.7 127.3 11.7 3.94 

B5 640 495 201 10 91 7.872 51.2 132.7 12.1 4.57 

B6 696 540 202 10 92 7.872 49.8 133.7 11.5 7.08 

B7 475 400 200 12 86 7.872 51.2 135.2 11.5 7.67 

B8 710 605 200 10 93 7.872 51.2 137.5 11.5 7.98 

B9 790 380 197 55 90 7.80 16.2 415.4 15.7 4.60 

B10 360 140 105 30 74 8.44 120 374.2 12.5 5.06 

Source: MatWeb (Material Property Data) http://matweb.com 
 

The ranking obtained for normL 1 , normL 2 , normL 10
 and normL 100

 as displayed in 

Tables 8a and 8b, reflect the sensitivity of this approach to the intensity of the concern of the designer over the 

deviations. For clarity, see the extract from Table 8a displayed in Table 8b showing the 1
st
, 2

nd
 and 3

rd
 best 

alternative materials for all the sL ap ', .  The best material for the armature shaft with normL 1 , normL 2  

and normL 10
 is 9B while 2

nd
 and or 3

rd
 vary (Table 8b). With greater concern over the large deviations (i.e.

normL 100
), 8B , became the best material followed by 9B  and 6B  as 2

nd
 and 3

rd
 respectively, while 1B ,

2B  and 3B are the worst with the same degree of closeness (95.80%) to the utopia Table 8a. Note that for the

normL 100
, 8B was ranked 1

st
 while 9B is ranked 2

nd
. However, it may be expedient for the designer to 

choose alternative 9B instead of 8B since the difference between the closeness of 8B and 9B to the utopia is 

marginal (98.99% and 98.98%) and 9B is ranked higher than 8B  for all the other distance metrics (see table 

8a). This demonstrates another merit of this approach in that it provides opportunity for trade-off exploration 

with different values of parameter p in order to gain useful insights on optimal trade-offs among alternatives 

before making the final choice of material. The degree of closeness (Tables 4a and 8a) agrees with previous 

research that the distance from utopia decreases as the value of parameter p increases or conversely, the degree 

of closeness increases as value of p increases.   
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Table 8a: Degree of Closeness ( apL , ) and Ranking of alternatives for armature shaft 

Alt. Mat. 
1L (p = 1) 2L  (p = 2) 10L  (p = 10) 

100L  (p = 100) 

Closeness (%) Rank Closeness (%) Rank Closeness (%) Rank Closeness (%) Rank 

B1 39.27 8 51.70 8 80.37 8 95.80 8 

B2 38.07 9 49.34 9 80.36 9 95.80 8 

B3 44.36 7 55.26 7 82.21 3 95.80 8 

B4 60.24 5 68.73 5 87.35 4 97.79 4 

B5 66.70 2 74.26 4 86.48 5 96.82 7 

B6 65.64 4 75.43 3 90.09 3 98.43 3 

B7 51.51 6 62.47 6 85.62 6 97.74 5 

B8 66.31 3 78.19 2 92.87 2 98.99 1 

B9 72.13 1 81.17 1 93.11 1 98.98 2 

B10 33.10 10 48.77 10 79.56 10 97.64 6 

 

Table 8b: Sensitivity of sL ap ',  to the intensity of designer’s concern over deviations 

 

 
V. CONCLUSION 

The proposed method for material selection has been shown to be a suitable tool for incorporating the 

intensity of designer’s concern over larger deviations in the material selection process.  The model ranked 

candidate materials from best to worst for each level of intensity of designer’s concern over the deviations. 

Results of example problems demonstrate the sensitivity of the approach to the level of intensity of designer’s 

concern and also provides useful insights on optimal trade-offs among the alternative materials. 
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