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ABSTRACT: The paper considers the simple economic order model where the period of grace is operating, the
lead time is continuous and the backorder cost is quadratic. The lead time follows a gamma distribution. The
expected backorder cost per cycle is derived and averaged over all the states of the lead time L. Next we obtain
the expected on hand inventory. The Lead time is taken as a Normal variate. The expected backorder costs are,
derived after which the expected on hand inventory is derived. The cost inventory costs for constant lead times is
then averaged over the states of the lead times which is taken as a normal distribution.

KEY WORDS: Continuous Lead Times, Gamma Distribution, Normal Distribution, Period of Grace, Bessel
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Demand
The cost of a backorder C,(t) for backorder of length t = C,(L-z-p)=

b,+b, (L -2z — p) +b,(L — z — p)? where p is the grace period, where the system is out of stock in the

time interval z to z tdz. After the re-order point is reached the R+Y was demanded in the time z and a demand
occurred in time dz. The longer the period of grace the greater the reduction in inventory costs.

SIMPLE INVENTORY MODEL WITH PERIOD OF GRACE, QUADRATIC BACKORDER COST
AND CONTINUOUS LEAD TIME

. INTRODUCTION

In this inventory model there is a period of grace before backorder costs are incurred. In Hadley (1972),
the general model was stated. This paper derives the backorder costs when the backorder cost is a quadratic cost
depending upon the length of time of backorder after the grace period. The various costs such as expected
backorder costs and expected on hand inventory are derived, to arrive at the total costs of holding inventory.
Demand over the lead time is normally distributed and lead time is a gamma variate.

1. LITERATURE REVIEW
Saidey (2001), in his paper Inventory Model with composed shortage considered grace period (perishable delay
in payment) before setting the account with the supplier or producer.
Schemes (2012) also considered credit terms which may include an interest free grace period as much as 30
days in his paper ‘Inventory models with shelf Age an Delay Dependent Inventory costs’.
Hadley and Whitin gave a simple general model for period of grace.
Zipkin (2006), treats both fixed and random lead times and examines both stationary and limiting distributions
under different assumptions.

1. DERIVATION
Let the period of grace be p, where the period of grade is the period for which a backorder bears no cost. Let
H(L) be the probability density function of the lead time L.




C ,4(t) is the cost of a backorder of length t.
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In the analysis k would take on integer values only.
The p.d.f. of demand over the lead time L.
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Let R+, 0 <Y<Q be the inventory position at time O, then if the system is out of stock in the time internal z to
z + dz after the re-order point is reached then R +Y was demanded in the time Z and a demand occurred in time

dz.

Length of time of backorder = L-z length of time of backorder which bears a cost
=L-z-p.
Cost of a backorder = C ; (L -z —p)

Where the C 5 (t) is the cost of a backorder = by + b, (L—z—p) + by (L —z—p)> (3)

Expected backorder cost per cycle G; (Q, R).
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Substituting for C 5 (L-v) from 3

Making use of equation (2)

G1(QR) = DJ': Jf J'OL (Dy+by(L— V) + by (L= V)2 + H(L) ©ovoreeeen )
R+Y +DP—DV)
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Substituting into G,(Q R) of (7) and changing the range of Y
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Let Gy(QR) = _[:jpmpez(x)dx ...................................................... (10

Hence from equation (10)
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Substituting for H (L) from 1 and simplifying
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Re-arranging terms




American Journal of Engineering

x — DL dL—akO_ Lkllz(b_z_yj
\/ L )k D D’

k+1/2 7]
+ b3LD esp(—aL)g[):/__?LLJdL ................................................ (14)
i o
Integrating
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If k is an integer then

_ & (k+j-1) -]
Ky1/2(2) _kllz(z); k=] -1 (22)
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From equation 11

G R _ R+Q+Dp G d
(QR) =] Ga(0dx
Where G1(Q R) is the expected backorder cost per cycle

Expanding
R+Q+Dp 0
G,(QR)= jmp G, (x)dx — IR+Q+Dsz(x)dx ........................................ (17)

Integrating G,(x) with respect to x from z to oo and applying
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Hence from (17)
The expected backorder cost per cycle
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Next we obtain the expected on hand inventory at any time.
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Let (D R) be the expected on hand inventory at any time
Let Gg (x) be the probability density function of the quantity on hand x at anytime t. x control be less or above
the re-order level R. 0<x<R

D(Q,R) = jOR XG4 (X)dx + [~ XG4 (X)dx

If x lies above R
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Given that the system was in state v and v-x was demanded.

If x lies above R

Which gives, expressing in k standard deviations of stock
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Then expressing R in terms of standard deviations of stock
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Substituting for k then
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Where D(Q,R,L) is the inventory on hand for a given lead time L.
Hence expected on hand inventory

= j:’ H(L)D(Q, Ry L)DL oo (28)

* Q o0 1 o R+
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Noting that
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I: IRR& H (L)Vcﬂ.[g[%} —(V - DL)F[%DdVdL is the coefficient of b, in (iv)

Then integrating (29)
We have

DQ.R)=2+R-25+2(6,(R) -G, (R +Q)
« 0

Cost of ordering = (E]
Q

Inventory costs for mode (Q;R)

C :%S+ hcD(Q,R) +%{ 4 (R + Dp+%(G4(R) -G,(R +Q)B

DS
Cost of ordering = E ..................................................................... (30)

Inventory costs for mode (Q;R)

C= %S th(QlR)+%( ,(R+Dp) -G,(R+Q+ Dp))
+%2(G4(R+Dp)—G4(R+Q+Dp)+b3(G5(R+Dp)—GS(R+Q+Dp)) ....... G31)

Substituting for D(Q;R) from (30)

c—% QQC h(R——)+b( .(R+Dp)-G,(R+Q+Dp))

+%2(G4(R +Dp) -G, (R +Q + Dp)) +b, (G, (R + Dp) -G, (R + Q + Dp))

+%(G4(R) “GL(R+Q) i (34)

The corresponding cost when no period of grace p is operating is

DS th

c_ he (R——) +b,(G,(R)-G,(R+Q))

.\ (hc +b,)

G.(R) —G4(R+Q))+%3(GS(R)—GS(R+Q))

V. IMPACT OF THE STUDY
The study will enable industries or organizations having thousands of items in their warehouses located
in various locations of the world and items supplied by different manufacturers with accurately use realistic lead
times in arriving at their inventory cost.
In many of such cases lead times are not constant.
Expressing lead time as continuous gives a more realistic estimate of inventory costs.
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