e-ISSN: 2320-0847 p-ISSN : 2320-0936 Volume-4, Issue-4, pp-148-152 <u>www.ajer.org</u> Open Access

Research Paper

An Internet Based Anonymous Electronic Cash System

Israt Jahan¹, Mohammad Zahidur Rahman², K M Akkas Ali³, Israt Jerin⁴

^{1,2}Department of Computer Science and Engineering, Jahangirnagar University, Dhaka, Bangladesh ³Institute of Information Technology, Jahangirnagar University, Dhaka, Bangladesh ⁴Britannia University, Paduar Bazar, Bissaw Road, Comilla, Bangladesh

ABSTRACT: There is an increase activity in research to improve the current electronic payment system which is parallel with the progress of internet. Electronic cash system is a cryptographic payment system which offers anonymity during withdrawal and purchase. Electronic cash displays serial numbers which can be recorded to allow further tracing. Contrary to their physical counterparts, e-cash have an inherent limitation; they are easy to copy and reuse (double-spending). An observer is a tamper-resistant device, issued by the Internet bank, which is incorporated with the Internet user's computer that prevents double-spending physically, i.e., the user has no access to her e-cash and therefore he cannot copy them. In this paper, we shall present an anonymous electronic cash scheme on the internet which incorporates tamper-resistant device with user-module.

KEYWORDS- E-cash, Double-spending, Tamper-resistant device, Blind signature, Internet banking.

I. INTRODUCTION

Electronic commerce is one of the most important applications for the internet. The prerequisite for establishing an electronic marketplace is a secure payment. Several electronic protocols have been proposed to implement different kinds of payment: credit card payments, micropayments, and digital e-cash. Cryptographically, the most challenging task is the design of digital e-cash for every payment system mentioned above we have the requirement that the payment token has to be unforgeable. In 1982, D. Chaum [7] presented the notion of blind signatures that offer the possibility to design electronic e-cash. The bank signs a set of data chosen by the user which guarantees both the unforgeability of the e-cash and their anonymity, since the bank does not get any information about data it signed. But blind signatures solve only half of the problem: since digital data can be copied, a user can spend a valid e-cash several times (double-spending) if the deposit of ecash is not done on-line [3]. To validate each e-cash on-line means that the vendor has to contact the bank in every purchase. From the efficiency's point of view this is undesirable. Therefore, we restrict our attention to off-line systems, i.e., the vendor has to check the validity of e-cash without contacting the bank. An e-cash is constructed in a way that allows its owner to spend it anonymously once, but reveals his identification if he spent it twice [5]. From a theoretic point of view this solution is quite elegant. But in practice it is unsatisfactory. A way to prevent the user physically from copying her coins is to store essential parts of a coin in a tamperresistant device called the observer [7].

II. AN E-CASH MODEL WITH TAMPER-RESISTANT DEVICE

An internet based anonymous off-line electronic e-cash scheme [1, 8 and 9] with tamper –resistant device consists of three collections of probabilistic, polynomially- bounded parties [2], a bank B, users U_i , and shops S_j , and four main procedures: withdrawal, blind signature issuing, payment and deposit (Figure 1). Users and shops maintain separate account with the Internet Bank [10].

- When user (U_i) needs e-cash, then Bank issues e-cash from user's account in his (user's) tamper-resistant device T_i over an authenticated channel.
- When user (U_i) wants to spend this e-cash, it is validated by bank (B) by blind signature issuing protocol.
- U_i spends an e-cash by participating in a payment protocol with a shop S_j over an anonymous channel, and
- S_i performs a deposit protocol with the bank B, to deposit the user's e-cash into his account.

2015

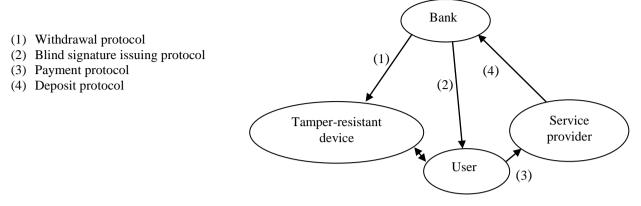


Figure 1: Model of e-cash with tamper-resistant device

III. AN INTERNET BASED ANONYMOUS E-CASH SYSTEM

We shall now represent an anonymous off-line e-cash transaction system on the Internet.

3.1 The Bank's setup protocol

- All arithmetic is performed in a group G_q of prime order q chosen by bank (B). The bank generates independently at random four numbers g₀, g₁, g₂, h∈G_q and a number x∈Z_q. The bank also determines a collision-free hash function H(.) such as to make the Schnorr signature scheme secure [4]. A public key that is issued by the bank to the user is a pair (h'_i, a'_i) ∈G_q*G_q.
- The number x is the secret key of the bank, and the corresponding public key is the tuple $(g_0, g_1, g_2, h, G_q, H(.))$. A certificate of the bank on the public key (h'_i, a'_i) of the user is a triple (z'_i, c', r') such that $c'=H(h'_i, a'_i, g_o^{r'}h^{-c'}, (h_i')^{r'}(z_i')^{-c'})$.
- The secret key that corresponds to the public key (h'_i, a'_i) of the user is a pair $((\beta_1, \alpha_1), (\beta_2, \alpha_2))$, such that $h'_i = g_1^{\beta_1} g_2^{\alpha_1}$ and $\alpha'_i = g_1^{\beta_2} g_2^{\alpha_3}$.

3.2 The actions

The Internet bank will be denoted by B, the user by U_i , and the service provider by S_j . The computer of U_i is denoted by C_i , and his tamper-resistant device by T_i .

3.2.1 Account establishment protocol

 U_i installs on his computer, a software program for performing the protocols. When U_i opens an account with B, the following procedure takes place.

- C_i generates independently at random a secret key $x_{i2} \in Z_q$, and stores it. C_i sends $h_{i2} = g_1^{xi2}$, to B, together with an appropriate verifiable description of the identity of U_i . It then generates independently at random a secret key $x_{i1} \in Z_q$ for U_i . B lists this number (h_{i2}) in its so-called account database, together with at least a balance variable that keeps track of the amount of money that U_i has in its account with B, and the description of U_i 's identity.
- B then issues to U_i a tamper-resistant device T_i which has stored in non-volatile memory at least the following items: the numbers x_{i1} and g_1 , and a description of G_q ; code to perform its role in the protocols; and a counter variable, from now on denoted by *balce*, that keeps track of the amount of money that is held by U_i .
- B makes $h_{i1}=g_1^{xi1}$, known to U_i ; this is the public key of T_i . B then computes $h_i=h_{i1}h_{i2}$ (the joint public key of T_i and U_i and stores h_i in his account database along with its other information on U_i). The bank B does not know the joint secret key, $(x_{i1}+x_{i2}) \mod q$, of T_i and U_i .
- Finally, B computes $(h_i g_2)^x$, which will henceforth be denoted by z_i known to U_i .

3.2.2 Withdrawal protocol

The withdrawal of electronic cash appears as follows:

 T_i is assumed to have in common with B a secret key k. This secret key, and a sequence number, seq, (which has been set to some initial value, such as zero), have been stored by B before issuing T_i to U_i . In addition, the description of a one-way function $f_1(.)$ has been stored by B in T_i . B decreases the balance, *balce'*, of U_i by amount. It then increases seq by one, and transfers $v \leftarrow f_1(k, seq, amount)$ to T_i by sending it to C_i . T_i receives v from C_i . It then computes $f_1(k, seq, amount)$, and compares it for equality with v. If equality holds, it increases seq by one, and balance by amount.

The withdrawal protocol appears as follows:

Tamper-resistant Device (T _i)		Bank (B)
		<i>balce'</i> ← <i>balce'</i> - amount
Verify	←(v)	$v \leftarrow f_1(k, seq, amount)$
$v = f_1(k, seq, amount)$		seq← seq+1
then, seq \leftarrow seq+1		
$balce \leftarrow balce + amount$		
Та	ble 1: The withdrawa	l protocol

3.2.3 The Pre-processing of blind signature issuing protocol

Payment of an amount requires U_i to provide the service provider with a signature on the amount (and additional data). To prepare for the withdrawal of a blind signature on e-cash, T_i and C_i perform the following off-line processing.

- Ti generates independently at random a number w_i∈_RZ_q, and sends a_ig₁^{wi} to C_i. T_i stores w_i for later use in the payment protocol.
- C_i generates independently at random a vector $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5) \in Z_q^5$, such that $\alpha \neq 0 \mod q$. It then computes $h_i' \leftarrow (h_i g_2)^{\alpha 1}$, $a_i' = a_i^{\alpha 1} g_1^{\alpha 2} g_2^{\alpha 3}$, $z_i' \leftarrow z_i^{\alpha 1}$, temp₁ $h^{\alpha 4} g_0^{\alpha 5}$, temp₂ $\leftarrow (z_i')^{\alpha 4} (h_i g_2)^{\alpha 1 \alpha 5}$.
- C_i stores (h'_i, a'_i) and $(\alpha_1, \alpha_2, \alpha_3)$ and temp₁, temp₂, α_4 and α_5 for the later use in the payment protocol.

3.2.4 The blind signature issuing protocol

The issuing of blind signature [6] is done by means of the following on-line certificate issuing protocol between C_i and B. The blind signature issuing appears as follows:

Compouter(C_i)

L , <u>,</u>		. ,
		$w \in Z_q$
		$a \leftarrow g_0^w$
	← (a,b)	$b \leftarrow (h_i g_2)^w$
$c' \leftarrow H(h_i', a_i', a \text{ temp}_1, b^{\alpha 1} \text{temp}_2)$		
$c \leftarrow c' + \alpha_4 \mod q$	(c) →	
	← (r)	$r \leftarrow cx + w \mod q$

Table 2: The blind signature issuing protocol

3.2.5 The pre-processing of payment protocol

To pay to S_i an amount, T_i and C_i perform the following pre-processing.

- C_i determines the specification, denoted by *spec*, of the payment. This number is a concatenation, in a standardized format, of that is to be transferred, the time and date of transaction, and an identification number that is uniquely associated with S_j . Additional data fields may be included in variable spec. C_i then sends (h'_i , a'_i) and spec to T_i .
- T_i verifies that w_i is still in memory, and thatbalance exceeds amount (T_i can read this value from spec). If this is the case, it computes d=H($h'_i, a'_i, spec$) and r_1 =d x_{i1} + w_i mod q. It then decreases balance by amount, erases w_i from memory, and sends r_i to C_i .
- C_i computes d=H(h_i', a_i',spec), and verifies that $g_1^{r_1}h_{i1}^{-d}=a_i$. If this is the case, C_i computes $r_1'=\alpha_1(r_1+dx_{i2})+\alpha_2 \mod q$, $r_2 \leftarrow d\alpha_1+\alpha_3 \mod q$. The pre-processing of payment protocol appears as follows:

Bank(B)

User computer(C_i)

Tamper-resistant device(T_i)

----- $(h_i', a_i') \rightarrow$

 $\begin{array}{l} d=\!H(h_i',\,a_i',\text{spec})\\ balce \!\rightarrow\! balce \ \text{-}\ amount\\ r_1\!=\!dx_{i1}\!+\!w_i\\ erases\ w_i \end{array}$

←(**r**₁)-----

 $d=H(h_{i}', a_{i}', spec)$ verify $g_{1}^{r1}h_{i1}^{-d} = a_{i}$ $r_{1}' \leftarrow \alpha_{1}(r_{1}+dx_{i2}) + \alpha_{2} \mod q$ $r_{2} \leftarrow d\alpha_{1} + \alpha_{3} \mod q$

Table 3: The preprocessing of payment protocol

3.2.6 The payment protocol

The actual payment is done by means of the following on-line payment protocol between Ci and Si.

- C_i sends $(h_i', a_i'), (z_i', c', r'), (r_1', r_2)$ to S_i .
- S_j computers d in the same way as did C_i and T_i and accepts the transferred information if and only if $h_i' \neq 1$, $c'=H(h'_i, a'_i, z'_i, g_0^{r'}h^{-c'}, (h_i')^{r'}(z_i')^{-c'})$ and $g_1^{r1'}g_2^{r2}(h_i')^{-d}=a_i'$
- The payment protocol appears as follows:

-- (h_i', a_i'),(z_i', c', r'),(r_1', r_2)→

Computer(C_i)

Service Provider(S_j)

 $\begin{array}{c} Check \\ d{=}H(h_{i}',\,a_{i}',spec) \\ c'{=}H(h_{i}',\,a_{i}',\,z_{i}',\,g_{o}^{\ r'}h^{\text{-}c'},\,(h_{i}')^{r'}\,(z_{i}')^{\text{-}c'}) \\ g_{1}^{\ r'}g_{2}^{\ r'}(h_{i}')^{\text{-}d}{=}a_{i}' \end{array}$

Table 4: The payment protocol

3.2.7 The deposit Protocol

At a suitable time, preferably when network traffic is low, S_j sends the payment transcript, consisting of (h'_i,a_i) , (z'_i, c', r') , (r_1',r_2) and spec, to B.

B verifies that spec has been formed correctly by S_j . If this is the case, it searches its so-called deposit database to find out if it has stored (h'_i, a_i) before.

There are two possible situations:

- 1. (h'_{i},a'_{i}) is not in the deposit database. B then computes $d=H(h_{i}', a_{i}',spec)$, and verifies the payment transcript by verifying that $h_{i}' \neq 1$, $c'=H(h'_{i}, a'_{i}, z'_{i}, g_{o}^{r'}h^{-c'}, (h_{i}')^{r'}(z_{i}')^{-c'})$ and $g_{1}^{r1'}g_{2}^{r2}(h_{i}')^{-d}=a_{i}'$. If these verifications hold, B stores $(h_{i}', a_{i}'), (z_{i}',c',r')$ and (r_{1}',r_{2}) in the deposit database, and credits the account of S_{j} by amount.
- 2. (h_i',a_i) is already in the deposit database. In that case a fraud has occurred. If *spec* of the already stored information is identical to that of the new payment transcript, then S_j is trying to deposit the same transcript twice.

Otherwise, B verifies the transcript as described insituation 1. If the verification holds (the payment transcript is valid), then the certified public key (h'_{i},a_{i}) must have been double-spent with overwhelming probability. Since, B now has at its disposal a pair (r_{1}',r_{2}) from the new transcript and a pair, say (r_{1}'',r_{2}') , from the already deposited information, it can compute $(r_{1}' - r_{1}'')/(r_{2} - r_{2}') \mod q$. B then searches its account database for joint public key $g_{1}^{(r_{1}'-r_{1}'')/(r_{2}-r_{2}')}$. Since, the identity of the corresponding account holder is known to B, appropriate legal actions can be taken. The number $(r_{1}' - r_{1}'')/(r_{2}-r_{2}') \mod q$ serves as the proof of B that the traced user has compromised his tamper-resistant device and has double-spent the certified public key (h'_{i},a_{i}) .

www.ajer.org

2015

IV. DISCUSSIONS

In the e-cash scheme with tamper-resistant device, the user's secret is shared between the user and his observer. The combined secret is a modular sum of the two shares, so one share of the secret reveals no information about the combined secret. Co-operation of the user and the tamper-resistant device is necessary in order to create a valid response to a challenge during a payment transaction. It prevents the tamper resistant device from leaking any information about the user.

V. CONCLUSIONS

We presented electronic cash system which provides a physical defense against double-spending detection. To guarantee the prevention of double-spending, the bank has to be sure that the tamper-resistant device cannot be tampered with by the users. The use of a tamper-resistant device is a kind of first line of defense. If the user cannot manipulate the device, the tamper-resistant device can prevent double-spending. If the user succeeds in tampering the observer, the double-spending detection identifies the user afterwards.

REFERENCES

- Ogiela, M.R., & Sulkowski, P. Improved Cryptographic protocol for digital coin exchange. 15th International Symposium on Soft Computing and Intelligent Systems (SCIS), 2014, 1148-1151.
- Miers, I., Garman, C., Green, M., & Rubin, A.D. Zerocoin: Anonymous Distributed E-Cash from Bitcoin. *IEEE Symposium on Security and Privacy (SP)*, 2013, 397-411.
- [3] Jiangxiao Zhang., Zhoujun Li., Hua Guo., & Chang Xu. Efficient Divisible E-Cash in the Standard Model. *IEEE International Conference on Green Computing and Communications (GreenCom)*, 2013, 2123-2128.
- [4] Yun-kyung Lee., Seung-Wan Han., Sok-joon Lee., Byung-ho Chung., & Deok Gyu Lee. Anonymous Authentication System Using Group Signature. International Conference on Complex, Intelligent and Software Intensive Systems, 2009, 1235-1239.
- [5] Israt Jahan., Mohammad Zahidur Rahman., & Md. Golam Moazzem. Review of Anonymous Electronic Payment System. Journal of Electronics and Computer Science, 2003, 25-39.
- [6] Tsiounis, Y.S. Efficient Electronic Cash: New Notions and Techniques. Northern University, Massachusetts. PhD Thesis, 1997.
- [7] Chaum, D., & Pedersen, T. Wallet Databases with Observers. *In proceedings of CRYPTO*, 1993, 89-105.
- [8] Brands, S. Untraceable Off-line Cash in Wallets With Observers. In proceedings of CRYPTO, 1993, 303-318.
- [9] Schnorr, C.P. Efficient Signature Generation by Smart Cards. *Journal of Cryptology*, 1991, 4(3), 161-174.
- [10] Chaum, D. Blind Signatures for Untraceable Payments. Advances in cryptology-Proceedings of Crypto'82, Lecture Notes in Computer Science, Springer-Verlag, 1982, 199-203.

2015