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ABSTRACT: - Asphaltene precipitation is caused by a number of factors including changes in pressure, 
temperature, and composition. The two most prevalent causes of asphaltene precipitation in light oil reservoirs 
are decreasing pressure and mixing oil with injected solvent in improved oil recovery processes. This study 
focused on predicting the amount of asphaltene precipitation with increasing Gas-Oil Ratio in a light oil 
reservoir using Bayesian Belief Network Method. These Artificial Intelligence-Bayesian Belief Network Method 
employed were validated and tested by unseen data to determine their accuracy and trend stability and were 
also compared with the findings obtained from Scaling equations. The obtained Bayesian Belief Network results 
indicated that the method showed an improved performance of predicting the amount of asphaltene precipitated 
in light oil reservoirs thus reducing the number of experiments required. 
 

Keywords: (Asphaltene Precipitation, Bayesian Belief Network, High Gas-Oil Ratio, Light Oil Reservoirs, 
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I. INTRODUCTION 
Asphaltene precipitation and deposition in petroleum reservoirs fluids during production has proved to 

be a difficult problem to define and study as it can cause plugging of reservoir formation, wellbore, tubing and 
production facilities. Field conditions conductive to asphaltene precipitation include primary depletion, acid 
stimulation, gas-lift operations and miscible flooding, just to mention a few.  Asphaltene precipitation during 
primary depletion of highly undersaturated reservoirs due to changes in pressure, temperature and compositions 
or during application of any of the improved oil recovery processes was described by many authors [Kokal and 
Sayegh, 1995; Michell and Speight, 1973; Leontaritis and Mansoori, 1989; Mofidi and Edalat, 2006 and 
Rassamdana, 2006].  

 
Asphaltenes comprises the heaviest and the most polar fraction of crude oil [Kokal and Sayegh, 1995; 

Michell and Speight, 1973]. Asphaltenes exist in the form of colloidal dispersions and are stabilized in solutions 
by resins and aromatics that act as peptizing agents. Asphaltene precipitation and deposition may occur deep 
inside the reservoir, near the wellbore and/or in processing facilities [Leontaritis and Mansoori, 198]. 
Asphaltene precipitation is a function of pressure, temperature and live crude oil composition. Asphaltene have 
a tendency to precipitate as the pressure is reduced, especially near the bubble point (however, precipitation can 
occur even at higher pressures than the bubble point, depending on the crude). Another important reason for 
precipitation is the stripping of crude oil by gas. When gas is added to the crude (as may be happening during 
the production from the gas-cap wells) the composition of the crude changes and may lead to precipitation. This 
is the same mechanism during de-asphalting of crude in a refinery where propane and butane are used for 
stripping the asphaltenes. The precipitated asphaltenes then deposit near, or in the wellbore. This may lead to 
increase in formation damage (skin), and subsequently more precipitation. 
 
1.1. Aims of the study: The aims of this study are to investigate the effects of increasing gas-oil ratio on the 
stability of asphaltene in light oil reservoirs and to select the best Bayesian Belief Network predictor for 
asphaltene precipitation.  
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1.2. Objective of the study: A numerical model “(Bayesian Belief Network Model) for predicting the amount 
of asphaltene precipitated in light oil reservoirs was developed instead of using approximate and complex 
analytical equation. Factors affecting asphaltene precipitation in light oil reservoirs like temperature, pressure, 
crude oil composition, gas gravity, oil gravity, 0API, and dilution ratio which are believed to have effects on 
asphaltene stability are included in the model to determine their effects on asphaltene precipitation. 
 

II. SCALING EQUATION AND BAYESIAN BELIEF NETWORK METHOD 
2.1. Scaling Equation: The use of aggregation/gelation phenomena in the scaling model first presented by 
[Rassamdana et al., 1989] led to model independency on asphaltene properties. They claimed that asphaltene 
precipitation is similar to aggregation/gelation phenomena and thus used the scaling/fractal theory to describe 
asphaltene precipitation. The scaling model is a simple model that requires the dilution ratio, m, and molecular 
weight of injected fluid (called diluents), to predict the amount of asphaltene precipitation, [Hirschberg et. al., 
1984; Hu et al., 2000; Hu and Guo, 2001). These variables were combined into two dimensionless variables 
and, defined as follows: 

ࢄ = ࢓ࡾ
ࢆ࢝ࡹ

           (2.1) 
and 

  
ࢅ = %࢚࢝

 ᇲ           (2.2)ࢆ࢓ࡾ

Where with numerical value of -2 is recommended as a constant exponent that is independent of the 
type of crude oil and the precipitating agent and is considered as an adjustable parameter with the numerical 
value in the range of 0.25-0.6 depending upon the type of crude oil and precipitant.24 the scaling equation has 
been represented in terms of and by polynomial function. 

ࢅ = +ࢄ1࡭ ࢄ2࡭ +  (2.3)         3ࢄ4࡭+2ࢄ3࡭
 

The coefficients A1-4 should be determined through data fixing using experimental data. The 
development of scaling model by (Rassamdana et al., 1989; Hirschberg et al., 1984;  Hu, et al., 2000) was 
based on data from Iranian southwest oil reservoirs. Later on, (Hu et al., 2004) applied a tuned scaling model to 
predict asphaltene precipitation for two kinds of heavy oils from Canada and U.S.A. 

 
The effects of the temperature, molecular weight of -alkane precipitants, and dilution ratio on 

asphaltene precipitation in a Chinese crude oil have been studied experimentally by [Meshad et al., 2008].  Hu 
et al., (2004) have also studied asphaltene precipitation because of CO2 injection [Floridi, 2004] they proposed a 
generalized corresponding state principle (CSP) for the prediction of asphaltene precipitation. The CSP theory 
complemented the scaling equation for asphaltene precipitation under the influence of -alkane precipitant. In 
their study, their parameters and exponents of a corresponding state equation was capable of describing the 
asphaltene precipitation behaviour in the studied high-pressure CO2 injected crude oil systems. They indicated 
that the generalized corresponding state theory was suitable for prediction of asphaltene precipitation from 
petroleum fluids as a result of the addition of miscible solvents at various temperatures and pressures. 
Thermodynamically, asphaltene precipitation is not dependent of the reservoir pressure. However, the effect of 
pressure is not included in the scaling model developed by [Rassamdana et al., 1996]. 

 
[Pearl et al., 2000; Meshad et al., 2008] included the effect of pressure on the nucleation onset and the 

amount of asphaltene precipitation in the scaling model. In the new scaling model, the relation between the 
dilution ratio and the molecular weight of diluents and the amount of asphaltene precipitation has been 
presented in two variables and as follows: 
࢞ = ࢓ࡾ

ࢆ࢝ࡹ
             (2.4) 

 
And 

 
࢟ = %࢚࢝

 ᇲ           (2.5)ࢆ࢓ࡾ

To include the effect of reservoir pressure and asphaltene precipitation in the new scaling model, the 
variables and, defined as follows: 
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ࢄ = ࢞
૚࡯ࡼ

            (2.6) 

And 

ࢅ = ࢟
૛࡯࢞

            (2.7) 

In the new scaling equation, similar to the original scaling equation has been expressed in terms of by a 
polynomial function of eq. 3. Thus, the new scaling equation includes seven adjustable parameters of A1-4, c1, 
c2, and Z. These parameters should be estimated using experimental data. Scaling models to a less degree than 
thermodynamic models require parameter tuning to predict asphaltene precipitation for different oil and 
reservoir conditions assuming that necessary laboratory data are available. Therefore, the need for parameter 
tuning for each specific oil and reservoir condition is the limitation of scaling models. 

To remove such limitation, this study presents a comprehensive model that investigates the effect of 
increasing gas-oil ratio on the stability of asphaltene in light oil reservoirs and to define and select the best BBN 
predictor that predicts the asphaltene precipitation in a gas-cap well instead of approximate and complex 
analytical equation under the prevailing conditions of temperature, pressure, oil composition, gas gravity, oil 
gravity, 0API, and dilution ratio which are believed to have effects on asphaltene stability. The presented model 
is based on an artificial intelligence (AI) method that is still in the primary stages of development and presents 
promising results that still require extensive study to be matured. A BBN is applied particularly when the 
fundamentals of the model structure, cause-effect relation between variables, are faced with problems of 
conceptual uncertainty (Langseth, 2008; Pourret, 2008; Norsys, 1996). The preference of BBN among AI 
methods was due to the facts that: (1) Asphaltene precipitation is causative in nature, (2)  BBN is capable of 
extracting an interrelation between causes and effects quantitatively, (3)  BBN algorithms can learn from 
experiments, and are also fault tolerant in the sense that they can handle inaccurate and incomplete data, (4) fast 
response, simplicity and capacity to learn are the advantages of BBN compared to classical (conventional) 
methods, and (5) there is no limitation in the flow of information in a BBN model from causes to effects and 
vice versa. The latter fact allows one to predict the dilution ratio at nucleation onset for a given pressure and 
diluents and trivial asphaltene weight percent. Moreover, the BBN model training using a complete databank 
covering oil conditions of interest removes the limitation associated with the scaling model. Because the 
required data for training does not include asphaltene properties, one does not face difficulties associated with 
thermodynamic models in applying a trained BBN model. Avery brief introduction to fundamentals of BBN is 
includes as a background, and then the BBN model was developed to predict the asphaltene precipitation in a 
light oil reservoir. A comparison was made between the BBN model predictions and the scaling predictions. 

2.2. Bayesian Belief Network (BBN) Method: A BBN is a graphical probabilistic model to represent and study 
an uncertain domain. A BBN can also be used to deal with the systems that are of a cause-nature. However, a 
BBN is a mathematical Structure that uses conditional independences for the speed of inference, instead of real 
model of causalities. Historically speaking, a suggested link between causality and conditional independence 
indeed goes back to Reichenbach.18 representing conditional independences, which can be obtained as 
consequences of the causal relationships, provides a natural and consistent way to express what is known about 
the different phenomena. Probabilistic relationships, such as conditional independences, can be used to 
investigate the causal structure dealing with uncontrolled observations [Pourret, 2008]. 
  

A BBN consists of a set of nodes and directed edges between nodes. Nodes represent uncertain events or variables 
[Pourret, 2008]. Nodes can be either continuous or discrete random format. The states bin ranges of a discretized node are 
exclusive. The directed edges are the links between a pair of nodes, and their direction represent causal influence of one node 
(parent node) on the other one (child node). In the context of BBN, each node is associated with a probability distribution. 
Nodes without parents are called root nodes and have an associated prior probability (PP) distribution. For child nodes, the 
probability distribution takes the form of conditional probability (CP) that represents the correlation between a parent and a 
child node. The edges of a bin represent the statement that each variable is conditionally independent of its non-descendent 
in the graph given its parent in the same graph [Norsys, 1996]. A BBN requires four basic elements to represent knowledge 
of the process under consideration: set of nodes, directed edges, conditional probability distribution, and the prior probability 
distribution. New information for a variable, called evidence, can be used to instantiate the node representing the variable by 
setting the probability of one of the states of that node to 100 (on a percentage basis). The number of nodes receiving 
evidence can be different from one to many at different times depending upon the information availability. Introducing 
evidence to a model allows for the updating probability distribution of uninstantiated nodes that can be used to calculate 
numerical values for such nodes as predictions. The mathematical procedure to update probability distribution is called 
“inference”, and ‘Bayes’ rule is the basis for carrying out the inference in a BBN. When there is a shortage of information, 
the evidence of the probabilistic BBN model help us update our knowledge of the process, even in the case of inaccurate 
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data. This is an advantage of BBN over other modeling methods that do not deliver any result when a set of input is not 
complete. 
 

III. RESEARCH METHODOLOGY 
3.1. Data Acquisition Analyses: The 250 data sets used in this work were collected from the static asphaltene 
precipitation tests conducted on the North Arab-D reservoir of Ghawar field in Saudi Arabia containing 
undersaturated light oil1.  Data are further extrapolated from the existing ones in order to have a more extensive 
database for the network. Of the 250 data points, 175 (70%) of the data points were used to train the network, 10 
(4%) of the data sets were used to cross-validate the relationships established during training process and the 
remaining 65 (26%) data points were used to test the network and to evaluate their accuracy through statistical 
analysis. 
 
3.2. Simulating API Gravity and Gas Specific Gravity of the Mixture 

The data given does not reflect the gravity of the resulting mixture which is also believed to have a 
serious influence on whether a particular fluid will experience asphaltene precipitation or not and these was 
simulated using the Glaso’s (1980) correlation for estimating the gas solubility as a function of the API gravity, 
pressure, temperature, and gas specific gravity.  
=sࡾ g[ቀࢽ

૙.ૢૡૢࡵࡼ࡭°

૙.૚ૠ૛ቁ(૝૟૙ିࢀ)  ૚.૛૛૞૞         (3.1)[(∗࢈ࡼ)
Where Pb

* = 10x is a correlating number with the parameter ݔ defined thus as: 
	࢞ = 	૛.ૡૡ૟ 	ૢ–	 [૚૝.૚ૡ૚૚	– 	૜.૜૙ૠ૜	(ࡼ)ࢍ࢕࢒]૙.૞	       (3.2) 
   
3.3. Statistical analyses used for model performance and validation.  
The statistical inferences below were used to evaluate the model performance and validation: 
ࡱࡿࡹ = ૚

ࡺ
∑ ࢔૛(࢏ࢋ)
ୀ૚࢏ = ૚

ࡺ
࢏ࢀ)∑ − ૛(࢏࢚࢛ࡻ 		         (3.3) 

ࡱࡿࡹࡾ = ට૚
ࡹ
∑ ࢏ࢀ) − ࢓૛(࢏࢚࢛ࡻ
ୀ૚࢏          (3.4) 

૛ࡾ = ૚ − ૛(࢏࢚࢛ࡻି࢏ࢀ)

∑ ࢓૛࢏ࢀ
స૚࢏

          (3.5) 

࣌ = ∑ ࢖࢞ࢋ࢏ࢅ)| − ࢔࢖࢞ࢋ࢏ࢅ/(࢒ࢋࢊ࢕࢓࢏ࢅ
ୀ૚࢏ |           (3.6) 

=  ave࣌ ∑ ࢖࢞ࢋ࢏ࢅ)|) − ࢔࢖࢞ࢋ࢏ࢅ/|(࢒ࢋࢊ࢕࢓࢏ࢅ
ୀ૚࢏  (3.7)        ࢔/(

࢏ࡱ = ࢏ࢀି࢏࢚࢛ࡻ
࢏ࢀ

× ૚૙૙          (3.8) 

ࡱ࡭ࡹ% = ૚
ࡺ
∑ ࢔|࢏ࡱ|
ୀ૚࢏           (3.9) 

ࡾ = ඥ૚ − ∑ ࢋࢅ) ∑/(࢓ࢅ− ࢔ࢋࢅ)
ୀ૚࢏

࢔
ୀ૚࢏ −  ᇱ)                   (3.10)ࢅ

Where ࢅᇱ = ૚
࢔
࢏ ∑ ࢔ࢋࢅ

ୀ૚࢏                      (3.11) 
  
 

IV. ANALYSES OF RESULTS AND INTERPRETATION 
Ghawar Field Record: The Arab-D reservoir of Ghawar field is situated in the North East province in the 
Kayaker desert in the North West of Saudi Arabia. 
 
Crude Oil and Gas Properties of Ghawar Field: The crude oil was sampled using a conventional bottomhole 
sampler. The crude oil fluid composition is shown in Table A1 and A2. It has a bubble point pressure of 
~1900psia at a reservoir temperature of 215°F and a GOR of 580scf/stb. The crude oil properties do not vary 
significantly across the area of interest. The dead crude has an asphaltene content of ~3.0 wt. %. 
 

The composition of the injected gas (that was injected in the 1960s and 1970s) is presented in Table 
A1. This was the associated gas from the crude after processing at the gas oil separating plant (GOSP). The gas 
used in the experiment was prepared from the high pressure production trap (HPPT) gas after flashing it at 1,300 
psia and 75°F. The model was validated using the input parameters in Table A1 and A2 from Ghawar field, one 
of the major fields in Saudi Arabia. 
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4.1. Results 
Table A: Fluid Properties of North Ghawar-Arab D Reservoir in Saudi Arabia, Kokal et al. (1995). 
Table A1: Crude Oil and Gas Properties 

Component Mole % 
Molecular Weight Reservoir Fluid Injected Gas     (Actual) Injected Gas (Experiment) 

N2 28.01 0.14 0.41 0.34 
CO2 44.01 5.89 12.30 12.62 
H2S 34.08 1.82 1.91 2.49 
C1 16.04 24.01 56.00 56.00 
C2 30.07 9.79 17.45 16.23 
C3 44.10 7.49 8.20 8.39 
C4 58.12 4.92 2.64 2.86 
C5 72.15 3.95 0.84 0.83 
C6 86.18 3.14 0.25 0.25 
C7+ 100.20 38.85 0.00 0.01 
C7+MW 100.20 240   
C7+SG  0.8652   
BPP (psia)  ~1900@220°F   

 
Table A2: Bulk Deposit Test 

GOR (scf/stb) 550 597 643 736 125 195 
Oil charged (cc) 60 60 60 60 60 60 
Gas charged (cc) 0 2 4 8 30 60 
Pressure (psia) 30 30 300 300 300 300 
Temp. 21 21 215 215 215 215 
Amount Precipitated (mg) 17. 33 58 62 81.1 132 
Precipitated asphaltene (ppm) 43 73 13 13 182 29 

  
Table 4.1: Statistics of the R-values on network performance for the training, testing, and the entire data sets. 

EM Learning 
Algorithm 

Mean Max. Absolute 
Error 

Min. Absolute 
Error 

Standard 
deviation 
 (aveߪ)

Ave. Standard 
deviation (ߪ) 

Correlation 
coefficient       R 

Training data sets 0.50056448 0.7823412 0.47112483 0.348197 0. 002106 0.99889887 
Testing data sets 0.00461453 0.0049139 3.8788E-07 0.1678 0.001864 0.99428189 
Entire data sets 0.00465241 0.0075961 5.7153E-07 0.76423 0.0027981 0.99907533 

 
Table 4.1a: Validating the trained data sets. 

Best Network Training Data Sets Validating Data Sets 
Training Cross-Validation Training Cross-Validation 

Runs #   2 2 
Period 100 100 99 100 
Min. MSE 0.000195835 0.000448607 0.000122137 0.000211566 
Max. MSE 0.000195835 0.000448607 0.000505758 0.000211565 

 
Table 4.1b: Validating the trained data sets 

All Runs # Training Minimum Cross-Validation Minimum 
Minimum MSE 
 
 
Average Minimum MSE 
 

7.1183E-06 
 
 
0.000201394 
 

5.20314E-06 
 
 
0.000340931 
 

Average Maximum MSE 0.000329268 0.000380287 
 
Table 4.1c: Validating the trained data sets 

All Runs #  Min Cross Validation  Cross Validation 
Average Min. MSE 0.000201394 0.000340931 6.89124E-05 0.000124135 
Average Max. MSE 0.000329268 0.000380287 0.000152968 0.000146175 

 
Table 4.2: Best Network Performance.  
Network Performance Correlation coefficient (R-value) 

MSE MAE MAE (Max.) MAE  (ߪ) R 
Training data sets 7.1183E-06 0.00069148 0.00930148 4.01298-06 0.2579 0.99849887 
Testing data sets 1.1214E-06 0.00055299 0.00491395 3.8788E-06 0.1678 0.99398189 
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Table 4.3: Relative absolute deviation (ߪ) and average relative absolute deviation (ߪave) for simulated data. 

Scaling 
Methods 

Rassamdana et al. 
(1996) 

Yu-Feng et.al. 
(2000) 

Ashoori et.al. 
(2003) 

BBN  Model (This study) 
Training data 
sets 

Testing data 
sets 

Entire data sets 

 0.76423 0.248194 0.1678 68.8602 4.9586 1.071688 (ߪ)
 0.003897 0.018031 0.2504 0.001864 0.0013062 0.00279818 (aveߪ)
       

 

 
Figure 4.1: Average MSE with standard deviations boundaries for 3 Runs 
 

 
Figure 4.2: Bayesian Belief Network testing the desired output and actual network output 
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Figure 4.3 Comparison of experimental data with stimulated values that used to train the network. 
 

 
Figure 4.4 Comparison of experimental data with stimulated values of the entire data used in the network 
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Figure 4.5: Asphaltene precipitated as a function of Gas-Oil Ratio (GOR) 

 
4.2. Interpretation of Results 
Table 4.1 shows the results of the optimization of the networks. The network of correlation coefficient, R. of 
0.9985 trained with the EM learning algorithm gave the best performance and was shown in Fig. 4.3. 

Table 4.3 illustrates the accuracy of each method to predict the amount of asphaltene precipitation by 
comparison the relative absolute deviation (and average relative absolute deviation ave) are defined as shown in 
equation (3.6) and (3.7) respectively. As it is apparent, the deviation is the less for BBN model, while it is much 
higher for scaling equations as shown in Table 4.3. This analyses shows that the BBN model is more accurate 
than the other methods to simulate the asphaltene precipitation.  
 
Fig. 4.1, and Fig. 4.2 shows the training processes, its validations and the testing process on the used data 
points, respectively. The correlation coefficient R-values between the predicted and the actual values of the 
measured asphaltene weight percent are shown in Fig. 4.3 and 4.4. This shows that the BBN predicted 
asphaltene precipitation values are very close to the actual values of all data sets. Fig. 4.5 has shown that 
asphaltene precipitation is a function of gas injection and increases with increasing gas-oil ratio. However, the 
amount of asphaltene precipitated is relatively small. There is evidence that some of the asphaltene dissolve as 
the pressure is reduced below the bubble point. These effects have resulted in preventing severe asphaltene build 
ups in the well. In Table 4.3 shown, the BBN model showed dominance over scaling equations when their 
absolute deviations and relative absolute deviations are compared. 
 

V. CONCLUSION AND RECOMMENDATIONS 
5.1. Conclusion 

In this study, A Bayesian Belief Network (BBN) model was developed to predict and simulate the 
amount of asphaltene precipitation in a high-gas oil ratio well as a function of dilution ratio, temperature, oil 
volume, gas volume, gas-oil ratio, gas gravity, stock tank oil gravity, and pressure. The results of this study 
clearly indicate that asphaltene precipitation is a function of gas injection and increases with increasing gas-oil 
ratio. The results from BBN model were compared with predicted values using some scaling equations. The 
performance of the BBN model was measured using correlation coefficients (R), Mean Squared Error (MSE), 
and absolute error. The reported results confirmed that BBN approach used for asphaltene precipitation 
prediction have good statistical performance values of correlation coefficient with Minimum Absolute Mean 
Squared Error and Mean Squared Error values.  
 
5.2. Recommendations 
The main recommendations of this study are: 

• Produce the oil wells at as low a GOR as possible. This will reduce the amount of asphaltene 
precipitation and subsequent deposition. 

• Constant monitoring of asphaltene build-up in the wellbores should be maintained 
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• Constant monitoring of the cleanout procedures to improve processes for future cleanouts should be 
sustained. 

• Solvent should be injected into the oil reservoir to prevent plugging. 
• Examine the use of asphaltene dispersants in severe deposition cases. 
• Examine the suspended asphaltenes in the crude and increase demulsifier dosage to prevent the 

asphaltene turning to emulsion and causing production problems. 
 

NOMENCLATURES 
Symbols  

Rm    Dilution ratio 
Mw    Molecular weight of the diluents 
P    Pressure 
T    Temperature 
Vo    Oil volume 
Vg    Gas volume 
γg    Gas gravity 
γo    Stock tank oil gravity 
°API    American Petroleum Institute 
GOR    Gas-Oil Ratio  
Wi    Weight percent of asphaltene     precipitation 
Z    Adjustable parameter constant 
Z′    Constant exponent 
c1, c2,       Constants 
n    Constant  
Ai    Scaling equation coefficients of equation (2.3) 
X    Function defined by equation (2.1) 
Y    Function defined by equation (2.2) 
x    Function defined by equation (2.4) 
y    Function defined by equation (2.5) 
BBN    Bayesian Belief Network 
Rs     Dissolved gas specific gravity of the mixture 
BPP    Bubble point pressure 
MSE    Mean Squared Error defined by equation (3.3) 
MAE    Mean Absolute Error 
MAE (Max.)   Maximum Absolute Error of the Mean 
RMSE    Root Mean Squared Error defined by equation (3.4) 
Ei    Absolute Error function defined by equation (3.8) 
%MAE     Percent mean error defined by equation (3.9) 
R    Correlation coefficient defined by equation (3.10) 
Greeks 
σ    Absolute Deviation defined by equation (3.6) 
σAve    Average Deviation defined by equation (3.7) 
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