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ABSTRACT: A modified approach to image compression is proposed in this paper. The objective of image 

compression based on multi spectral representation is developed. The denoising process of image coding is 

improvised so as to achieve higher processing accuracy with high PSNR value. A multi wavelet coding with a 

modified weighted filtration approach is proposed. The simulation observation evaluates the proposed approach 

and the comparative analysis of the proposed approach presents the improvement in coding efficiency. 
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I. INTRODUCTION 
With the upcoming of new technologies the demand for new services and their usage is also increasing. 

New standards and architectures are coming up to achieve the objective of higher system performance. In 

various demanded services imaging applications are growing at a faster rate. For current demanded services new 

image coding approaches were proposed. These approaches are focused mainly to achieve better compression 

factor or higher accuracy. In the process of image coding the initial process is to remove the noise artifacts 

during the preprocessing operation. In Image coding inappropriate and coarse results may strongly deteriorate 

the relevance and the robustness of a computer vision application. The main challenge in noise removal is 

suppressing the corrupted information while preserving the integrity of fine image structures. Several and well-

established techniques, such as median filtering are successfully used in gray scale imaging. Median filtering 

approach is particularly adapted for impulsive noise suppression. It has been shown that median filters present 

the advantage to remove noise without blurring edges since they are nonlinear operators of the class of rank 

filters and since their output is one of the original gray values [1] [2]. The extension of the concept of median 

filtering to color images is not trivial.  

 

The main difficulty in defining a rank filter in color image is that there is no “natural” and 

unambiguous order in the data [3] [4]. During the last years, different methods were proposed to use median 

filters in color image processing [5] [6]. In vector filtering, the challenge is to detect and replace noisy pixels 

and preserve the relevant information. But it is recognized that in some image areas most of vector filters blur 

thin details and image edges [7] [8] even if many works such as Khriji and Gabbouj [9]. Generally impulse 

noise contaminates images during data acquisition by camera sensors and transmission in the communication 

channel. In [10] Chan and Nikolova proposed a two-phase algorithm.  In the first phase of this algorithm, an 

adaptive median filter (AMF) is used to classify corrupted and uncorrupted pixels; in the second phase, 

specialized regularization method is applied to the noisy pixels to preserve the edges and noise suppression. The 

main drawback of this method is that the processing time is very high because it uses a very large window size 

of 39X39 in both phases to obtain the optimum output; in addition, more Complex circuitry is needed for their 

implementation. In [11] Srinivasan and Ebenezer proposed a sorting based algorithm in which the corrupted 

pixels are replaced by either the median pixel or neighborhood pixel in contrast to AMF and other existing 

algorithms that use only median values for replacement of corrupted pixels. At higher noise densities this 

algorithm does not preserve edge and fine details satisfactorily. In this paper a novel robust estimation based 

filter is proposed to remove fixed value impulse noise effectively.  
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The proposed filter removes low to high density fixed value impulse noise with edge and detail 

preservation upto a noise density of 90%. Recently, nonlinear estimation techniques are gaining popularity for 

the problem of image denoising. The well-known Wiener filter for minimum mean-square error (MMSE) 

estimation is designed under the assumption of wide-sense stationary signal and noise (a random process is said 

to be stationary when its statistical characteristics are spatially invariant) [12]. For most of the natural images, 

the stationary condition is not satisfied. In the past, many of the noise removing filters were designed with the 

stationary assumption. These filters remove noise but tend to blur edges and fine details. This algorithm fails to 

remove impulse noise in high frequency regions such as edges in the image. To overcome the above mentioned 

difficulties a nonlinear estimation technique for the problem of image denoising has been developed based on 

robust statistics. Robust statistics addresses the problem of estimation when the idealized assumptions about a 

system are occasionally violated. The contaminating noise in an image is considered as a violation of the 

assumption of spatial coherence of the image intensities and is treated as an outlier random variable [12]. In [13] 

Kashyap and Eom developed a robust parameter estimation algorithm for the image model that contains a 

mixture of Gaussian and impulsive noise.  In [12] a robust estimation based filter is proposed to remove low to 

medium density Gaussian noise with detail preservation. Though the techniques were developed for filtration of 

Gaussian or impulsive noise they are been developed for gray level images and are not suitable for color images.  

These approaches work on the method of denoising based on the current pixel or on the relevance surrounding 

pixels to make a decision. 
 

 The adaptive filtration is an emerging solution to the dynamic noise processing. However in the 

process of dynamic filtration proper denoising value is required to eliminate the noise effect. In this paper a 

modified filtration approach for image denoising is presented. A denoised sample is then processed  to achieve 

best representation achieving both compression improvement and coding efficiency. To achieve the objective 

JPEG 2000 coding standard were presented. The coding in such architecture is developed using wavelet 

transformation. However the spectral representation of such coding is limited and finer resolution information 

are neglected. This assumption reduces the coding accuracy. In this paper a multi-spectral decomposition for 

image compression is proposed. Wavelet-based coding [14, 15] provides substantial improvements in picture 

quality at higher compression ratios. For better performance in compression, filters used in wavelet transforms 

should have the property of orthogonality, symmetry, short support and higher approximation order. Due to 

implementation constraints scalar wavelets do not satisfy all these properties simultaneously. Multiwavelets [16, 

17] which are wavelets generated by finite set of scaling functions, have several advantages in comparison to 

scalar wavelets. One of the advantages is that a multiwavelet can possess the orthogonality and symmetry 

simultaneously [15, 18, 19] while except for the „Haar‟ (scalar wavelet) cannot have these two properties 

simultaneously. Thus Multiwavelets offer the possibility of superior performance and high degree of freedom 

for image processing applications, compared with scalar wavelets. Multiwavelets can achieve better level of 

performance than scalar wavelets with scalar wavelets with similar computational complexity. With these 

approaches in this work a new image coding approach integrating modified denoising and multi spectral 

representation is proposed. The remaining section of the work is presented in 6 sections, where section 2 

outlines the image coding system and its modeling approach. The conventional image coding approach is 

presented in this section. The proposed image coding methodology is presented in section 3. Section 4 presents 

the simulation observation obtained for the proposed approach and a conclusion is presented in section 5. 

 

II. IMAGE CODING SYSTEM 
The JPEG-2000 image compression architecture is the fundamental architecture consisting an encoder 

and decoder unit. The function of the encoder is to create a set of symbols from the given input data which is 

transmitted through a channel and then feed to decoder where we can reconstruct the image. There is a 

possibility that the reconstructed output image can the replica of the input image or the reconstructed image is 

distorted image due to channel interference. Figure 3.1 shows convention block diagram of a compression 

system.  

 

 
 

Figure 1:   conventional Block Diagram of an Image compression system. 
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In the process of encoding the image is preprocessed for filtration and output is then processed using 

DWT. To perform the forward DWT the JPEG2000 system uses a one-dimensional (1-D) subband 

decomposition of a 1-D set of samples into low-pass and high-pass samples. Quantization refers to the process 

of approximating the continuous set of values in the image data with a finite (preferably small) set of values. 

After the data has been quantized into a finite set of values, it can be encoded using an Entropy Coder to give 

additional compression. An entropy coder encodes the given set of symbols with the minimum number of bits 

required to represent them using Huffman coding. The Huffman decoder block carries out decoding reading the 

unique code bits passed in place of the data bit. The dequantizer unit dequantizes the decoded data bits. Inverse 

transformation is the process of retriving back the image data from the obtained image values. The image data 

transformed and decomposed under encoding side is rearranged from higher level decomposition to lower level 

with the highest decomposed level been arranged at the top. There are several ways wavelet transforms can 

decompose a signal into various sub bands.The decomposition of the signal into different frequency bands is 

simply obtained by successive high pass and low pass filtering of the time domain signal. . First, the low pass 

filter is applied for each row of data, thereby getting the low frequency components of the row. But since the 

low pass filter is a half band filter, the output data contains frequencies only in the first half of the original 

frequency range. Now, the high pass filter is applied for the same row of data, and similarly the high pass 

components are separated. 

  
Figure 2 : Wavelet Decomposition of the image sample 

To perform the forward DWT the JPEG2000 system uses a one-dimensional (1-D) subband 

decomposition of a 1-D set of samples into low-pass and high-pass samples. Low-pass samples represent a 

down-sampled, low-resolution version of the original set and High-pass samples represent a down-sampled 

residual version of the original set. The Huffman code is found to be more optimal since it results in the shortest 

average codeword length among all encoding techniques that assign a unique binary codeword to each pattern. 

In addition, Huffman codes possess the prefix-free property, i.e., no codeword is the prefix of a longer 

codeword. The first step in the encoding process is to identify the unique patterns in the test set. A codeword is 

then developed for each unique pattern using the Huffman code construction method. The obtained Huffman 

tree is then used to construct code words for the patterns of a data set. These code words are assigned to the data 

bits for compression. The rate of compression achieved is considerably high compared to other encoding 

techniques due to its variable length property. Typical image coder generally consist of this encoding process, 

however this method require extensive training of non adaptive entropy codes and has to maintain a codebook 

for encoding and decoding. System following Huffman coding generally shares the codebook under 

transmission and reception. These parameters make the coding system non efficient. An enhance coding 

proposed by Shapiro [1] over come these excessive codebook maintenance.   

 

 The inverse fast wavelet transform can be computed iteratively using digital filters. The figure below 

shows the required synthesis or reconstruction filter bank, which reverses the process of the analysis or 

decomposition filter bank of the forward process. At each iteration, four scale j approximation and detail sub 

images are up sampled and convolved with two one dimensional filters-one operating on the sub images 

columns and the other on its rows. Addition of the results yields the scale j +1 approximation, and the process is 

repeated until the original image is reconstructed. The filters used in the convolutions are a function of the 

wavelets employed in the forward transform. 
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Figure 3: reconstruction unit for IDWT 

 

The simplest of smoothing algorithms is the Mean Filter. Mean filtering is a simple, intuitive and easy to 

implement method of smoothing images, i.e. reducing the amount of intensity variation between one pixel and 

the next. It is often used to reduce noise in an image. The idea of mean filtering is simply to replace each pixel 

value in an image with the mean (`average') value of its neighbors, including itself. This has the effect of 

eliminating pixel values, which are unrepresentative of their surroundings. The mean value is defined by,  

1

1
( )

N

i i

i

M n F x x
N 

   

Where, N – number of pixels 

xi – corresponding pixel value, 

i= 1….. N 

The mean filtration technique is observed to be lower in maintaining edges within the images. To improve this 

limitation a median filtration technique is developed. The median filter is a non-linear digital filtering technique, 

often used to remove noise from images or other signals. Median filtering is a common step in image 

processing. It is particularly useful to reduce speckle noise and salt and pepper noise. Its edge-preserving nature 

makes it useful in cases where edge blurring is undesirable. The idea is to calculate the median of neighbouring 

pixels' values. This can be done by repeating these steps for each pixel in the image. a) Store the neighbouring 

pixels in an array. The neighbouring pixels can be chosen by any kind of shape, for example a box or a cross. 

The array is called the window, and it should be odd sized.  

b) Sort the window in numerical order  

c) Pick the median from the window as the pixels value. 

The process of this filtration is limited to the surrounding pixel only. This limitation of noise suppression and a 

finer representation is presented in the following section.  

 

III.  WEIGHTED MULTI-SPECTRAL (WMS) CODING 
In a Spatial Median Filter the vectors are ranked by some criteria and the top ranking point is used to 

replace the center point. No consideration is made to determine if that center point is original data or not. The 

unfortunate drawback of these filters is the smoothing that occurs uniformly across the image. Across areas 

where there is no noise, original image data is removed unnecessarily. In the proposed weighted filtration 

approach, after the spatial depths between each point within the mask are computed, an attempt is made to use 

this information to first decide if the mask‟s center point is an uncorrupted point. If the determination is made 

that a point is not corrupted, then the point will not be changed.  

The proposed modified filtration works as explained below,  

[1]. Calculate the spatial depth of every point within the mask selected. 

[2]. Sort these spatial depths in descending order.  

[3]. The point with the largest spatial depth represents the Spatial Median of the set. In cases where noise is 

determined to exist, this representative point is used to replace the point currently located under the center 

of the mask. 

[4]. The point with the smallest spatial depth will be considered the least similar point of the set.  

[5]. By ranking these spatial depths in the set in descending order, a spatial order statistic of depth levels is 

created. 

[6]. The largest depth measures, which represent the collection of uncorrupted points, are pushed to the front 

of the ordered set. 

[7]. The smallest depth measures, representing points with the largest spatial difference among others in the 

mask and possibly the most corrupted points, and they are pushed to the end of the list. 

This prevents the smoothing by looking for the position of the center point in the spatial order statistic list. 
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 For a given parameter (where 1    masksize), which represents the estimated number of original points 

under a mask of points. As stated earlier, points with high spatial depths are at the beginning of the list. Pixels 

with low spatial depths appear at the end.  

  If center point „c‟   then current pixel MSF ( , xi) = rc 

elsif center point „c‟ > then current pixel MSF ( , xi) = r1 

else if c =1 then, pixel canot be modified. 

If the position of the center mask point appears within the first   bins of the spatial order statistic list, then the 

center point is not the best representative point of the mask, and it is still original data and should not be 

replaced. 

Two things should be noted about the use of   in this approach. When   is 1, this is the equivalent to the 

conventional Median Filter. When   is equal to the size of the mask, the center point will always fall within the 

first   bins of the spatial order statistic and every point is determined to be original. This is the equivalent of 

performing no filtering at all, since all of the points are left unchanged. The algorithm to detect the least noisy 

point depends on a number of conditions. First, the uncorrupted points should outnumber, or be more similar, to 

the corrupted points. If two or more similar corrupted points happen in close proximity, then the algorithm will 

interpret the occurrence as original data and maintain the corrupted portions. While   is an estimation of the 

average number of uncorrupted points under a mask of points, the experimental testing made no attempt to 

measure the impulse noise composition of an image prior to executing the filter. 

These filter outputs are then processed for multi spectral operation.  

The conventional wavelet transform is a type of signal transform that is commonly used in image compression. 

A newer alternative to wavelet transform is the multiwavelet transform. Multiwavelets are very similar to 

wavelets but have some important differences. In particular, whereas wavelets have an associated scaling 

function Φ(t) and wavelet function Ψ(t), multiwavelets have two or more scaling and wavelet functions. For 

notational convenience, the set of scaling functions can be written using the vector notation Φ(t) = [Φ1(t), 

Φ2(t)…, Φr(t)]
T
, where Φ(t) is called the multiscaling function. Likewise, the multiwavelet function is defined 

from the set of wavelet functions as Ψ(t) = [Ψ1(t), Ψ2(t)…, Ψr(t)]
T
 Called a scalar wavelet, or simply wavelet 

where r = 1, Ψ(t). While in principle „r‟ can be arbitrarily large, the multiwavelets studied to date are primarily 

for r = 2. The multiwavelet two-scale equations resemble those for scalar wavelets defined by; 

 

 
 

However, {Hk} and {Gk} are matrix filters, i.e., Hk and Gk are “r x r” matrices for each integer k. The matrix 

elements in these filters provide more degrees of freedom than a traditional scalar wavelet. These extra degrees 

of freedom can be used to incorporate useful properties into the multiwavelet filters, such as orthogonality, 

symmetry, and high order of approximation. The key idea is to figure out how to make the best use of these 

extra degrees of freedom. 

 
 

Figure4 : Pyramidal decomposition of multi spectral decomposition 

 

For the processing of MRI image using multiwavelet, the typical approach is to process each of the rows in 

order, and process each column of the result. Nonseparable methods work in both image dimensions at the same 

time. While non-separable methods can offer benefits over separable methods, such as savings in computation. 
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They are generally more difficult to implement. Computing Discrete Multi-wavelet Transform, scalar wavelet 

transform can be written as follows:  

 

 
 

Figure 5: Filter coefficient for the Multi spectral decomposition  

 

 

Where Hi and Gi are low and high pass filter impulse responses, are 2-by-2 matrices which can be written 

asfollows:  

 

 
 

 

Figure 6: Filtration process in Multi spectral coding  

 

By examining the transform matrices of the scalar wavelet and multi-wavelets, it is observed that in multi-

wavelets transform domain there are first and second low-pass coefficients followed by first and second high 

pass filter coefficients rather than one lowpass coefficient followed by one high pass coefficient. Therefore, if 

we separate these four coefficients, there are four sub bands in the transform domain. Since multi-wavelet 

decompositions produce two low-pass sub bands and two high pass sub bands in each dimension, the 

organization and statistics of multiwavelet sub band differ from the scalar wavelet case. 

 

 
 

Figure7 : Conventional iteration of multiwavelet decomposition. 

 

During a single level of decomposition using a scalar wavelet transform, the 2- D image data is replaced by four 

blocks corresponding to the sub bands representing either low pass or high pass in both dimensions. These sub 

bands are illustrated in Fig. 6. The sub band labels indicate how the sub band data were generated. For example, 

the data in sub band LH was obtained from high pass filtering of the rows and then low pass filtering of the 

columns.  
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 The multi-wavelets used here have two channels, so there will be two sets of scaling coefficients and 

two sets of wavelet coefficients. Since multiple iteration over the low pass data is desired, the scaling 

coefficients for the two channels are stored together. Likewise, the wavelet coefficients for the two channels are 

also stored together. The multi-wavelet decomposition sub bands are shown in Fig.7. For multi-wavelets the L 

and H have subscripts denoting the channel to which the data corresponds. For example, the sub band labeled 

L1H2 corresponds to data from the second channel high pass filter in the horizontal direction and the first 

channel low pass filter in the vertical direction. This shows how a single level of decomposition is done. In 

practice, there is more than one decomposition performed on the processing image. Successive iterations are 

performed on the low pass coefficients from the pervious stage to further reduce the number of low pass 

coefficients. Since the low pass coefficients contain most of the original signal energy, this iteration process 

yields better energy compaction. After a certain number of iterations, the benefits gained in energy compaction 

becomes rather negligible compared to the extra computational effort. Usually five levels of decomposition are 

used. A single level of decomposition with a symmetric-antisymmetric multi-wavelet is roughly equivalent to 

two levels of wavelet decomposition. Thus a 3–level multiwavelet decomposition effectively corresponds to 6- 

level scalar wavelet decomposition. The scalar wavelet transform gives a single quarter-sized sub band from the 

original larger sub band. The multi-level decomposition is performed in the same way. The multi-wavelet 

decomposition iterates on the low pass coefficients from the pervious decomposition. In the case of the scalar 

wavelets, the low pass quarter image is a single sub band. But when the multi-wavelet transform is used, the 

quarter image of low pass coefficients is actually a 2 x 2 block of sub bands (the LLj sub bands in Fig. 6. Due to 

the nature of the preprocessing and symmetric extension method, data in these different sub bands becomes 

intermixed during iteration of the multiwavelet transform. The intermixing of the multiwavelet low pass sub 

bands leads to suboptimal results. Consider the multi-wavelets transform coefficients resulting from single-level 

decomposition. It can be readily observed that the 2 x 2 "low pass" block (upper left corner) actually contains 

one low pass sub band and three band pass sub bands. The L1L1 sub band resembles a smaller version of the 

original image, which is a typical characteristic of a true low pass sub band. In contrast, the L1L2, L2L1, and L2L2 

sub bands seem to process characteristics more like those of high sub bands. Also only L1L1 sub band contains 

coefficients with a large DC value and a relatively uniform distribution. The L1, L1, H1 and H2 sub bands, 

measured along the vertical direction.  

 

IV. SIMULATION RESULT 
 This section represents the performance evaluation of the proposed approach. For the evaluation of the 

proposed system different images were tested as shown below. To test the accuracy of the developed approach, 

a color image with mean distortion is applied. To estimate the quality of a reconstructed image, the Root-Mean-

Squared Error between the original and the reconstructed image is computed.  The Root-Mean-Squared Error 

(RMSE) for an original image I and reconstructed image R defined by,                                     

2

0 0

1
( , ) ( , ) ( , )

Iw Ih

i jw h

R M S E I R I i j R i j
I I  

 


 
 

To test the operation performance for developed system the PSNR for the system is evaluated under different 

medium distortion level. The coding robustness is evaluated over the level of distortion introduced at different 

level bit coding. To evaluate the process. 

 

Original Image Noised Image

 
(a)                     (b)  
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Mean filtered Median Filtered

 
(b)                    (d)  

 
weighted filter

 
                                                                      (e) 

 

Figure 8: (a) Original sample, (b) Noised sample attacked with salt & pepper Noise at  =0.4, (c) filtered output 

after performing denoising using mean filtration, (d) Filtered output after performing median filtration, (e) 

Obtained result after filtration with proposed weighted filtration  

The observation illustrates that the obtained visualization of the filtered result using weighted filtration is 

comparatively more accurate than the conventional filtration approach.  
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Figure 9: Average RMSE observation over variant Noise variance 

 

Figure illustrates the obtained comparative analysis of the proposed weighted filtration approach over the 

conventional filtration technique. It is observed that the RMSE value for the proposed approach is decreased to 

about 40 units as comparative to the conventional approach. 

 

weighted-Filtered at N=2
weighted-Filtered at N=3

 
                                                   (a)               (b) 
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weighted-Filtered at N=4

 
                                                           (c)  

 

Figure 10: (a) filtered output using weighted filtration at N=2, (b) filtered output using weighted filtration at 

N=3, (c) filtered output using weighted filtration at N=4 

It is observed that the obtained filtration is improved with the block size increment. At N=4 the obtained 

filtration is comparatively accurate.  
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Figure 11: comparative average RMSE with the variation in noise level. 

 

Figure shows the obtained comparative analysis after performing a block size variation. It could be observed 

that the RMSE value get minimized with the increase in the block size; at N=5 the obtained observation is 

minimum, hence an optimal N=5 value is chosen for the coding. A Similar observation is carried out over 

different samples and a comparative result for the developed method is as summarized in table 1. 

 

Table 1: Observation for the obtained RMSE at different Noise variation 

 

 
 

The obtained observation illustrates an improvement of about 40 units in the obtained RMSE observation.  
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Figure 12: comparative analysis of different wavelet transformations at variable bpp. 
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Figure illustrates the comparatively analysis of multiple wavelet feasibility for developed method. It is observed 

that with the usage of symlet transformation the obtained MSE is lower.  
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Figure 13: PSNR for different Bpp 

 

The obtained PSNR value for different Bpp is developed. It is seen that higher bpp symlet transformation results 

in higher PSNR than the other transformation technique.  
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Figure 14: The computational time for the developed approach at different variance level 

 

It is observed that the developed approach takes more time is computation due to higher noise value, whereas 

this time is reduced using symlet transformation.   

A similar observation is carried out for other samples and the obtained observation is as shown,  

 

Original Image Noised Image

 
(a) (b) 
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Mean filtered Median Filtered

 
(c)                                         (d)  

weighted filter

 
(e) 

 

Figure 15: (a) Original Rose sample, (b) Noised sample attacked with salt & pepper Noise at  =0.4, (c) filtered 

output after performing denoising using mean filtration, (d) Filtered output after performing median filtration, 

(e) Obtained result after filtration with proposed weighted filtration  
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Figure 16: Average RMSE observation over variant Noise variance for the rose sample 

weighted-Filtered at N=2 weighted-Filtered at N=3

 
(a)                                (b)  

weighted-Filtered at N=4

 
(c) 
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Figure 17: (a) filtered output using weighted filtration at N=2, (b) filtered output using weighted filtration at 

N=3, (c) filtered output using weighted filtration at N=4 
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Figure 18: comparative average RMSE with the variation in noise level. 
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Figure 19: comparative analysis of different wavelet transformations at variable bpp 
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Figure 20: PSNR for different Bpp 
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Figure 21: The computational time for the developed approach at different variance level 

 

V. CONCLUSION 
 The image coding system proposed performance generally depends on weight value offered. Very-low-

frequency content (ordinary images)usuallygives better performancefor images withscalarwavelet. However 

multiwavelets appear to excel at preserving high frequency content. In particular, multiwavelets capture the 

sharp edges and geometric patterns better that occur in images. With the incorporation of the proposed new 

coding approach of weighted multispectral coding an improvement of PSNR is achieved. This development 

leads to a new proposal in image coding architecture. 
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