American Journal of Engineering Research (AJER) e-ISSN : 2320-0847 p-ISSN : 2320-0936 Volume-03, Issue-08, pp-191-201 www.ajer.org

Research Paper

Open Access

An Appraisal of the Population Total of Nigeria Using One Unit per Stratum (Based On 2006 Census Result)

T.J. Akingbade¹O.S. Balogun² O.S. Babatunde³

¹Department of Mathematical Sciences, Kogi State University, P.M.B. 1008, Anyigba, Kogi State, Nigeria. ²Department of Statistics and Operations Research, Modibbo Adama University of Technology, P.M.B 2076, Yola, Adamawa State, Nigeria.

³Department of Mathematics/Statistics/Computer Science P.M.B. 1019, Wukari, Taraba State. Nigeria.

ABSTRACT: This research has been done to show the efficiency level of variance estimation with one unit per stratum in collapsing of strata and to estimate the population total of Nigeria based on 2006 census result, to study the precision of variance estimation in collapsing of strata and to examine the effect of the use of auxiliary information in estimating variance in collapsing of strata with one unit per stratum in various level of collapsing. Two stage sampling method was used for the sample selection, which involves two phases of selection. In the first stage, 12 states and 24states were selected out of 36 states using random number table. The Local Government Areas (774) were taken to be the second stage and purposive sampling method was used. Based on the research work, considering one unit per stratum, then one LGA was selected from each of the selected state.Based on the result obtained, estimation with sample size 12 using stratified random sampling

with variable of interest only and with addition of auxiliary variable, the least standard error of Y_{str} was 3,501,901.105 under the collapsing of 12 strata in six into two groups with an estimated population total of 139,295,482 which was very close to the actual population total of Nigeria based on 2006 census result (140,003,542). It also shows that, the higher the extent of collapsing of strata, the lower the standard error \hat{Y}_{str}

of Y_{str} . Estimation with sample size 24 : using stratified random sampling with variable of interest only, and with addition of auxiliary variable, shows that the higher the extent of collapsing of strata, the standard error of $\hat{\mathbf{y}}$

 \hat{Y}_{str} was inconsistent (i.e. decreasing). The least standard errors falls under collapsing of strata in twelve for estimation with sample size 24. Therefore, lower strategy of collapsing of strata should be employed for large number of strata (24), so that the variation within the collapsed strata will not be much. Estimation using stratified random sampling with addition of an auxiliary variable gave a better result than estimation with variable of interest only.

KEYWORDS: Population, Collapse strata, Stratified Sampling, Stratum

I. INTRODUCTION

The general knowledge of our day to day activities is all based to a very large extent on sample. Hence, sample survey has been very useful in almost every area of lives. Sample survey is an investigation that involves collection of data or measurement taken on sample of element for making inferences about the population. Sample survey theory deals with the method and processes of sampling, data collection and estimation of the population parameters.

Collapsing of strata: A feature of many surveys Sample design is the selection of a single primary sampling unit (PSU) per stratum. The selection of a single PSU per stratum gives efficiency in design since stratification is carried out to fullest possible extent, but it does not generally permit an unbiased variance estimator to be obtained. A widely used method of variance estimation for this situation is known as collapsed strata technique (Rust and Kalton, 1987). With this techniques, strata and their corresponding sample PSU's are collapsed

www.ajer.org

Page 191

together in groups and then the variability among the unit within these groups is used to derive a variance estimator.

If the strata can be ordered approximately in ascending order of the stratum means, the method of successive difference (Kish, 1965) is attractive. This method is an extension of collapsing of strata in pairs. Frequently, these methods have similar biases but the method of successive differences has some-what greater precision.

(Isaki ,1983) used auxiliary information to reduce the bias of the collapse strata variance estimator. The results suggest that when auxiliary variable is highly correlated with the survey variables, there is a substantial improvement in the accuracy of variance estimation. The collapsed strata estimator (Cochran, 1977, section 5A.12) is a well-known estimator of variance estimation in one-per-stratum problem. The procedure collapses strata with one unit per stratum into groups and treats the strata in a group as independent samples from the combined stratum. In this research, collapsing can be accomplished separately among the strata containing small and medium sized districts with one district in the sample. First arrange the strata in a non-increasing sequence based on total enrolment size. Then collapse strata into pairs or groups sequentially. The variance estimator of a group is given by (5A.56) in Cochran's (1977).

Estimation of Variance with One Unit Per Stratum ($n_h = 1$)

Let the sample observation in a typical pair be y_{j1} , y_{j2} , where j goes from 1 to L/2. Let $y_{j1} = N_{g1}y_{g1}$,

 $\hat{y}_{j2} = N_{g2}y_{g2}$ be the estimated stratum totals.

$$V_{CS}(\hat{Y}_{str}) = \sum_{g=1}^{L/2} \frac{L_g}{L_{g-1}} \sum_{k=1}^{L_g} (\hat{Y}_{gh} - \frac{\hat{Y}_g}{L_g})^2$$
(Cochran, 1977)

Where \hat{Y}_g is the estimated total for group g for $L_g = 2$ when $\hat{Y}_g = \hat{Y}_{g1} + \hat{Y}_{g2}$. This method of estimation is called "*collapsed strata*".

When an auxiliary variate X_h is known for each stratum that predicts the total Y_h , (Hansen, Hurwitz, and Madow, 1953) suggested the alternative variance estimator.

$$V_{CSx}(\hat{Y}_{str}) = \sum_{g=1}^{L/2} \frac{L_g}{L_g - 1} \sum_{k=1}^{L_g} \left(\hat{Y}_{gh} - \frac{x_{gh}\hat{Y}_g}{x_g} \right)^2 \quad (\text{Hansen, Hurwitz \& Madow, 1953})$$

Strata pairs are formed so that the strata in each pair are as similar as possible in respect to the characteristics of interest. In addition, strata that do not vary much in size as measured by an auxiliary variate are often collapsed. Pairs are not formed on the basis of selected sample units.

When to Collapse Strata

- (a) When the sample contains only one unit per stratum in such a way that variance estimation within stratum (S_{yh}) is not possible to estimate.
- (b) When the first stage of sampling consist of primary sampling unit such as cities or counties and the ultimate sampling unit are households.

II. METHODOLOGY AND DATA PRESENTATION

The data were collected based on female population, male population and total population for each of the 36 states and 774 local government areas (LGA) in Nigeria based on 2006 census result. The number of states was taken to be the first stage and there were 36 states in Nigeria. The second selection is known as second stage unit. The number of the Local Government Areas in the selected states was taken as the second stage. The method of selection used here was a non-probability sampling schemes using purposive sampling.Based on this research work, considering one unit per stratum, the 36 states are called 36 strata and each of the state is called a stratum and each state constitute a number of LGA's. Therefore, one LG was

selected from each of the selected states. The LGA that has a close value to the average value of the state was chosen as a representative for the selected state.

Collapsed strata method used

Deterministic mixing method was employed.

Procedure: The probability $P_g=x_g/X$ were determined and were rearrange in ascending order with respect to P_i for each of the tables. That is:

Estimation based on sample size 12, were rearrange in ascending order and were also collapsed in pair, three, four and six w.r.t. P_i in order to form homogeneous collapsed strata. The same procedure also applies to estimation with sample size 24 and sample size 30

Collapsing of strata in pair means, dividing the number of strata by two to form number of groups.

For example, if L=12, L/2=6 groups, taking the first two strata as a group and the next two strata as another group until the sixth group is obtained.

Collapsing of strata in five means, dividing the number of strata by five to form number of groups. For example, if L=30, L/5=6 groups, taking the first five strata as a group and the next five strata as another group until the sixth group is obtained. See table 1

III. DATA ANALYSIS AND RESULT

In this section, the analysis of this research was carried out. Estimation of population total (\hat{Y}) , Bias percentage (\hat{Y}) and variance of the population total $(V(\hat{Y}))$ with one unit per stratum were estimated with n= 12 using stratified random sampling

Estimation of population total \hat{Y}_{str} with variable of interest only

$$\overline{\boldsymbol{Y}}_{\text{str}} = \sum_{h=1}^{n} \boldsymbol{W}_{h} \, \overline{\boldsymbol{y}}_{h} \quad \widehat{\boldsymbol{Y}}_{\text{str}} = \frac{\boldsymbol{N}}{\boldsymbol{n}} \boldsymbol{M} \, \sum_{h=1}^{n} \boldsymbol{W}_{h} \, \overline{\boldsymbol{y}}_{h}$$

$$n = 12, N = 36, M = 774, \sum W_h \overline{y}_h = 54428.8825$$

$$Y_{str}^{\wedge} = \frac{36}{12} \times 774 \times 54428.8825 = 126,383,865$$

 $Bias Percentage = \frac{Actual Population - Estimation Population Total}{Actual Population Total} \times 100$ $= \frac{(140003542 - 126383865)}{140003542} \times 100$ = 9.728%

Estimation of population total \hat{Y}_{str} with addition of auxiliary variable using combine Ratio Stratified Random Sampling

X=68,293,683

$$\hat{Y}_{restr} = \frac{\overline{y}_{str}}{\overline{x}_{str}} X$$

$$\hat{Y}_{restr} = \frac{\sum_{h=1}^{12} W_h \overline{y}_h}{\sum_{h=1}^{12} W_h \overline{x}_h} X = \frac{54428.88}{26685.35} \times 68293683 = 139,295,482$$

www.ajer.org

 $Bias \ Percentage = \frac{(140003542 - 139295482)}{140003542} = 0.506\%$

See table 2

Estimation of $V(\hat{Y}str)$ in collapsing of strata in pair into six groups

a)

stimation of $V(\hat{Y}str)$ with variable of interest only

$$V_{cs}(\hat{Y}_{str}) = \sum_{g=1}^{G} \frac{L_g}{L_g - 1} \sum_{h=1}^{L_g} \left(\hat{Y}_{gh} - \frac{\hat{Y}_g}{L_g} \right)^2$$

$$L_{g} = 2, g = 1, 2, ..., 6$$
$$\sum_{g=1}^{6} \sum_{h=1}^{2} \left(\hat{Y}_{gh} - \frac{\hat{Y}_{g}}{L_{g}} \right)^{2} = 1.040765998 \times 10^{13}$$

$$V_{CS(2)}(\hat{Y}_{str}) = 2 \times (1.040765998 \times 10^{13}) = 2.081531996 \times 10^{13}$$

Standard error of \hat{Y}_{str}

$$SE_{cs(2)}(\hat{Y}_{str}) = \sqrt{V_{cs(2)}(\hat{Y}_{str})} = 4562380.953$$

b)

Estimation of $V(\hat{Y}str)$ with addition of Auxiliary

Variable

$$V_{csx}(\hat{Y}_{str}) = \sum_{g=1}^{G} \frac{L_g}{L_g - 1} \sum_{h=1}^{L_g} \left(\hat{Y}_{gh} - \frac{x_{gh}}{x_g} \hat{Y}_g \right)^2$$
$$\sum_{g=1}^{6} \sum_{h=1}^{2} \left(\hat{Y}_{gh} - \frac{x_{gh}}{x_g} \hat{Y}_g \right)^2 = 7.095878997 \times 10^{12}$$
$$V_{csx(2)}(\hat{Y}_{str}) = 2 \times (7.095878997 \times 10^{12}) = 1.419175799 \times 10^{13}$$

Standard error of \hat{Y}_{str}

www.ajer.org

Е

$$SE_{csx(2)}(\hat{Y}_{str}) = \sqrt{V_{csx(2)}(\hat{Y}_{str})} = 3767194$$
.977

Summary for the Estimated \hat{Y} and $S.E(\hat{Y})$ Based on Sample Size 12 (See table 3)

IV. DATA ANALYSIS AND RESULT

Analysis using estimation of population total (\hat{Y}) , Bias percentage (\hat{Y}) and variance of the population total $(V(\hat{Y}))$ with one unit per stratum were estimated with n= 24 using stratified random sampling. (See table 4)

Estimation of population total \hat{Y}_{str} with variable of interest only

$$\overline{\mathbf{Y}}_{str} = \sum_{h=1}^{n} W_{h} \, \overline{\mathbf{y}}_{h} \quad \widehat{\mathbf{Y}}_{str} = \frac{N}{n} M \sum_{h=1}^{n} W_{h} \, \overline{\mathbf{y}}_{h}$$

$$n = 24, \ N = 36, \ M = 774, \qquad \sum_{h=1}^{24} W_{h} \, \overline{\mathbf{y}}_{h} = 112723.6$$

$$\widehat{\mathbf{Y}}_{str}^{\wedge} = \frac{36}{24} \times 774 \times 112723.6 = 130,872,095$$

$$Bias \ Percentage = \frac{(140003542 - 130872095)}{140003542} \times 100$$

Estimation of population total \widehat{Y}_{str} with addition of auxiliary variable using combine Ratio Stratified **Random Sampling**

$$\hat{Y}_{rcstr} = \frac{\overline{y}_{str}}{\overline{x}_{str}} X$$

$$\hat{Y}_{rcstr} = \frac{\sum_{h=1}^{24} W_h \overline{y}_h}{\sum_{h=1}^{24} W_h \overline{x}_h} X = \frac{112723.6}{55294.39} \times 68293683$$

$$= 139,224,066$$

$$Bias Percentage = \frac{(140003542 - 139224066)}{140003542} \times 100$$
$$= 0.557\%$$

See table 5

Estimation of $V(\hat{Y}str)$ in collapsing of strata in pair into six groups

Estimation of $V(\hat{Y}str)$ with variable of interest only a)

Page 195

www.ajer.org

$$V_{cs}(\hat{Y}_{str}) = \sum_{g=1}^{G} \frac{L_g}{L_g - 1} \sum_{h=1}^{L_g} \left(\hat{Y}_{gh} - \frac{\hat{Y}_g}{L_g} \right)^2$$
$$L_g = 2, \ g = 1, \cdots, 12$$
$$\sum_{g=1}^{12} \sum_{h=1}^{2} \left(\hat{Y}_{gh} - \frac{\hat{Y}_g}{L_g} \right)^2 = 1.8812 \times 10^{13}$$
$$V_{CS(2)}(\hat{Y}_{str}) = 2 \times (1.8812 \times 10^{13}) = 3.7624 \times 10^{13}$$

STANDARD ERROR OF \hat{Y}_{str}

$$SE_{cs(2)}(\hat{Y}_{str}) = \sqrt{V_{cs(2)}(\hat{Y}_{str})} = 6,133,840.559$$

b)

Variable

Estimation of $V(\hat{Y}str)$ with addition of Auxiliary

$$V_{csx}(\hat{Y}_{str}) = \sum_{g=1}^{G} \frac{L_g}{L_g - 1} \sum_{h=1}^{L_g} \left(\hat{Y}_{gh} - \frac{x_{gh}}{x_g} \hat{Y}_g \right)^2$$

$$\sum_{g=1}^{12} \sum_{h=1}^{2} \left(\hat{Y}_{gh} - \frac{x_{gh}}{x_g} \hat{Y}_g \right)^2 = 1.86269 \times 10^{13}$$
$$V_{csx(2)} \left(\hat{Y}_{str} \right) = 2 \times \left(1.86269 \times 10^{13} \right) = 3.72538 \times 10^{13}$$

STANDARD ERROR OF \hat{Y}_{str}

$$SE_{csx(2)}(\hat{Y}_{str}) = \sqrt{V_{csx(2)}(\hat{Y}_{str})} = 6,103,589.108$$

See table 6

V. TABLES

 Table 1: Random digits of the selected 12 states with the Population Total, Female Population of the selected LGA and the number of LGA in the selected states

Random	selected States-L.G.A.	Pop Total of	Female Pop of	No	of
No Digits		LGA	LGA	LGA	
03	Akwa-Ibom-Itu	127033	59467	31	
29	Osun -Obokun	116511	60965	30	

XX7 XX7	XX /	2 1	ler	\mathbf{or}	b
VV VV	· · ·	ч.		018	5

13	Ekiti -Aiyekire	148193	70980	16
02	Adamawa-Mubi North	151072	72850	21
16	Imo-Ikeredu	149316	73084	27
25	Nasarawa-Obi	148874	74462	13
21	Kebbi-KokoBesse	154605	76201	21
26	Niger-Paikoro	158086	77280	25
33	Sokoto-Wurno	162307	78964	23
12	Edo-Orhionmwon	182717	90051	18
11	Ebonyi-Ohaukwu	196337	103489	13
18	Kaduna-Je,a'a	278735	133068	23

TABLE 2: Estimation of variance in collapsing of 12 strata pair into 6 groups

N	o of groups	Pop. Total (y _{gh})	Female Pop (x_{gh}) .	$P_{gh} = \frac{x_{gh}}{X}$	N_{gh}	$N_{gh}y_{gh} = \hat{Y}_{gh}$	$\left(\hat{Y}_{gh} - \frac{\hat{Y}_{g}}{2}\right)^{2}$	$\left(\hat{Y}_{gh} - \frac{x_{gh}}{x_g}\hat{Y}_g\right)^2$
	Akwa-							
1	Ibom	127033	59467	0.000871	31	3938023	48994273062	71597227953
	Osun	116511	60965	0.000893	30	3495330	48994273062	71597227953
	Subtotal	243544	120432			7433353	97988546125	1.43194E+11
2	Ekiti	148193	70980	0.00104	16	2371088	1.6057E+11	1.32988E+11
	Adamawa	151072	72850	0.00107	21	3172512	1.6057E+11	1.32988E+11
	Subtotal	299265	143830			5543600	3.2114E+11	2.65975E+11
3	Imo	149316	73084	0.00107	27	4031532	1.09848E+12	1.15767E+12
	Nassarawa	148874	74462	0.00109	13	1935362	1.09848E+12	1.15767E+12
	Subtotal	298190	147546			5966894	2.19696E+12	2.31533E+12
4	Kebbi	154605	76201	0.00112	21	3246705	1.24413E+11	1.07202E+11
	Niger	158086	77280	0.00113	25	3952150	1.24413E+11	1.07202E+11
	Subtotal	312691	153481			7198855	2.48826E+11	2.14405E+11
5	Sokoto	162307	78964	0.00116	23	3733061	49318416006	2.04657E+11
	Edo	182717	90051	0.00132	18	3288906	49318416006	2.04657E+11
	Subtotal	345024	169015			7021967	98636832013	4.09313E+11
6	Ebonyi	196337	103489	0.00152	13	2552381	3.72205E+12	1.87383E+12
	Kaduna	278735	133068	0.00194	23	6410905	3.72205E+12	1.87383E+12
	Subtotal	475072	236557			8963286	7.4441E+12	3.74766E+12
	Overall To	tal					1.04077E+13	7.09588E+12

Methods	$\hat{Y}_{str} =$ 126,383,865	$\hat{Y}_{str} =$ 139,295,482
	$Bias(\hat{Y}_{str}) = 9.728\%$	$Bias(\hat{Y}_{str}) = 0.506\%$
	$S.E_{cs(\hat{Y}_{str})}$	$S.E_{csx(Y_{str})}$
Collapsing in pair		
	4,562,380.953	3,767,194.927
Collapsing in three		
	4,274,185.051	3,652,067.891
Collapsing in four		
	4,102,367.353	3,580,511.818
Collapsing in six	3,879,691.526	3,501,901.105

Table 3: Summary Table for the Estimated \hat{Y} and $S.E(\hat{Y})$ Using Stratified Random Sampling with Sample Size 12

Table 4: Random digits of the selected 24 states with the Population Total, Female Population of the selected LGA and the number of LGA in the selected states

Random No Digits	Selected States-L.G.A.	Popn Total of LGA	Female Pop of LGA	No of LGA
03	Akwa-Ibom-Itu	127033	59467	31
29	Osun -Obokun	116511	60965	30
13	Ekiti -Aiyekire	148193	70980	16
02	Adamawa-Mubi North	151072	72850	21
16	Imo-Ikeredu	149316	73084	27
25	Nasarawa-Obi	148874	74462	13
21	Kebbi-KokoBesse	154605	76201	21
08	Borno-Konduga	156564	77356	27
26	Niger-Paikoro	158086	77280	25
22	kogi -Olambolo	160152	78667	21
17	Mallammadori-Jigawa	161413	77819	27
09	Cross-river-Ikom	162383	79374	18
33	Sokoto-Wurno	162307	78964	23
10	Delta-IkaSouth	162594	82966	25
20	KatsinaMusawa	171714	83513	34
12	Edo-Orhionmwon	182717	90051	18
31	Plateau-Bassa	186859	94210	17
04	Anambra-Idemilisouth	207683	98693	21
14	Enugu-Agwu	198134	102713	17
11	Ebonyi-Ohaukwu	196337	103489	13
15	Gombe	236087	112303	11
05	Bauchi -Shira	234014	114351	20
06	Bayelsa -Ekeremor	270257	127050	8
18	Kaduna-Je,a'a	278735	133068	23

		Pop. Total	Female Pop	- /			$\begin{pmatrix} \hat{\mathbf{y}} & \hat{\mathbf{Y}}_g \end{pmatrix}^2$	$\begin{pmatrix} \hat{\mathbf{v}} & x_{gh} \hat{\mathbf{v}} \end{pmatrix}^2$
No Cr	of	(y_{gh})	(x_{eh}) .	$P_{gh} = \frac{\chi_{gh}}{\chi}$	$N_{_{gh}}$	$N_{oh} y_{oh} = \hat{Y}_{oh}$	$\left(\begin{array}{c} I_{gh} - \frac{3}{2} \end{array} \right)$	$\left(\begin{array}{c} I_{gh} - \overline{\chi_{g}} \\ x_{g} \end{array} \right)$
01	Akwa-		0.0	· / //	0	811 811 811		~ ~ /
1	Ibom	127033	59467	0.000871	31	3938023	48994273062	71597227953
	Osun	116511	60965	0.000893	30	3495330	48994273062	71597227953
	Subtotal	243544	120432			7433353	97988546125	1.43194E+11
2	Ekiti	148193	70980	0.00104	16	2371088	1.6057E+11	1.32988E+11
	Adamawa	151072	72850	0.00107	21	3172512	1.6057E+11	1.32988E+11
	Subtotal	299265	143830			5543600	3.2114E+11	2.65975E+11
3	Imo	149316	73084	0.00107	27	4031532	1.09848E+12	1.15767E+12
	Nassarawa	148874	74462	0.00109	13	1935362	1.09848E+12	1.15767E+12
	Subtotal	298190	147546			5966894	2.19696E+12	2.31533E+12
4	Kebbi	154605	76201	0.00112	21	3246705	2.40356E+11	2.13586E+11
	Borno	156564	77356	0.00113	27	4227228	2.40356E+11	2.13586E+11
	Subtotal	311169	153557			7473933	4.80713E+11	4.27172E+11
5	Niger	158086	77280	0.00113	25	3952150	41209203000	35555070526
	Jigawa	161413	77819	0.00114	27	4358151	41209203000	35555070526
	Subtotal	319499	155099			8310301	82418406001	71110141052
6	kogi	160152	78667	0.00115	21	3363192	48465582201	54854077799
	Cross- river	162383	79374	0.00116	18	2922894	48465582201	54854077799
	Subtotal	322535	158041			6286086	96931164402	1.09708E+11
7	Sokoto	162307	78964	0.00116	23	3733061	27520985130	4835007948
	Delta	162594	82966	0.00121	25	4064850	27520985130	4835007948
	Subtotal	324901	161930			7797911	55041970261	9670015896
8	Katsina	171714	83513	0.00122	34	5838276	1.62482E+12	2.09263E+12
	Edo	182717	90051	0.00132	18	3288906	1.62482E+12	2.09263E+12
	Subtotal	354431	173564			9127182	3.24964E+12	4.18525E+12
9	Plateau	186859	94210	0.00138	17	3176603	3.50902E+11	2.54803E+11
	Anambra	207683	98693	0.00145	21	4361343	3.50902E+11	2.54803E+11
	Subtotal	394542	192903			7537946	7.01804E+11	5.09606E+11
10	Enugu	198134	102713	0.0015	17	3368278	1.66422E+11	1.75636E+11
	Ebonyi	196337	103489	0.00152	13	2552381	1.66422E+11	1.75636E+11
	Subtotal	394471	206202			5920659	3.32844E+11	3.51271E+11
11	Gombe	236087	112303	0.00164	11	2596957	1.08506E+12	1.01764E+12
	Bauchi	234014	114351	0.00167	20	4680280	1.08506E+12	1.01764E+12
	Subtotal	470101	226654			7277237	2.17012E+12	2.03529E+12
12	Bayelsa	270257	127050	0.00186	8	2162056	4.51318E+12	4.10165E+12
	Kaduna	278735	133068	0.00194	23	6410905	4.51318E+12	4.10165E+12
	Subtotal	548992	260118			8572961	9.02636E+12	8.20331E+12
	overall Tota	al					1.8812E+13	1.86269E+13

TABLE 5: Estimation of variance in collapsing of 24 strata pair into 12 groups

www.ajer.org

Page 199

Table 6: Summary Table for the Estimated \hat{Y} and $S.E(\hat{Y})$ Using Stratified Random Sampling with Sample Size 24

36.1.1	•		
Methods	$\hat{Y} = 130.872.095$	$\hat{Y} = 139.224.066$	
	str 100,07 =,070	<i>rcstrx</i> 109,221,000	
	$Bias(\hat{Y}_{str}) = 6.522\% \ S.E_{cs(\hat{Y}_{str})}$	$Bias(\hat{Y}_{str}) = 0.557\%$	
		$S.E_{csx(Y_{str})}$	
Collapsing in pair			
	6,133,840.559	6,103,589.108	
Collapsing in three			
1 0		5,449,171.191	
	5,208,694.654	, ,	
Collapsing in four			
	5,515,106.527	5,449,171.191	
Collapsing in six			
	5,289,514.155	5,250749.168	
Collapsing in			
twelve	5,223,300.942	5,194,504.089	

V. CONCLUSIONS

According to the results obtained from the analysis, estimation with sample size 12 using stratified random sampling with variable of interest only and with addition of auxiliary variable, shows that the higher the extent

of collapsing of strata, the lower the standard error of $\hat{Y_{\rm str}}$

This implies that, the higher the extent of collapsing of 12 strata, the more precise the variance estimator but it was not so using Simple random sampling. Comparing the two estimators, stratified random sampling with

addition of auxiliary variable seems to be the best estimator, because it gives the least standard error of \hat{Y}_{str} to

be **3,501,901.105** under the collapsing of 12 strata in six into two groups and least bias of **0.506** percentage and estimated population total of **139,295,482** which was very close to the actual population total of Nigeria based on 2006 census result (**140,003,542**). Therefore, higher group of collapsing of strata should be employed for smaller number of strata 12. Estimation with sample size 24 using stratified random sampling with variable of interest only, and with addition of auxiliary variable show that the higher the extent of collapsing of strata, the

standard error of Y_{str} was inconsistent (i.e. decreasing). The least standard error falls under collapsing of strata in twelve for estimation with sample size 24. Therefore, lower group of collapsing of strata should be employed for large number of strata (24), so that the variation within the collapsed strata will be minimized.

Estimation using stratified random sampling with addition auxiliary variable gave a better result than estimation with variable of interest only.

REFERENCES

- [1] Cochran, William G., description of method of "collapsed strata" in Sampling Techniques, 1977, pp 139-140.
- [2] Hansen, M.H., Hurwitz, W.N., and Madow, W.G. (1953): Sample Survey Methods and Theory. Vol.II. Methods and Applications.
- [3] Kish, L. (1965): Survey sampling. John Wiley and Sons, New York.
- [4] Parsons, V.L. and Eltinge, J.L. (1999). Stratum partition, collapse and mixing in construction of Balanced repeated replication variance estimators. Paper presented at the 1999 Joint Statistical Meetings, Baltimore, Maryland.
- [5] Rust, K. and Kalton, G. (1987). Strategies for collapsing strata for variance estimation. *Journal* of Official Statistics **3**, pp69-81.