American Journal of Engineering Research (AJER)

e-ISSN: 2320-0847 p-ISSN: 2320-0936 Volume-03, Issue-05, pp-315-320

www.ajer.org

Research Paper

Open Access

Families of Norms Generated By 2-Norm

Risto Malčeski¹, Katerina Anevska²

¹Faculty of informatics, FON University, Macedonia ²Faculty of informatics, FON University, Macedonia

Abstract: • In [1] S. Gähler proof that for any linearly independent vector $a,b \in L$, the equality ||x|| = ||x,a|| + ||x,b||, $x \in L$ defines a norm on L. This result is generalized by A. Misiak in [2], and in [3] is presented other proof of this result. Moreover, H. Gunawan in [4] generalized these results. In this paper we'll generalize the S. Gähler's result of 2-normed space, which can easy be generalized on n-normed space. **2010 Mathematics Subject Classification.** Primary 46C50; Secondary 46B20.

Keywords: - 2-norm, 2-inner product, norm, inner product

I. INTRODUCTION

Let L be a real vector space with dimension greater than 1 and $\|\cdot,\cdot\|$ be a real function on $L\times L$ such that:

- a) ||x, y|| = 0 if and only if the set $\{x, y\}$ is linearly dependent;
- b) ||x, y|| = ||y, x||, for every $x, y \in L$;
- c) $\|\alpha x, y\| = |\alpha| \cdot \|x, y\|$, for every $x, y \in L$ and for every $\alpha \in \mathbb{R}$;
- d) $||x+y,z|| \le ||x,z|| + ||y,z||$, for every $x, y, z \in L$.

The function $\|\cdot,\cdot\|$ is called 2-norm on L, a $(L,\|\cdot,\cdot\|)$ is called vector 2-normed space ([1]). Some of the basic properties of a 2-norm are that it's nonnegative, i.e.

$$||x, y|| \ge 0$$
, for every $x, y \in L$

and

$$||x, y + \alpha x|| = ||x, y||$$
, for every $x, y \in L$ and for every $\alpha \in \mathbf{R}$.

Let n>1 be a real number, L be a real vector space, $\dim L \ge n$ and $(\cdot, \cdot|\cdot)$ be a real function on $L \times L \times L$ which satisfies the following conditions:

- i) $(x, x \mid y) \ge 0$, for every $x, y \in L$ in $(x, x \mid y) = 0$ if and only if x and y are linearly dependent;
- ii) (x, y | z) = (y, x | z), for every $x, y, z \in L$;
- iii) (x, x | y) = (y, y | x), for every $x, y \in L$;
- *iv*) $(\alpha x, y | z) = \alpha(x, y | z)$, for every $x, y, z \in L$ for every and $\alpha \in \mathbf{R}$; and
- v) $(x+x_1, y|z) = (x, y|z) + (x_1, y|z)$, for every $x, x_1, y, z \in L$.

The function $(\cdot,\cdot|\cdot)$ is called 2-inner product, and $(L,(\cdot,\cdot|\cdot))$ is called 2-pre-Hilbert space ([5]).

Concepts of 2-norm and 2-inner product are two-dimensional analogies of concepts of norm and inner product. R. Ehret proved ([5]) that, if $(L, (\cdot, \cdot | \cdot))$ be 2-pre-Hilbert space, than

$$||x,y|| = (x,x|y)^{1/2}, x,y \in L$$
 (1)

defines 2-norm. So, we get vector 2-normed space $(L, \|\cdot, \cdot\|)$ and for each $x, y, z \in L$ the following equalities are true:

$$(x, y \mid z) = \frac{\|x + y, z\|^2 - \|x - y, z\|^2}{4},$$
 (2)

$$||x + y, z||^2 + ||x - y, z||^2 = 2(||x, z||^2 + ||y, z||^2),$$
 (3)

In fact, the equality (3) is two-dimensional analogy of parallelogram equality and is called parallelepiped equality. Further, if $(L, \|\cdot, \cdot\|)$ is vector 2-normed space such that (1) is satisfied for every $x, y, z \in L$, then (3) defines 2-inner product on L, and moreover the equality (2) is satisfied.

II. NORMS DEFINED BY 2-NORM

Theorem 1. Let $(L, \|\cdot, \cdot\|)$, $p \ge 1$ and $\{a, b\}$ be linear independent subset of L. Then,

$$||x|| = (||x,a||^p + ||x,b||^p)^{1/p}, x \in L$$
(4)

define norm of L.

Proof. It's clear that, $||x|| \ge 0$ and ||0|| = 0. Letting ||x|| = 0 in (5) we get that ||x,a|| = ||x,b|| = 0. According the definition of 2-norm, we can conclude that the sets $\{x,a\}$ and $\{x,b\}$ are linearly dependent. The fact that the set $\{a,b\}$ is linearly independent implies $tx = \alpha a$ and $qx = \beta b$, for some $t,q \ne 0$. So, $\alpha qa = \beta tb$ and $\{a,b\}$ is linearly independent set and also $t,q\ne 0$. The last equality and the conditions mentioned above, implies $\alpha = \beta = 0$, i.e. x = 0. Let $x \in L$ and $\alpha \in \mathbb{R}$, then (5) implies the following

$$\|\alpha x\| = (\|\alpha x, a\|^p + \|\alpha x, b\|^p)^{1/p} = |\alpha|(\|x, a\|^p + \|x, b\|^p)^{1/p} = |\alpha| \cdot \|x\|.$$

Finally, using parallelepiped inequality and Minkovski's inequality we get that for each $x, y \in L$ it's true that

$$|| x + y || = (|| x + y, a ||^{p} + || x + y, b ||^{p})^{1/p}$$

$$\leq [(|| x, a || + || y, a ||)^{p} + (|| x, b || + || y, b ||)^{p}]^{1/p}$$

$$\leq (|| x, a ||^{p} + || x, a ||^{p})^{1/p} + (|| y, a ||^{p} + || y, b ||^{p})^{1/p}$$

$$= || x || + || y ||.$$

It means that (4) define norm of L , which will be denoted as $\|\cdot\|_{a,b,p}$.

Theorem 2. Let $(L, \|\cdot, \cdot\|)$ be a 2-normed space and $\{a, b\}$ be linearly independent subset of L. Then

$$||x|| = \max\{||x,a||, ||x,b||\}, x \in L$$
 (5)

defines norm of L.

Proof. Clearly, $||x|| \ge 0$ and ||0|| = 0. Let ||x|| = 0. Then (5) implies ||x,a|| = ||x,b|| = 0, and analogously as in the proof of the theorem 1 we get that x = 0. Let $x \in L$ and $\alpha \in \mathbf{R}$. The equality (5) implies

$$\|\alpha x\| = \max(\|\alpha x, a\|, \|\alpha x, b\|) = \max\{|\alpha| \cdot \|x, a\|, |\alpha| \cdot \|x, b\|\} = |\alpha| \cdot \|x\|.$$

Further, using the properties of maximum and the parallelepiped inequality we get the following

$$|| x + y || = \max\{|| x + y, a ||, || x + y, b ||\}$$

$$\leq \max\{|| x, a || + || y, a ||, || x, b || + || y, b ||\}$$

$$\leq \max\{|| x, a ||, || x, b ||\} + \max\{|| y, a ||, || y, b ||\}$$

$$= || x || + || y ||.$$

It means that (5) defines norm of L, which will be denoted as $\|\cdot\|_{a,b,\infty}$.

Theorem 3. Let $(L, \|\cdot, \cdot\|)$ be 2-normed space and $\{a, b\}$ is linearly independent subset of L. Then, for every $p, q \ge 1$ the $\|\cdot\|_{a,b,p}$, $\|\cdot\|_{a,b,q}$ and $\|\cdot\|_{a,b,\infty}$ are equivalent.

Proof. Let $p \ge 1$. Then, for every $x \in L$

$$\|x\|_{a,b,\infty} = \max\{\|x,a\|, \|x,b\|\} \le (\|x,a\|^p + \|x,b\|^p)^{1/p}$$

$$\le 2^{1/p} \max\{\|x,a\|, \|x,b\|\} = 2^{1/p} \|x\|_{a,b,\infty},$$

It means, that the norms $\|\cdot\|_{a,b,p}$ and $\|\cdot\|_{a,b,\infty}$ are equivalent.

Let $q \ge p \ge 1$. Further, using the already known inequality

$$(u^q + v^q)^{1/q} \le (u^p + v^p)^{1/p}, u, v \ge 0$$

we get

$$||x||_{a,b,q} = (||x,a||^q + ||x,b||^q)^{1/q} \le (||x,a||^p + ||x,b||^p)^{1/p} = ||x||_{a,b,p}.$$
(6)

On the other hand, without any general restrictions, we may take that for given $x \in L$ the inequality $||x,b|| \le ||x,a||$ is satisfied. Then,

$$||x||_{a,b,p} = (||x,a||^p + ||x,b||^p)^{1/p} = ||x,a|| [1 + (\frac{||x,b||}{||x,a||})^p]^{1/p}$$

$$\leq 2^{1/p} ||x,a|| \leq 2^{1/p} ||x,a|| [1 + (\frac{||x,b||}{||x,a||})^q]^{1/q}$$

$$= 2^{1/p} (||x,a||^q + ||x,b||^q)^{1/q} = 2^{1/p} ||x||_{a,b,q}.$$
(7)

Finally, the inequalities (6) and (7) implies that the norms $\|\cdot\|_{a,b,p}$ and $\|\cdot\|_{a,b,q}$ are equivalent.

Let $\{a,b\}$ be linearly independent set in 2-normed space L. Then, 2-norm induces family of norms $\{\|\cdot\|_{a,b,\infty}, \|\cdot\|_{a,b,p}, p\geq 1\}$. Furthermore, for $p\geq 1$ the norms are given by (4), and for $p=\infty$ the norm is given by (5). Now, let $\{a,b\}$ and $\{c,d\}$ be linearly independent sets. Let review the families of norms $\{\|\cdot\|_{a,b,\infty}, \|\cdot\|_{a,b,p}, p\geq 1\}$ and $\{\|\cdot\|_{c,d,\infty}, \|\cdot\|_{c,d,p}, p\geq 1\}$. Clearly, if L is a space with finite dimension, then each two norms of reviewed families are equivalent (theorem 2, [6], pp. 29). But problems of equivalence between the norms,

1) $\|\cdot\|_{a,b,\infty}$ and $\|\cdot\|_{c,d,\infty}$,

2)
$$\|\cdot\|_{a,b,\infty}$$
 and $\|\cdot\|_{c,d,p}$, $p \ge 1$ and

3)
$$\|\cdot\|_{a,b,p}$$
 and $\|\cdot\|_{c,d,q}$, $p,q \ge 1$

and the conditions which must be satisfied if L be a space with not finite dimension are still opened.

Example 1. If $(L, (\cdot, \cdot))$ be a real pre-Hilbert space, then

$$(x, y \mid z) = \begin{vmatrix} (x, y) & (x, z) \\ (y, z) & (z, z) \end{vmatrix}, \quad x, y, z \in L$$
 (8)

defines a 2-inner product. It's obvious that (1) defines 2-norm on ${\cal L}$, i.e.

$$||x,y|| = \sqrt{||x||^2 ||y||^2 - (x,y)^2}$$
 (9)

Further, if $\{a,b\}$ is a linearly independent subset of L, then

$$||x||_{a,b,p} = [(||x||^2 ||a||^2 - (x,a)^2)^{p/2} + (||x||^2 ||b||^2 - (x,b)^2)^{p/2}]^{1/p}, \ p \ge 1$$

$$||x||_{a,b,\infty} = \max\{\sqrt{||x||^2 ||a||^2 - (x,a)^2}, \sqrt{||x||^2 ||b||^2 - (x,b)^2}\},$$

is a family of norms, which are generated by the prime norm $||x|| = \sqrt{(x,x)}$, and for every $p \ge 1$

$$||a||_{a,b,p} = ||b||_{a,b,p} = ||a||_{a,b,\infty} = ||b||_{a,b,\infty} = \sqrt{||a||^2 ||b||^2 - (a,b)^2}$$
.

Clearly, if L is a space with finite dimension, all these norms are equivalent to the prime norm. But, the following question is still opened: Is it true that for every vectors a and b the prime norm $\|\cdot\|$ is equivalent to the norms $\|\cdot\|_{a,b,p}$, $p \ge 1$ and $\|\cdot\|_{a,b,\infty}$

III. SOME PROPERTIES INHERED FROM THE SPACE $(L, ||\cdot, \cdot||)$

TO
$$(L, \|\cdot\|_{a,b,p})$$
, $p \ge 1$ Type of spaces

Theorem 4. If $(L, \|\cdot, \cdot\|)$ be 2-pre-Hilbert space, then for any linearly independent set $\{a, b\}$ the normed space $(L, \|\cdot\|_{a,b,2})$ be pre-Hilbert, and further more for each $x, y \in L$ is true that

$$(x, y)_{a,b} = (x, y \mid a) + (x, y \mid b).$$
 (10)

Proof. Equalities (3) and (4) imply that for each $x, y \in L$

$$\begin{split} \|\,x+y\,\|_{a,b,2}^2 + \|\,x-y\,\|_{a,b,2}^2 = &\|\,x+y,a\,\|^2 + \|\,x+y,b\,\|^2 + \|\,x-y,a\,\|^2 + \|\,x-y,b\,\|^2 \\ &= 2(\|\,x,a\,\|^2 + \|\,y,a\,\|^2) + 2(\|\,x,b\,\|^2 + \|\,y,b\,\|^2) \\ &= 2(\|\,x,a\,\|^2 + \|\,x,b\,\|^2) + 2(\|\,y,a\,\|^2 + \|\,y,b\,\|^2) \\ &= 2(\|\,x\,\|_{a,b,2}^2 + \|\,y\,\|_{a,b,2}^2), \end{split}$$

It means that in the space $(L, \|\cdot\|_{a,b,2})$ the parallelogram equality is succeeded. It implies that the mentioned space is pre-Hilbert space. Further,

w w w . a j e r . o r g Page 317

$$\begin{split} (x,y)_{a,b} &= \frac{\|x+y\|_{a,b,2}^2 - \|x-y\|_{a,b,2}^2}{4} = \frac{\|x+y,a\|^2 + \|x+y,b\|^2 - \|x-y,a\|^2 - \|x-y,b\|^2}{4} \\ &= \frac{\|x+y,a\|^2 - \|x-y,a\|^2}{4} + \frac{\|x+y,b\|^2 - \|x-y,b\|^2}{4} = (x,y\mid a) + (x,y\mid b), \end{split}$$

i.e. the equality (10) is true. ■

Remark 1. By Theorem 4 we proved that if $(L, \|\cdot, \cdot\|)$ be 2-pre-Hilbert space, the normed space $(L, \|\cdot\|_{a,b,2})$ is pre-Hilbert. Among each norms $\|\cdot\|_{a,b,p}$, $1 \le p \le \infty$ on \mathbb{R}^n get in Example 1 only the norm $\|\cdot\|_{a,b,2}$ is induced by inner product. Really, if

$$a = (1,1,0,...,0)$$
, $b = (1,0,1,0,...,0)$, $x = (0,1,0,...,0)$ and $y = (0,0,1,0,...,0)$,

for $p \neq 2, 1 \leq p < \infty$ we get

$$||x||_{a,b,p} = (1+2^{p/2})^{1/p}, ||y||_{a,b,p} = (2^{p/2}+1)^{1/p},$$

$$||x+y||_{a,b,p} = 2^{1/p} 3^{1/2}$$
 и $||x-y||_{a,b,p} = 2^{1/p} 3^{1/2}$,

thus,

$$\|\,x+y\,\|_{a,b,p}^2 + \|\,x-y\,\|_{a,b,p}^2 = 6\cdot 4^{1/p} \neq 4(1+2^{p/2})^{2/p} = 2(\|\,x\,\|_{a,b,p}^2 + \|\,y\,\|_{a,b,p}^2) \;.$$

It means that the parallelogram equality is not satisfied. Further, for $p = \infty$ we get

$$\|x\|_{a,b,\infty} = \sqrt{2}$$
, $\|y\|_{a,b,\infty} = \sqrt{2}$, $\|x+y\|_{a,b,\infty} = \sqrt{3}$ if $\|x-y\|_{a,b,\infty} = \sqrt{3}$,

thus

$$||x + y||_{a,b,\infty}^2 + ||x - y||_{a,b,\infty}^2 = 6 \neq 8 = 2(||x||_{a,b,\infty}^2 + ||y||_{a,b,\infty}^2),$$

It means that this is other case in which the parallelogram equality is not satisfied.

Remark 2. If $(L, (\cdot, \cdot))$ be a real pre-Hilbert space, then (8) defines 2-inner product. Further, if $\{a,b\}$ be a linearly independent set, then by theorem 4, equality (10) defines an inner product on L

$$(x, y)_{a,b} = (x, y \mid a) + (x, y \mid b) = (x, y)[\|a\|^2 + \|b\|^2] - (x, a)(y, a) - (x, b)(y, b)$$
.

It means that using the prime inner product, we generate a family of inner products:

$$(\cdot, \cdot)_{a,b}$$
, set $\{a,b\}$ is linearly independent on L . (11)

The real question is, either this family contains the prime inner product, i.e. are there exist linearly independent vectors $a,b \in L$ such that for every $x,y \in L$ is true that

$$(x, y)_{a,b} = (x, y).$$
 (12)

But $(a,b)_{a,b}=0$. Thus, if exist linearly independent vectors $a,b\in L$ such that for every $x,y\in L$ (12) is hold, then (a,b)=0. Further, letting x=y=a in equality (12) and considering (a,b)=0 and ||a||>0, we get ||b||=1. Analogously, we get ||a||=1. Hence, the equality (12) is transformed as

$$(x, y) = (x, a)(y, a) + (x, b)(y, b)$$
. (13)

Two cases are possible:

1. $\dim L=2$. Then, the set $\{a,b\}$ is orthonormed base on L. In fact, the equality (13) is a Parseval equality, and thus, the family (11) contains the prime inner product. The same inner product is get for each orthonormed base $\{a,b\}$ of L.

The last means if $\{a,b\}$ be orthonormed base of L then the prime norm $\|\cdot\|$ is identical to the norm $\|\cdot\|_{a,b,2}$.

2. dim L > 2. Then, by Gram-Schmidt Theorem for orthogonalization, exists $c \in L$ such that (a,c) = (b,c) = 0 and ||c|| = 1. Letting x = y = c in the equality (13) we get

$$1 = ||c||^2 = (c,a)^2 + (c,b)^2 = 0,$$

and that is contradiction. The last implies the family (11) doesn't contain the prime inner product. It means, for $\dim L > 2$, there is no any norm $\|\cdot\|_{a,b,p}$, $1 \le p \le \infty$ which is identically to $\|\cdot\|$.

Let $(L, \|\cdot, \cdot\|)$ be a real 2-normed space. Then, by lemma 2.1, [1], on $L \times L \times L$ exist the functional above

$$N_{+}(x,z)(y) = \lim_{t \to 0^{+}} \frac{\|x + ty, z\| - \|x, z\|}{t}, \ N_{-}(x,z)(y) = \lim_{t \to 0^{-}} \frac{\|x + ty, z\| - \|x, z\|}{t},$$

and are *called right-hand and left-hand Gateaux derivative*, respectively of a 2-norm $\|\cdot,\cdot\|$ at (x,z) in the direction y. Further, if $N_-(x,z)(y) = N_+(x,z)(y)$, then the 2-norm $\|\cdot,\cdot\|$ is said to be *Gateaux differentiable* at (x,z) in the direction y and is denoted by

$$N(x,z)(y) = \lim_{t \to 0} \frac{\|x + ty, z\| - \|x, z\|}{t}.$$

2-normed space $(L, \|\cdot, \cdot\|)$ is called to be *smooth* if for $x \neq 0$ and $z \notin V(x)$ the 2-norm $\|\cdot, \cdot\|$ is Gateaux differentiable at (x, z) in the direction y ([7]).

Theorem 5. If 2-normed space $(L, \|\cdot, \cdot\|)$ is smooth, then the normed space $(L, \|\cdot\|_{a,b,1})$ is smooth for each linearly independent set $\{a,b\}$.

Proof. Let 2-normed space $(L, \|\cdot, \cdot\|)$ is smooth and $\{a, b\}$ is linearly independent set. Then,

$$N_{-}(x,a)(y) = N_{+}(x,a)(y)$$
 и $N_{-}(x,b)(y) = N_{+}(x,b)(y)$

thus,

$$\begin{split} \tau_{+}(x,y) &= \lim_{t \to 0^{+}} \frac{\|x+ty\|_{a,b,1} - \|x\|_{a,b,1}}{t} = \lim_{t \to 0^{+}} \frac{\|x+ty,a\| + \|x+ty,b\| - \|x,a\| - \|x,b\|}{2} \\ &= \lim_{t \to 0^{+}} \frac{\|x+ty,a\| - \|x,a\|}{2} + \lim_{t \to 0^{+}} \frac{\|x+ty,b\| - \|x,b\|}{2} \\ &= \lim_{t \to 0^{-}} \frac{\|x+ty,a\| - \|x,a\|}{2} + \lim_{t \to 0^{-}} \frac{\|x+ty,b\| - \|x,b\|}{2}) \\ &= \lim_{t \to 0^{-}} \frac{\|x+ty,a\| + \|x+ty,b\| - \|x,a\| - \|x,b\|}{2} = \lim_{t \to 0^{-}} \frac{\|x+ty\|_{a,b,1} - \|x\|_{a,b,1}}{t} = \tau_{-}(x,y) \end{split}$$

It means that the normed space $(L, ||\cdot||_{a,b,1})$ is smooth.

The terms convergent sequence and Cauchy sequence in 2-normed space are given by A. White. The sequence $\{x_n\}_{n=1}^{\infty}$ in 2-normed space is called to be *convergent* if there exists $x \in L$ such that $\lim_{n \to \infty} ||x_n - x, y|| = 0$, for

every $y \in L$. The vector $x \in L$ is called to be bound of the sequence $\{x_n\}_{n=1}^{\infty}$ and we denote $\lim_{n \to \infty} x_n = x$ or

 $x_n \to x$, $n \to \infty$, ([8]). The sequence $\{x_n\}_{n=1}^{\infty}$ in 2-normed space L is called to be *Cauchy* if for every $y \in L$, $\lim_{m,n\to\infty} ||x_n - x_m, y|| = 0$, ([9]).

Theorem 6. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in 2-normed space $(L, \|\cdot, \cdot\|)$ and $\{a, b\}$ be linearly independent set in L

- a) If the sequence $\{x_n\}_{n=1}^{\infty}$ be Cauchy sequence in $(L,\|\cdot,\cdot\|)$, then that sequence is Cauchy sequence in $(L,\|\cdot\|_{a,b,p})$, $p \ge 1$ and in $(L,\|\cdot\|_{a,b,\infty})$, too.
- b) If the sequence $\{x_n\}_{n=1}^{\infty}$ be convergent sequence in $(L,\|\cdot,\cdot\|)$, then that sequence is convergent sequence in $(L,\|\cdot\|_{a,b,p})$, $p \ge 1$ and in $(L,\|\cdot\|_{a,b,\infty})$, too.

Proof. a) Let $\{x_n\}_{n=1}^{\infty}$ be Cauchy sequence in $(L, \|\cdot, \cdot\|)$. Then,

$$\lim_{m,n\to\infty} ||x_n - x_m, a|| = 0 \text{ and } \lim_{m,n\to\infty} ||x_n - x_m, b|| = 0,$$

So, for each $p \ge 1$,

$$\lim_{m,n\to\infty} \|x_n - x_m\|_{a,b,p} = \lim_{m,n\to\infty} (\|x_n - x_m, a\|^p + \|x_n - x_m, b\|^p)^{1/p} = 0 \text{ and }$$

$$\lim_{m,n\to\infty}\parallel x_n-x_m\parallel_{a,b,\infty}=\lim_{m,n\to\infty}\max\{\parallel x_n-x_m,a\parallel,\parallel x_n-x_m,b\parallel\}=0\;,$$

i.e. $\{x_n\}_{n=1}^{\infty}$ be Cauchy sequence in $(L,\|\cdot\|_{a,b,p})$, $p\geq 1$ and $(L,\|\cdot\|_{a,b,\infty})$.

b) Let $\{x_n\}_{n=1}^{\infty}$ be convergent sequence in $(L, \|\cdot, \cdot\|)$. Then, there is $x \in L$ such that,

$$\lim_{n\to\infty} \|x_n - x, a\| = 0 \text{ and } \lim_{n\to\infty} \|x_n - x, b\| = 0,$$

So, for each $p \ge 1$

$$\lim_{n \to \infty} \|x_n - x\|_{a,b,p} = \lim_{n \to \infty} (\|x_n - x, a\|^p + \|x_n - x, b\|^p)^{1/p} = 0 \text{ and}$$

$$\lim_{n \to \infty} \|x_n - x\|_{a,b,\infty} = \lim_{n \to \infty} \max\{\|x_n - x, a\|, \|x_n - x, b\|\} = 0,$$

www.ajer.org

i.e. $\{x_n\}_{n=1}^{\infty}$ be convergent sequence in $(L, \|\cdot\|_{a,b,p})$, $p \ge 1$ and $(L, \|\cdot\|_{a,b,\infty})$.

REFERENCES

- [1] S. Gähler, Lineare 2-normierte Räume, *Math. Nachr.* 28, 1965, 1-42.
- [2] A. Misiak, *n*-inner product spaces, *Math. Nachr.* 140, 1989, 299-319.
- [3] R. Malčeski, Remarks on *n*-normed spaces, *Matematčki bilten*, 20 (XLVI), 1996, pp. 33-50, (macedonian).
- [4] H. Gunawan, Inner products on n-inner product spaces, *Soochow Jurnal of Mathematics*, Vol. 28, No. 4, 2002, 389-398.
- [5] R. Ehret, *Linear 2-Normed Spaces*, doctoral diss., Saint Louis Univ., 1969.
- [6] S. Kurepa, Functional analysis, (Školska knjiga, Zagreb, 1981).
- [7] Y. J. Cho and S. S. Kim, Gâteaux derivatives and 2-Inner Product Spaces, *Glasnik matematički*, Vol. 27(47), 1992, 271-282.
- [8] A. White, 2-Banach Spaces, Math. Nachr. 42, 1969, 43-60.
- [9] H. Dutta, On some 2-Banach spaces, General Mathematics, Vol. 18, No. 4, 2010, 71-84.
- [10] A. Malčeski and R. Malčeski, $L^1(\mu)$ as a n-normed space, *Annuaire des l'institut des mathematiques*, V. 38, 1997, 23-29.
- [11] A. Malčeski and R. Malčeski, L^p(μ) as a 2-normed space, *Matematički bilten*, V 29 (XL), 2005, 71-76.
- [12] C. Diminnie, S. Gähler and A. White, 2-Inner Product Spaces, *Demonstratio Mathematica*, Vol. VI, 1973, 525-536.
- [13] C. Diminnie, S. Gähler and A. White, 2-Inner Product Spaces II, *Demonstratio Mathematica*, Vol. X, No 1, 1977, 169-188.
- [14] C. Diminnie and A. White, 2-Inner Product Spaces and Gâteaux partial derivatives, *Comment Math. Univ. Carolinae*, 16(1) 1975, 115-119.
- [15] R. Malčeski, Strong convex *n*-normed spaces, *Macedonian Academy of Sciences and Arts*, *Contributions*, XVIII 1-2, 1997, 39-57
- [16] R. Malčeski, Strong *n*-convex *n*-normed spaces, *Matematički bilten*, V 21 (XXI), 1997, 81-102.