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Abstract: - In [1] S. Gahler proof that for any linearly independent vector a,bel, the equality
Ix[=llx,all+] x,b|l, xeL defines a norm onL . This result is generalized by A. Misiak in [2], and in [3] is

presented other proof of this result. Moreover, H. Gunawan in [4] generalized these results. In this paper we’ll
generalize the S. Gahler’s result of 2-normed space, which can easy be generalized on n-normed space.
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l. INTRODUCTION
Let L be a real vector space with dimension greater than 1 and ||-,-|| be a real function on Lx L such that:

a) |Ix,y|=0 ifand only if the set {x, y} is linearly dependent ;
b) I ylHlY. x| forevery x,yeL;
c) llex,y|Heal|-lIxy], forevery x,yeL and for every ¢ eR;
d) [Ix+vy,z|KIxz||+]y,z]|, forevery x,y,zeL.
The function ||-,-|| is called 2-norm on L, a (L,||-,-|]) is called vector 2-normed space ([1]). Some of the basic
properties of a 2-norm are that it’s nonnegative, i.c.
%, y|>0, for every x,yelL

and

%, y+ax|H %y, forevery x,yeL and for every aeR.

Let n>1 be a real number, L be a real vector space, dimL>n and (,-|-) be a real function on LxLxL
which satisfies the following conditions:

i) (X,x]y)=0,forevery x,yeL u (x,x|y)=0 ifand only if x and y are linearly dependent;

i) (x,y|2)=(y,x]|z), forevery x,y,zelL;

i) (x4, x|y)=(y,y|x), forevery x,yelL;

iv) (ax,y|z)=a(x,¥y|z), forevery x,y,zeL foreveryand aeR ; and

V) (X+X,Y1Z)=(XY|2)+ (X, Y]|2z), for every X,x,y,z€L.

The function (-,-|-) is called 2-inner product, and (L, (-,-|-)) is called 2-pre-Hilbert space ([5]).

Concepts of 2-norm and 2-inner product are two-dimensional analogies of concepts of norm and inner product.
R. Ehret proved ([5]) that, if (L,(--|-)) be 2-pre-Hilbert space, than

1%y I (oxI P2, xyel )
defines 2-norm. So, we get vector 2-normed space (L,||-,-|) and for each x,y,z <L the following equalities are
true:

2 2
(xy|z)= [Ix-+y.zl ;”X*Y:Z” ' 2)

Ix+y,zI? +lIx=y,z[P=2( %z |? +1ly.z|1?) , 3)
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In fact, the equality (3) is two-dimensional analogy of parallelogram equality and is called parallelepiped
equality. Further, if (L,||-,-|]) is vector 2-normed space such that (1) is satisfied for every x,y,zeL , then (3)

defines 2-inner product on L , and moreover the equality (2) is satisfied.

1. NORMS DEFINED BY 2-NORM
Theorem 1. Let(L,||--) , p=1 and {a,b} be linear independent subset of L . Then,
IxI= (x,alP +1xblIP)P, xeL @
define norm of L.
Proof. It’s clear that, || x|[>0 and||O|=0. Letting || x|=0 in (5) we get that| x,a|=| x,b|l=0. According the

definition of 2-norm, we can conclude that the sets {x,a} and {x,b} are linearly dependent. The fact that the set
{a,b} is linearly independent implies tx=ca and gx=pb, for somet,q=0. So, aga= Stb and {a,b} is
linearly independent set and alsot,q=0 . The last equality and the conditions mentioned above, implies
a==0,ie. x=0.Let xelL anda eR, then (5) implies the following
lax = (laxalP +1axbIP)? Jal (I xalP +[xbIP)'P < a|-|x].
Finally, using parallelepiped inequality and Minkovski’s inequality we get that for each X,y €L it’s true that
Ix+yl=(lx+y.alP +[x+y,b[P)P

<[(Ixall+Ily.al)P +(xbl+]y.bl) TP

<(ixal’ +lIxal’y?+(ly.al’+]y.bIP)"P

=[x+l
It means that (4) define norm of L , which will be denoted as |- [la,p,p . m
Theorem 2. Let (L,||--|[) be a2-normed space and {a,b} be linearly independent subset of L . Then

| x[l=max{]| x,a .l x,bll}, xeL ©®)

defines norm of L .
Proof. Clearly, | x|>0 and||O|=0. Let| x|=0. Then (5) implies|| x,a|H| x,b|E=0, and analogously as in the
proof of the theorem 1 we get that x=0. LetxeL and o € R . The equality (5) implies
Il ax [l=max(l| ax, all, | ex, b} = max{| | -[| x, all.| er| -[| x, b} = e |- || ]
Further, using the properties of maximum and the parallelepiped inequality we get the following
I x+y ll=max{l| x+y,al.l x+y,bl}

smax{[x,all+[ly.alllxbll+[y.bl}
<max{]l x,all, | x,b|}+max{||y.all |l y,bl}
=Ixl+1y -
It means that (5) defines norm of L, which will be denoted as |||l o - ®
Theorem 3. Let (L,||--|)) be 2-normed space and {a,b} is linearly independent subset of L . Then, for every
p.q=1 thell-lap,p. I-lapg and Ilap.o are equivalent.
Proof. Let p>1. Then, for everyxelL
11Xl o= maxgll x,a L1 x,b [} < (I x,a P + 1%, b[IP)P
<27 max{lx.a L% b1} =2"" I Xlap.
It means, that the norms |- [lap,p and ||-[la . are equivalent.
Let g> p>1. Further, using the already known inequality
I +vHYa < WP +vPYUP v >0
we get
1% lapg= (%@l + 1 xbIN < (I xallP + b IPYP = Xllap,p - ©)

On the other hand, without any general restrictions, we may take that for given x e the inequality
1% b|Kl x,a]| is satisfied. Then,
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b L
1l p= (%2 1P +1xbIPY? =l L+ (L2 Py

b
<27 x,all< 2P | x,a [+ (e @)

=2YP(Ixal® + b)Y =2YP | Xl q -
Finally, the inequalities (6) and (7) implies that the norms ||-[|z p,p and [|-[lap,q are equivalent. m
Let {a,b} be linearly independent set in 2-normed space L . Then, 2-norm induces family of norms
{ll-lla,p,000 Il lap, p» P 21}. Furthermore, for p>1 the norms are given by (4), and for p=co the norm is given
by (5). Now, let {a,b} and {c,d} be linearly independent sets. Let review the families of norms
I lapeor Ilap,pr P2 and{ll-lle,d cor I*llc.a,ps PZ1L}. Clearly, if L is a space with finite dimension, then

each two norms of reviewed families are equivalent (theorem 2, [6], pp. 29).
But problems of equivalence between the norms,

1) ”'”a,b,oo and ”'”c,d,oox
2) [ llapo and ”’"c,d,p , p>1 and
3) Ilap,p @nd [|-lld,q. P.a=1

and the conditions which must be satisfied if L be a space with not finite dimension are still opened.
Example 1. If (L,(,-)) be areal pre-Hilbert space, then

(x,y|z)=(x’y) (X'Z), X,y,zelL (8)
(y.2) (z,2)
defines a 2-inner product. It’s obvious that (1) defines 2-normon L, i.e.
1%y =N RIY IP ~(x, ) ©)

Further, if {a,b} is a linearly independent subset of L , then
1% o p,p =[0I X PN &I ~(x,8)%) P2 + (| Xl I <(x,b)?) P21/, p=1

1% lapoo= max{yll x [l 2 2 —(x, @)% I X [P b2 ~(x,b)%},
is a family of norms, which are generated by the prime norm || X |= «/(x, X) , and for every p=>1
12 lap,p =10l ,p =11 oo =B la o=\l A I DI ~(8, ) .

Clearly, if L is a space with finite dimension, all these norms are equivalent to the prime norm. But, the
following question is still opened: Is it true that for every vectors a and b the prime norm |- || is equivalent to

the norms || [lap,p, P21 and [|-[lap ™

1. SOME PROPERTIES INHERED FROM THE SPACE (L,||-,-|])
70 (L[l llajp,p) » P =1 TYPE OF SPACES
Theorem 4. If (L,||-,-]) be 2-pre-Hilbert space, then for any linearly independent set {a,b} the normed space
(LIl llap,2) be pre-Hilbert, and further more for each x,y e L is true that

(X, ¥)ap =(xyla)+(x y[b). (10)
Proof. Equalities (3) and (4) imply that for each x,y eL

X+ Y12 po + 11Xy 2p2=lx+y,al? +[x+y, bl +]x=y,al? +] x-y,b]?
=2(Ix.al? +ly,al®)+2(xbl? +]y,b[?)
=2(Ix,al? +[xbl?)+2(ly.al? +1y,bI?)

2 2
=2(Ixllap,2 + 1Y llap,2):

It means that in the space (L,|-[lap2) the parallelogram equality is succeeded. It implies that the mentioned

space is pre-Hilbert space. Further,




American Journal of Engineering Research (AJER) 2014

2 2
_ ¥l ot Ylana _ x+y.alf ity bl Jx-y.alf {x-y.bl?

(X! Y)a,b 4 4

2 2 2 2
x+y.a —lx-y,a X+Y,bll"—[X=y,h]
_ lIx+y.al 4|| y.al +|| y.bl 4" y.bll =(x, y|a)+(x,y]|b),

i.e. the equality (10) is true. m
Remark 1. By Theorem 4 we proved that if (L,||-,-|) be 2-pre-Hilbert space, the normed space (L, || [lp2) is
pre-Hilbert. Among each norms|[- [y p, 1< p<co on R" get in Example 1 only the norm ||-||yp» is induced

by inner product. Really, if
a=(110,..0), b=(3,0,10,...,0), x=(0,1,0,...,0) and y =(0,0,1,0,...,0) ,

for p=2,1< p<oo we get
/2 \1/ / i
1% llap,p=A+2P 2P 1y [l p= (272 +1)VP,

1/ pl/2 1/ pol/2
X+ Y lap,p=2"P3" 1t lx=y lap,p=2"P3"2,
thus,
2 2 v 1242/ 2 2
” X+y"a,b,p +|| X_y”a,b,p:6‘4 P ¢4(1+2p ) P :2(” X”a,b,p +|| yna,b,p) '
It means that the parallelogram equality is not satisfied. Further, for p=oc we get

1% lapoo=2, 1V lapo=~2, X+ Y lapoe="3 1 [ X=Ylapo=~3,
thus
X+ Y 1B +1X— Y 1B pw=6%8=2(IXIRp00 +1IVIEp00)

It means that this is other case in which the parallelogram equality is not satisfied.
Remark 2. If (L,(-,-)) be a real pre-Hilbert space, then (8) defines 2-inner product. Further, if {a,b} be a

linearly independent set, then by theorem 4, equality (10) defines an inner product on L
(% Y)ap = (6 y1a)+ (% y [0) = (x, VAl +1bIP1-(xa)(y,a) —(x,b)(y,b)
It means that using the prime inner product, we generate a family of inner products:
(+)ayp » et {a,b} is linearly independent on L . (11)

The real question is, either this family contains the prime inner product, i.e. are there exist linearly independent
vectors a,beL such that for every x,y eL is true that

(X, ¥)ap =(xY). (12)
But (a,b),, =0. Thus, if exist linearly independent vectors a,beL such that for every x,y eL (12) is hold,
then (a,b)=0. Further, letting x=y=a in equality (12) and considering (a,b)=0 and ||a|>0, we get
[Ib]=1. Analogously, we get ||a|=1. Hence, the equality (12) is transformed as

(x,y) =(x,a)(y,a)+(x,b)(y,b) . (13)

Two cases are possible:
1. dimL=2. Then, the set {a,b} is orthonormed base on L . In fact, the equality (13) is a Parseval

equality, and thus, the family (11) contains the prime inner product. The same inner product is get for each
orthonormed base {a,b} of L.

The last means if {a,b} be orthonormed base of L then the prime norm ||-|| is identical to the norm||- |ly 2 -
2. dimL>2 . Then, by Gram-Schmidt Theorem for orthogonalization, exists ceL such that
(a,c)=(b,c)=0 and ||c|l=1. Letting x=y =c in the equality (13) we get

1lc|?=(c,a)? +(c,b)* =0,
and that is contradiction. The last implies the family (11) doesn’t contain the prime inner product. It means, for
dimL>2, thereisnoany norm||-|la p,p, 1< p <cowhich is identically to |- ||.
Let (L,||--|]) be areal 2-normed space. Then, by lemma 2.1, [1], on LxLxL exist the functional above

N, (x,z)(y) = lim ||X+tyv2t||—||xv2||' N_(x,z)(y)= lim ||X+ty,Zt||—||X,Z||,
t—0" t—0"
and are called right-hand and left-hand Gateaux derivative, respectively of a 2-norm |-,-|| at (x,z) in the

direction y . Further, if N_(X,z)(y)=N,(x,z)(y), then the 2-norm ||-,-|| is said to be Gateaux differentiable at
(x,2) in the direction y and is denoted by
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N(x,z)(y) = lim ||x+ty,zt||—||x,z|| .
t—>0

2-normed space (L,||--]) is called to be smooth if for x=0 and z¢V(x) the 2-norm |-,-]| is Gateaux
differentiable at (x,z) in the direction y ([7]).

Theorem 5. If 2-normed space (L,||--]}) is smooth, then the normed space (L,||[lyp1) is smooth for each
linearly independent set {a,b}.

Proof. Let 2-normed space (L,||-,-|]) is smooth and {a,b} is linearly independent set. Then,

N_(x,a)(y) = N,.(x,a)(y) u N_(x,b)(y) = N (x,b)(y)

thus,
. (% y) = lim P+l aAXlabs _ gy Ixty.aliHxty biifix.all-fx.bi
+ ’ + t + 2
t—0 t—0
— lim tyaxal | im IIX+ty,bZ||—I|x,bI|
t—>0* t—>0*
— lim tyalixal | im IIX+ty,t;I|—||x,bll)
t—0" t—0"
- | — . X+t —|[|X
- lim ||x+ty,a||+||x+ty2,b|| Ix.alHx.bl _ lim I y"a,b,tl {1Xlla,b,1 —r (%)
t—0 t—0

It means that the normed space (L, |||l 1) is smooth. m

The terms convergent sequence and Cauchy sequence in 2-normed space are given by A. White. The sequence

{Xntnz in 2-normed space is called to be convergent if there exists x eL such that lim ||x, —x,y|=0, for
N—o0

every yeL. The vector xeL is called to be bound of the sequence {X,}n -1 and we denote lim x, =X or
N—o0

X, —> X, N — o0, ([8]). The sequence {X,} - in 2-normed space L is called to be Cauchy if for everyyelL,
lim 1%y =Xm, Y [=0, ([9]).
,N—0

m

Theorem 6. Let {X,}n-; be a sequence in 2-normed space (L,||-,-|[) and {a,b} be linearly independent set in L

a) If the sequence {x,}r4 be Cauchy sequence in (L,||--][) , then that sequence is Cauchy sequence in
(Ll lap,p)» p=1 andin (L[| la,p,z0) , too.

b) If the sequence {X,}n-; be convergent sequence in (L,||-,-|) , then that sequence is convergent sequence in
(Lillllap,p)» p=1 andin (L,|-llap,c0) . too.
Proof. a) Let {X,}_; be Cauchy sequence in (L,]|-,-|) . Then,
lim || X, —Xm.2l=0 and lim || x,—Xqy,,b]=0,
m,n—o0 m,n—o0

So, for each p>1,

- - v

lim 1%, =% lap,p=1im (1%, =X, all® +11 %, —Xg,b[IP)*P =0 and
m,n—o0 m,n—oo

lim X =X llapeo= 1M max{]| X, —Xm,a [l Xy —Xm,b[}=0,
m,n—o m,n—»a
i.e. {Xq}n1 be Cauchy sequence in (L[l [lap,p) . p=1 and (L[l llapeo) -

b) Let {X,}n-1 be convergent sequence in (L,]|-,-|[) . Then, there is x e L such that,
lim || x, —x,a|l=0 and lim || x, —x,b|=0,
n—0 N—00

So, for each p>1
lim 1%y =Xl p,p= 1im (1%, = %,a[° +]| %, =xb[”)P =0 and
n—o0 T nowo

lim [ =X la pco= lim max{]| x, —x,a|L.|lx, —x,b|}=0,
nN—o0 N—o0
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i.e. {x,Jn_1 be convergent sequence in (L,[|[lap,p), P=1 and (L[| llapeo) - m
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