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Abstract: - With the rapid growth of power system and the increase in their complexity of the networks, load 
forecasting plays a vital role in economic operation of power systems, network planning and infrastructure 

development. Electricity demand forecasting is concerned with the prediction of a very short term, short term, 

medium term and long term load demand, depending on the time horizon. This paper presents an application of 
neural network for real time short term load forecasting and has been compared with the conventional 

exponential smoothing technique. The daily load data of an  inter connected grid Damodar Valley Corporation,  

operating under Eastern Regional Load  Dispatch Centre, India were  used as data sets for training and 

comparing  the performance of  different neural network topologies along with conventional exponential 

smoothing technique. The results obtained from Artificial Neural Networks were evaluated with the statistical 

parameters i.e., Mean Absolute Percentage Error (MAPE) and Mean Absolute Deviation (MAD). MATLAB has 

been used for simulation, performance and testing the data. Extensive testing shows that neural network based 

approach has better forecasting accuracy and robustness.  

 

Keywords: - Artificial Neural Network (ANN), Cascade Forward Neural Network (CASFNN), Chow’s Adaptive 
Control Method (CACM), Mean Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE), Radial 

Basis Function Neural Network (RBFNN), Short Term Load Forecasting (STLF)     

  

I. INTRODUCTION 
In the present complex power system network under deregulated regime, generating companies 

(GENCOs) must be able to forecast their system load demand and the corresponding price in order to make 

appropriate market decisions. The economy of power producers, market operators, transmission owners and 

other players associated with the electricity market is directly affected by the efficiency and the swiftness with 

which system load is forecasted. An underestimation of load is as severe as an overestimation of load and can 

bring about humongous losses. Accurate and precise future load estimation is, thus, a prerequisite. In this 

context, load forecasting emerges as a valuable tool. STLF is required by utility planners and electric system 

operators for critical operational planning and day-to-day decision making like unit commitment, spinning 

reserve, economic power interchange, load management etc. Although the time varying system load is 

influenced by social, metrological and financial factors, their effects are not generally considered in STLF. The 

success of the important existing STLF methods, such as using statistical techniques or artificial intelligence 

algorithms, which includes regression models, time series, neural networks, statistical learning algorithms, fuzzy 
logic or expert systems etc., depends not only on the approach chosen but also on the quality and choice of input 

data which would contain proper patterns representing the system dynamics. The main motivation for STLF 

originates from the fact that the loads are much less dependent on each other and the possibility of modeling the 

slowly varying dynamics of change in load using appropriate STLF techniques. Hence, there are sufficient 

reasons for continuing further investigations in the field of STLF. 

The STLF anticipates very near future loads by analyzing historical data and plays a crucial role in 

efficient planning, operation, control and maintenance of a power system. Most of the existing techniques on 

STLF try to improve the performance by selecting different prediction models. But these different models suffer 

from different problems, like lack of self-learning capability, choice of suitable input, training data etc. Some of 
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the methods are vulnerable to dirty data and rely heavily on the quality and size of historical data. Several 

techniques have been developed over years to accomplish this challenging task [1-6]. The different 

methodologies not only differ in the techniques used for forecasting but also in the consideration of factors 

which influence load. The statistical load forecasting methods include regression method as given in [7], 

exponential smoothing in [8], time series modeling in [9], Box-Jenkins ARIMA in [10] and others which 

assume a linear relationship between  load and the factors affecting the load. In case of a nonlinearity, such 

methodologies fail to reflect the appropriate load behavior and thus, are not reliable. Another attempt for load 

forecast is found in [11] which adopts an expert systems perspective to determine the relationship between 

historical load patterns and dry bulb temperatures. This system does not employ any specific load model for 
load prediction. Another similar approach is the development of an adaptive load model in [12] which 

successfully incorporates the stochastic behavior without utilizing the weather variables. Recently, the genesis 

of meta-heuristic techniques like Artificial Neural Networks (ANN), Particle Swarm Optimization (PSO), fuzzy 

logic, Genetic Algorithm (GA) and others have opened up this avenue for further exploration. 

The main evolutionary algorithms such as Fuzzy Systems presented in [13] and Pattern Recognition 

Techniques in [14] have been proposed and used for short term load forecasting applications. Amongst these, 

artificial neural network is probably the most popular algorithm used for this purpose. The ability of neural 

networks to easily accommodate complex nonlinear relationships between electrical load and exogenous factors 

makes them attractive as a tool for load predictions. Besides, neural networks can make accurate predictions 

without having to select any specific load model [15-18]. 

This study exploits the capabilities of two different neural network topologies, viz., Cascade Forward 
backpropagation neural network and Radial Basis Function neural network in making short term load forecasts 

using historical data for Damodar Valley Corporation (DVC) grid operating under Eastern Regional Load 

Dispatch Centre (ERLDC), India. The neural networks are trained in the first phase with historical data. The 

prediction performance of both the neural networks is validated by comparing the predicted data for each day of 

a week with the actual load demand. Statistical parameters like Mean Absolute Percentage Error (MAPE) and 

Mean Absolute Deviation (MAD) have been used as performance indices to evaluate the efficacy of the 

proposed algorithm and to compare the two neural network topologies used with the traditional exponential 

smoothing method.     

The content of this paper is organized in the following manner: Section 2 describes the statement of 

load forecasting problem and in Sect. 3, an overview of employed methods is offered. Sect. 4 presents the 

computational procedure of the aforesaid neural networks followed by results and discussions in Sect. 5. Section 

6 concludes the work. 
 

II. STATEMENT OF LOAD FORECASTING PROBLEM 
Power system load forecasting can be classified in four categories, namely very short-term, short-term, 

medium term and long term forecasting. The periods for these categories are often not explicitly defined. 

Different authors use different time horizons to define these categories. STLF covers hourly to weekly forecasts 

which are often needed for day to day economic operations of GENCOs. Medium-term load forecasting deals 

with predictions ranging from weeks to a year. Outage scheduling and maintenance of plants and networks are 

often roofed in these types of forecasts. Long term forecasting on the other hand deals with forecasts longer than 

a year. It is primarily intended for capacity expansion plans, capital investments, and corporate budgeting. These 
types of forecasts are often complex in nature due to future uncertainties such as political factors, economic 

situation, per capita growth etc. 

 

III. AN OVERVIEW OF EMPLOYED METHODS 
When forecasts are needed for very large number of items, as is the case in power system load 

forecasting, smoothing methods are often the only conventional methods fast enough for acceptable 

implementation as compared to other sophisticated methods. The major advantages of widely used smoothing 

methods are their simplicity and low cost. The computational time needed for making necessary calculations is 

less with minimum of outside interference. Due to the above mentioned features, exponential method like 
Chow‟s Adaptive Control Method (CACM) has been considered. 

 

III.1 CHOW’S ADAPTIVE CONTROL METHOD (CACM) 

Forecasting situations vary widely in their time horizons. Several factors determine actual outcomes, 

types of load patterns and many other aspects. To deal with such diverse applications, several techniques have 

been developed. This falls into two major categories: Quantitative and Qualitative methods. Quantitative 

methods include regression analysis, decomposition method, exponential smoothing and Box-Jenkins 

methodology. 
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      In this paper, one such exponential smoothing method has been considered. The philosophy is similar 

to Adaptive-response-rate single exponential smoothing (ARRSES) but has the additional feature that it can be 

used for non-stationary data. However the way at is adjusted in Chow‟s method is not at all similar to that used 

in the ARRSES equation. 

ttt FXF )1(1       (1) 

in which α is replaced by 𝛼𝑡 , 

 

ttttt FXF )1(1      (2) 
where 

ttt ME /1 
    (3) 

1)1(  ttt EeE 
    (4) 

1)1(  ttt MeM 
   (5) 

ttt FXE 
    (6) 

α and β are parameters between 0 and 1 and | | denotes absolute values. Equation (1) indicates that the 

values of α to be used for forecasting period (t+2) is defined as an absolute value of the ratio of a smoothed error 

term (𝐸𝑡)and a smoothed absolute error term (𝑀𝑡). These two smoothed terms are obtained using Single 

Exponential Smoothing (SES) as shown in equations (3) and (4). Here we could have used ∝𝑡 in equation (1). 

We prefer ∝𝑡+1 because ARRSES is often too responsive to changes, thus using ∝𝑡+1 we introduce a small lag 

of one period, which allows the system to “settle” a little and forecast in a more conservative manner. 

Rather, ∝𝑡  is „adapted‟ by small increments (usually 0.05) so as to minimize the Mean Square Error. The 

equations of Chow‟s adaptive smoothing are 

))(1( 1 ttt SXS     (7) 

11 )1()(   tttttt bSSb    (8) 

and 

t

t

t
t bSF 









 




1
1     (9) 

Artificial neural network has proved its supremacy over traditional methods of load forecasting owing 
to its capability of learning and self-organizing, robustness in presence of noise, resilience to components failure 

and tremendous potential for massive computation. ANN can be perceived as multivariate, nonlinear and 

nonparametric methods. It can easily map a given input-output data pattern and nonlinearity is not a constraint 

for ANN. But ANN requires optimal network structure and unified training algorithms in order to improve the 

accuracy of the forecast as well as the performance of the networks. An insightful analysis of neural network 

structure and underlying operational principles facilitates the design of a better network. 

 

III.2CASCADE FORWARD BACKPROPAGATION NEURAL NETWORK 

Cascade forward neural networks are a modified version of the simple feed-forward neural networks. 

Unlike in feed-forward neural networks, each layer is directly connected to the input. Weighted interconnections 

exist not only between the input and every layer but each layer is also connected to the successive layers. All the 
layers have biases. The additional connections amongst the different layers as compared to the feed-forward 

neural network improve the speed with which the network acquires the desired input-output relationship.  Fig. 1 

is an illustration of a three layered cascade forward neural network. Evidently, all the layers include a weighted 

connection with the input. In addition, the first layer is connected to the second layer and the second layer is 

linked to the third layer as in a feed-forward neural network. An additional connection exists between the first 

layer and the third layer, thereby imparting an increased learning speed. The weights of interconnection between 

the previous layers are called input weights while the weights between the layers are referred to as link weights. 

The hidden layer neurons in this study have been activated by tan-sigmoid transfer function whereas pure linear 

function has been used for the output layer. 
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Fig. 1 Architecture of a Cascade Forward Neural Network 

where, 

p is the input vector. 

Wmis the input weight matrix for layer „m‟. 

Wm,kis the link weight matrix for layer m of layer „k‟. 

Bm is the bias of neuron for layer „m‟. 
fmis the activation function used for layer „m‟. 

am  is the output of layer „m‟. 

Once the network architecture is defined and the weights and biases of neurons are initialized, neural 

network training commences. The success of a neural network relies heavily upon the training of the network. 

The training is usually performed by a supervised algorithm like backpropagation learning algorithm. 

Backpropagation algorithm is an iterative process and consists of three steps. 

i) The first step computes the output of the neural network for the given set of inputs. 

ii) The variation between the expected output (target) and the predicted output of neural network is deemed as 

the error. This error is propagated backwards from the output node to the input node. 

iii) Finally, the weights and biases associated with the neurons are adjusted by a multivariate nonlinear numeric 

optimization algorithm.  

A cycle of these steps continues and the weights and biases of neurons are adjusted iteratively in order to 
minimize error and maximize system performance. Backpropagation is a gradient based approach where the 

gradient of the performance function given by equation (10) is evaluated to ascertain how the synaptic weights 

need to be adjusted to achieve the desired goal. 

𝐸 =
1

2
  (𝑡𝑝𝑗 − 𝑜𝑝𝑗 )2

𝑗𝑝                           (10) 

where, E is the sum of squared errors, tpj and opj are the target outputs and actual outputs j for the pthinput pattern. 

In this work, a modified version of backpropagation algorithm called Levenberg-Marquardt Backpropagation is 

implemented to augment the speed of convergence. The Levenberg-Marquardt algorithm uses equation (11) to 

constantly adjust network weights and biases. 

𝑋 𝑛 + 1 = 𝑋 𝑘 − (𝐽𝑇𝐽 + 𝜇𝐼)−1𝐽𝑇𝑒       (11) 
where, 

X is the vector of all weights and biases. 

J is the Jacobian matrix of the first derivatives of the network errors with respect to weights and biases. 
„e‟ is a vector of network errors and „μ‟ is a constant.  

 

III.3RADIAL BASIS FUNCTION NEURAL NETWORK 

Radial Basis Function (RBF) neural network was first introduced in 1988 by Broomhead and Lowe. Radial 

Basis Function is a special type of function the response of which either decreases or increases monotonically 

from a central point. RBFNN is usually characterized by the following features: 

 They are two-layered feed-forward network. 

 A set of radial basis functions is employed by the hidden layers. 

 A linear summation function is engaged for the output layers. 

 They are much faster during training/learning. 

 Network training in RBFs is a two-step process. In the first step, the weights of the input to hidden layers 
are ascertained. The second step commences with the weight determination of the hidden to output layers. 

Various basis functions have been used to model the architecture of RBFNN, such as 
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 Thin Plate Spine Function:    xxx ln2  

 Gaussian Function:  












 


2

2

2
exp






x
x , where μ and σ are the mean and standard deviation of the 

distribution respectively. 

 Multi-Quadratic Function:   22   xx  

 Linear Function:   xx   

      RBF network strives to find the best surface in a multi-dimensional space to ensure the best match to 

the training data. The general architecture of a RBFNN consists of input layer with as many input nodes as the 

number of independent input variables, a hidden layer of few neurons employing radial basis transfer function 

and output layer with as many nodes as the required number of outputs. RBF is prone to overfitting with too 

many hidden layer neurons and underfitting with too few hidden layer neurons. Fig. 2 exemplifies the 

architecture of RBF Neural Network. The network distribution density commonly called SPREAD is set at 0.08 
in this study. 

 
Fig. 2 Architecture of a Radial Basis Function Neural Network 

 

IV. NN BASED PROPOSED METHODOLOGY OF LOAD FORECASTING 
In order to accomplish an accurate and useful load forecast, a broad spectrum of associated parameters need to 

be ascertained.The proposed methodology shown in Fig. 3 for an efficient load forecast is developed in the 

following discussion in a sequential manner. 

 

IV.1SELECTION OF INPUT DATA 

The input variables in the present model come from historical data corresponding to the factors that 

affect the load. As inputs the past 96 blocks of each 15 minutes interval for 24 hours of a day are utilized. The 

proposed NN techniques (CASFNN and RBFNN) were applied for short term load forecast (STLF) in the 

electricity market forDamodar Valley Corporation (DVC) grid operating under Eastern Regional Load Dispatch 
Centre (ERLDC), India. DVC Grid consists of an installed capacity of 5000 MW and daily load demand of 3200 

MW. The effect of exogenous variables in load variation may be assumed to be taken care of by the neural 

networks in the classification phase and predicted load demand. 

 

IV.2CHOICE OF NEURAL NETWORKS PARAMETERS 

Two variations of artificial neural networks in the form of Cascade Forward Neural Network and 

Radial Basis Function Neural Network are utilized for load forecasting. Different parameters like choice of 

activation functions for different layers, number of hidden layer neurons and the performance function used for 

quantifying prediction performance are pertinent for the successful implementation of any neural network. The 

network details for the different neural networks used in this study are drawn out in TABLE 1. The parameters 

are selected after rigorous trials for which the network prediction is most accurate. There does not exist any 

concrete mathematical formulation to facilitate the selection of these parameters. 
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TABLE1 SELECTION OF PARAMETERS FOR NEURAL NETWORKS 

Network Parameters CASF NN RBF NN 

Number of Hidden 

layers 

2 2 

Activation functions Tan-sigmoid for 

hidden layer, Purelin 
for output layer 

Thin Plate Spine Function for 

hidden layer, Purelin for output 
layer 

Performance 

Parameters 

MAPE, MAD MAPE, MAD 

 

IV.3DATA PREPROCESSING OR NORMALIZATION 

The convergence of neural network output is ensured by normalizing the input data within suitable 

bounds before training. The neural network has been seen to perform better with normalized inputs than with the 

original data set, the range of which can be very large. Due to the nature of sigmoid function, the output of the 

neurons falls within -1 to 1.  After rigorous simulations it has been observed that data normalization between 0 to 

1 has a superior performance than with normalized data between -1 to 1.Hence, the input data bounds are set to 0 

as the lower limit and +1 as the upper limit. Normalization is achieved in accordance with equation (12). 

𝑌 =  𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛 ∗
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛
+ 𝑌𝑚𝑖𝑛         (12) 

where Xminis the minimum value of original data set, Xmaxis the maximum value of original data set and X is the 

data point being normalized. Ymin and Ymax are the minimum and maximum values respectively of the interval 
boundaries. In this case, Ymin = 0 and Ymax = 1. 

 

IV.4TRAINING AND VALIDATION 

 The neural network needs to be trained for faithful prediction of load under varying conditions. The 

proposed model uses the load patterns for the same days of the previous weeks for its initial training. Once the 

network has been trained properly, it is made to predict the load demand for the current week. This phase is often 

called validation. It is an indicator of the accuracy of the predictions. 

 

V. RESULTS AND DISCUSSIONS 
In this paper, different topologies of ANN along with conventional smoothing technique were applied to data 

sampled at 15 minutes interval for different days in a week (seven data sets from 3rd November, 2013-Sunday to 

9th November, 2013-Saturday). The forecasting accuracy is ascertained using statistical indices like Mean 

Absolute Deviation and Mean Absolute Percentage Error. For „N‟ number of data points, the following 

parameters can be defined as follows. 

Mean Absolute Percentage Error (MAPE):The mean absolute percentage error (MAPE) which is a degree of 

accuracy in a fitted series value in statistics is expressed mathematically as 

𝑀𝐴𝑃𝐸 =
 |

𝐸𝑖
𝐴𝑖

|𝑁
𝑖=1

𝑁
𝑋 100%  (13) 

where Ai is the actual value, Pi is the predictedvalue and N is the number of data. A MAPE below 5% is the 

measure of a highly accurate prediction. 

Mean Absolute Deviation (MAD): It is one of the robust statistical parameters used to quantify the variability 

associated with an invariant set of quantitative data. Mathematically, it is expressed as follows. 

𝑀𝐴𝐷 =
 |𝐸𝑖|

𝑁
𝑖=1

𝑁
  (14) 

As described in Section 4, Cascade Forward Neural Network and Radial Basis Function Neural Network 

are trained using historical data for each day of the previous weeks. For instance, both the neural networks are 
trained with the load data for two consecutive Mondays of a month. After successful training, the neural networks 

are made to predict the load demand for the third Monday of the same month using the latest data for the past two 

Mondays. Effectively, the neural networks make the load forecast for one week in advance. Similar trainings 

andpredictions are performed for all the days of a week. Such an approach also makes considerations for the fact 

that load demand is entirely different for the weekends and other days of the week. A neural network trained with 

the load pattern for a weekday may yield poor results when used for making predictions for a weekend. The 

approach proposed here counters this deficiency by using load data of previous weekends to predict the load for 

the current weekend.  

The performance of the applied techniques have been compared with more popular smoothing method of STLF 

namely CACM. The test results are presented in Fig. 4-10. 
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Fig. 3 Simplified flowchart for the proposed methodology 

 

  TABLE 2 portrays comparison of MAPE and it is revealed that RBFNN gives comparatively superior 

predictions and at almost all times predicts the load pattern similar to that of the actual load. The maximum values 

of MAPE are 0.4652% and 0.8895% for RBFNN and CASFNN respectively in comparison with a maximum 

MAPE of 0.9199% obtained with CACM. TABLE 3 depicts the comparison of MAD and this again substantiates 

that RBFNN has a better learning ability than CASFNN and CACM. A maximum MAD in the range of 10.6551 

and 14.3792 for RBF NN and CASFNN respectively can be considered to be good and promising for future load 
prediction applications. From TABLE 4, it has been observed that the proposed application of ANN which does 

not require any enormous storage size, takes less computational time and memory. 

 

 
Fig. 4 Comparison of Predicted weekend system loads (Sunday) 
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Fig. 5 Comparison of Predicted weekday system loads (Monday) 

 
Fig. 6 Comparison of Predicted weekday system loads (Tuesday) 

 

 
Fig. 7 Comparison of Predicted weekday system loads (Wednesday) 

 
Fig. 8 Comparison of Predicted weekday system loads (Thursday) 
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Fig. 9 Comparison of Predicted weekday system loads (Friday) 

 
Fig. 10 Comparison of Predicted weekend  system loads (Saturday) 

 

TABLE 2 MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) FOR DIFFERENT PREDICTION METHODS 

 CACM CASFNN RBFNN 

Sunday 0.5159 0.4073 0.4393 
Monday 0.9199 0.8895 0.2564 
Tuesday 0.7524 0.5529 0.4081 
Wednesday 0.6329 0.5697 0.4311 
Thursday 0.683 0.6260 0.4652 
Friday 0.5910 0.4976 0.3269 
Saturday 0.4079 0.3555 0.3599 

 

TABLE 3 MEAN ABSOLUTE DEVIATION (MAD) FOR DIFFERENT PREDICTION METHODS 

 CACM CASFNN RBFNN 

Sunday 9.7119 9.3146 9.9816 
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Wednesday 14.9690 13.8394 10.4300 
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Saturday 11.7080 8.3055 8.4940 

 

TABLE 4 COMPARISON OF CONVERGENCE TIME (IN SECONDS) FOR DIFFERENT PREDICTION METHODS 

 CACM CASFNN RBFNN 

Sunday 0.7871 0.4655 0.0375 
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Wednesday 0.7799 0.4594 0.0285 

Thursday 0.7637 0.4404 0.0279 

Friday 0.8561 0.5309 0.0278 

Saturday 0.8892 0.4699 0.0284 

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
1900

2000

2100

2200

2300

2400

2500

2600

2700

 Time Steps

 T
o

ta
l 
L

o
a

d
 (

M
W

)

(Test System: Damodar Valley Corporation [India])

 

 

Actual

CACM

CASFNN

RBFNN

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
2150

2200

2250

2300

2350

2400

2450

2500

2550

2600

 Time Steps

 T
o

ta
l 
L

o
a

d
 (

M
W

)

(Test System: Damodar Valley Corporation [India])

 

 

Actual

CACM

CASFNN

RBFNN



American Journal of Engineering Research (AJER)   2014 
 

 
w w w . a j e r . o r g  

 

Page 280 

VI. CONCLUSION 
The comparison of the test results shows the merit of Neural Network over the conventional smoothing 

technique CACM. Simulation test results reveal the following.  

     The prediction performance of the Neural Networks was very much effective and was able to forecast the 

load for the next 15 minutes reliably.The forecasting reliability of the proposed ANNs was evaluated by 

computing the performance indices (MAPE and MAD) and results are very encouraging. On detailed study of 

the proposed forecast technique, the minimum calculated MAPE of the forecast data is very small.The 
calculated MAD of the calculated data is very small, which is more reasonable.The application of the proposed 

ANN has less computational complexity and thus reduced execution time. Hence, proposed methodology is 

generic enough to be applied to forecasting problems of other power utilities/ load dispatchers for its novelty, 

simplicity, efficacy and accuracy. 
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