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Abstract: - In theorem 1 [1], S.S. Dragomir gave bounds for the normalized Jensen functional defined by 

convex function f , which one is defined on strictly convex subset C  of vector space X . Further, using 

inequality (2.1) of normed space ( ,|| ||)X   he proved the inequalities (3.1), (3.2) and (3.3), and after that from 

inequality (3.3) he performed inequality (3.6), which was previously proved in [2]. In this paper we’ll give an 

example, which shows that inequalities (3.3) are not correct and will show how the inequality (3.2) implies (3.6) 

given in [1].  
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I. INTRODUCTION 

Let X  be a vector space, C  convex subset of X , nP  set of all nonnegative n  tuples 1 2( , ,..., )np p p  such that 
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be the normalized Jensen functional. In [1], for functional (1), S.S. Dragomir gave elementary proof of the 

following theorem (theorem of bounds for the normalized Jensen functional ). 

 

Theorem 1. If , nPp q , 0iq  , for each 1,2,...,i n  then 

11
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 x q x p x q . ■   (2) 

 

Furthermore, using the fact, that in normed space ( ,|| ||),X  the function : ,pf X R  ( ) || || , 1p
pf x x p   is 

convex on X , S.S. Dragomir proved that inequality (2) implies the following inequalities  
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And letting 1
j n

q  , for 1,2,...,j n  he get the following inequalities  
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Finally, letting 1
|| ||i

i x
p  , for \{0}, 1,2,...,ix X i n  and also using the inequalities (4) S.S. Dragomir get the 

following : 
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By which for 1p   he get the following  
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proved in [2], and their generalization was given by Mitani, Saito, Kato and Tamura, [3] and also by Pečarić and 

Rajić, [4].  

 

II. MAIN COMMENT 

Example 1. Let 
nX R , 2n   and || ||  be an Euclid’s norm. Then the vertex (0,...,0,1,0,...,0),i

i
x 

1,2,...,i n  satisfy the following  
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According to this, for 1p   the inequalities (5) applies the following ones  

2 2 21
p p p
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So, we get that for 2n   and 1p   is true that 1 1pn   , and that is contradiction. ■ 

 

At first, it seemed that inequalities (3) - (6) get correct by (2). So this procedure [2] is citated by L. Maligranda. 

However, the example 1 shows that inequality (5) is not correct if 1p  . The error occurred in a choice of 

numbers 1
|| ||i

i x
p  , \{0},ix X  1,2,...,i n . In fact, according to Theorem 1 these numbers have to satisfy the 

condition 

1

1
n

i
i

p



 . The mentioned condition is not satisfied for arbitrary vectors \{0},ix X  1,2,...,i n  

and for thus selected numbers , 1,2,...,ip i n
 

Anyway, Theorem 1, i.e. inequality (4) implies (6).  

Let 0i  ,for 1,2,...,i n , and 
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in (4), we get the following inequalities: 
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Letting 1
|| ||i

i x
  , for \{0}, 1,2,...,ix X i n  , in inequalities (7) we get the following: 
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Finally, by using the inequalities above for 1p  , we get inequalities (6).  

 

Remarks. In the end, we can note that for || ||i ix  , , 1,2,...,ix X i n  , inequality (7) implies the following 

inequalities  
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In which, for 1p   we get the inequalities below:  
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Similarly, as (6), if the vertex , 1,2,...,ix X i n   are such that || || 1ix  , then they become equalities.  
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