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Abstract: - A critical issue in image restoration is the problem of noise removal while keeping the integrity of 

relevant image information. The method proposed in this paper is a fully automatic 3D block wise version of the 

Non Local (NL) Means filter with wavelet sub-bands mixing. The proposed a wavelet sub-bands mixing is 

based on a multi-resolution approach for improving the quality of image de-noising filter. Quantitative 

validation was carried out on synthetic datasets generated with the Brain Web simulator. The results show that 

our NL-means filter with wavelet sub-band mixing outperforms the classical implementation of the NL-means 

filter in of de -noising quality and computation time. Comparison with well established methods, such as non 

linear diffusion filter and total variation minimization, shows that the proposed NL-means filter produces better 

de-noising results. Finally, qualitative results on real data are presented. And this paper presents an algorithm for 

medical 3D image de-noising and segmentation using redundant discrete wavelet transform. First, we present a 

two stage de-noising algorithm using the image fusion concept. The algorithm starts with globally de-noising 

the brain images (3D volume) using Perona Malik’s algorithm and RDWT based algorithms followed by 

combining the outputs using entropy based fusion approach. Next, a region segmentation algorithm is proposed 

using texture information and k-means clustering. The proposed algorithms are evaluated using brain 3D 

image/volume data. The results suggest that the proposed algorithms provide improved performance compared 

to existing algorithms.  

 

Keywords:  - Medical Image Analysis, De noising, Segmentation, Redundant Discrete Wavelet Transform. 

 

I. INTRODUCTION 
Image de- noising can be considered as a component of processing or as a process itself. In the first 

case, the image de- noising is used to improve the accuracy of various image processing algorithms such as 

registration or segmentation. Then, the quality of the artifact correction influences performance of the 

procedure. In the second case, the noise removal aims at improving the image quality for visual inspection. The 

preservation of relevant image information is important, especially in a medical context. This paper focuses on a 

new de noising method firstly introduced by Buades et al. [4] for 2D image de noising: the Non Local (NL) 

means filter. We propose to improve this filter with an automatic tuning of the filtering parameter, a block wise 

implementation and a mixing of wavelet sub-bands based on the approach proposed in [17]. These contributions 

lead to a fully-automated method and overcome the main limitation of the classical NL-means: the 

computational burden. Section 2 presents related works. Section 3 presents the proposed method with details 

about our contributions. Section 4 shows the impact of our adaptations compared to different implementations 

of the NL-means filter and proposes a comparison with well-established methods. The validation experiments 

are performed on a phantom data set in a quantitative way. Finally, Section 5 shows results on real data. 

Typically, the field of medical image analysis involves: post-acquisition such as de noising and restoration, 

segmentation i.e. delineating features of interest, registration, i.e. align captured image with a model or 

previously captured image, computation i.e physical quantity derivation, visualization, and security. Existing 

algorithms in medical image analysis, in general, use partial differential equations, curvature driven flows and 

different mathematical models. Wavelet based methods have also been proposed for medical image analysis. In 
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1991, Weaver et al. [1] first proposed the use of wavelet theory in medical imaging with the application to noise 

reduction in MRI images. Thereafter, several algorithms have been proposed for de noising, segmentation, 

reconstruction, functional MRI, registration, and feature extraction using continuous wavelet transform (CWT), 

discrete wavelet transform (DWT), and redundant DWT (RDWT). Detailed survey of wavelet based algorithms 

for medical imaging can be found in [2] [3], [4], and [5]. In this paper, we propose algorithms for brain image de 

noising and region based segmentation using RDWT for improved performance. RDWT [6], [7], also known as 

shift invariant wavelet transform, has proven its potential in different signal processing applications but it is not 

well researched in the field of medical image analysis. The proposed algorithms utilize properties of RDWT 

such as shift invariance and noise per sub band relationship along with other techniques such as soft 

thresholding, clustering, and entropy for improved performance. Experimental results on the brain data show the 

usefulness of the proposed de noising and segmentation algorithms and clearly indicate their potential in 

medical image analysis. Section 2 briefly explains the fundamentals of redundant discrete wavelet transform. 

Medical image de noising algorithm is explained in Section 3 and Section 4 describes the proposed image 

segmentation algorithm. 

 

A.  Noise in an Image 

It is generally desirable for image brightness (or film density) to be uniform except where it changes to 

form an image. There are factors, however, that tend to produce variation in the brightness of a displayed image 

even when no image detail is present. This variation is usually random and has no particular pattern. In many 

cases, it reduces image quality and is especially significant when the objects being imaged are small and have 

relatively low contrast. This random variation in image brightness is designated as noise. This noise can be 

either image dependent or image independent. All the digital images contain some visual noise. The presence of 

noise gives an image a mottled, grainy, textured or snowy appearance.  

 

1. Random Noise 

Random noise revolves around an increase in intensity of the picture. It occurs through color 

discrepancies above and below where the intensity changes. It is random, because even if the same settings are 

used, the noise occurs randomly throughout the image. It is generally affected by exposure length. Random 

noise is the hardest to get rid of because we cannot predict where it will occur. The digital camera itself cannot 

remove it and it has to be lessened in an image editing program.  

 

2. Fixed Pattern Noise  

Fixed pattern noise surrounds hot pixels. Hot pixels are pixel bits that are more intense than others 

surrounding it and are much brighter than random noise fluctuations. Long exposures and high temperatures 

cause fixed pattern noise to appear. If pictures are taken under the same settings, the hot pixels will occur in the 

same place and time. Fixed pattern noise is the easiest type to fix after it has occurred. Once a digital camera 

realizes the fixed pattern, it can be adjusted to lessen the effects on the image. However, it can be more dubious 

to the eye than random noise if not lessened.  

 

3. Banding Noise  

Banding noise depends on the camera as not all digital cameras create it. During the digital processing 

steps, the digital camera takes the data produced by the sensor and creates the noise from that. High speeds, 

shadows and photo brightening will create banding noise. Gaussian noise, salt & pepper noise, passion noise, 

and speckle noise are some of the examples of this type of noise.  

 

4.  Speckle Noise  

Speckle noise is defined as multiplicative noise, having a granular pattern. It is an inherent property of 

ultrasound image and SAR image. Another source of reverberations is that a small portion of the returning 

sound pulse may be reflected back into the tissues by the transducer surface itself, and generates a new echo at 

twice the depth. Speckle is the result of the diffuse scattering, which occurs when an ultrasound pulse randomly 

interferes with the small particles or objects on a scale comparable to that of the sound wavelength. The 

backscattered echoes from irresolvable random tissue inhomogenities in ultrasound imaging and from objects in 

Radar imaging undergo constructive and destructive interferences resulting in mottled b-scan image.Speckle 

degrades the quality of US and SAR images and thereby reducing the ability of a human observer to 

discriminate the fine details of diagnostic examination. This artifact introduces fine-false structures whose 

apparent resolution is beyond the capabilities of imaging system, reducing image contrast and masking the real 

boundaries of the tissue leading to the decrease in the efficiency of further image processing such as edge 

detection, automatic segmentation, and registration techniques. Another problem in Ultrasound data is that the 
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received data from the structures lying parallel to the radial direction can be very weak, as where structures 

normal to the radial direction give a stronger echo.  

 

B. Filtering Techniques 

Filtering techniques are used as preface action before segmentation and classification. On the whole speckle 

reduction can be divided roughly into two categories: 

 Incoherent processing techniques  

 Image post processing  

The first one recovers the image by summing more than a few observations of the same object which 

suppose that no change or motion of the object happened during the reception of observations. These techniques 

do not require any hardware modification in the image reconstruction system, and hence have found a growing 

interest. In this the images are obtained as usual and the processing techniques are applied on the image 

obtained. Image post processing is an appropriate method for speckle reduction which enhances the signal to 

noise ratio while conserving the edges and lines in the image.  

 

II. SPECKLE NOISE IN ULTRASOUND IMAGES  
These scans use high frequency sound waves which are emitted from a probe. The echoes that bounce 

back from structures in the body are shown on a screen. The structures can be much more clearly seen when 

moving the probe over the body and watching the image on the screen. The main problem in these scans is the 

presence of speckle noise which reduces the diagnosis ability. It provides live images, where the operator can 

select the most useful section for diagnosing thus facilitating quick diagnoses. 

 

III. WAVELET TRANSFORM AND MULTI-SCALE ANALYSIS 
One of the most fundamental problems in signal processing is to find a suitable representation of the 

data that will facilitate an analysis procedure. One way to achieve this goal is to use transformation, or 

decomposition of the signal on a set of basis functions prior to processing in the transform domain. Transform 

theory has played a key role in image processing for a number of years, and it continues to be a topic of interest 

in theoretical as well as applied work in this field. Image transforms are used widely in many image processing 

fields, including image enhancement, restoration, encoding, and description {jin_Jain_1989}.Historically, the 

Fourier transform has dominated linear time-invariant signal processing. The associated basis functions are 

complex sinusoidal waves iteω that correspond to the eigenvectors of a linear time-invariant operator. A signal 

()ft defined in the temporal domain and its Fourier transform ˆ()fω, defined in the frequency domain, have the 

following relationships {jin_Jain_1989; jin_Papoulis_1987}: ˆ()(),itfftedtωω+∞−−∞=∫(1) 1ˆ()().2itftfeω d 

ωωπ+∞−∞=∫ (2) 

Fourier transform characterizes a signal ()ft via its frequency components. Since the support of the 

bases function iteω covers the whole temporal domain (i.e infinite support), ˆ()fω depends on the values of ()ft 

for all times. This makes the Fourier transform a global transform that cannot analyze local or transient 

properties of the original signal()ft.In order to capture frequency evolution of a non-static signal, the basis 

functions should have compact support in both time and frequency domain. To achieve this goal, a windowed 

Fourier transform (WFT) was first introduced with the use of a window function w(t) into the Fourier transform 

{jin_Mallat_1998}: (,)()().iSftfwtedωτωττ+∞−−∞=−∫ τ (3).The energy of the basis function ,()()itgtwteξτξτ−=− 

is concentrated in the neighborhood of time τ over an interval of sizetσ, measured by the standard deviation 

of2g. Its Fourier transform is)(,gˆ ( ) wˆ ( )e iτ ω ξτ ξ ω = ω −ξ − − , with energy in frequency domain localized 

aroundξ, over an interval of sizeωσ. In a time-frequency plane(,)tω, the energy spread of what is called the atom 

is represented by the Heisenberg rectangle with time width,()gtτξtσ and frequency widthωσ. The 4 uncertainty 

principle states that the energy spread of a function and its Fourier transform cannot be simultaneously 

arbitrarily small, verifying: 1.2tωσσ≥ (4) Shape and size of Heisenberg rectangles of a windowed Fourier 

transform therefore determine the spatial and frequency resolution offered by such transform. Examples of 

spatial-frequency tiling with Heisenberg rectangles are shown in Figure 1. Notice that for a windowed Fourier 

transform, the shape of the time-frequency boxes are identical across the whole time-frequency plane, which 

means that the analysis resolution of a windowed Fourier transform remains the same across all frequency and 

spatial locations. 
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Figure 1: Example of spatial-frequency tiling of various transformations. x-axis: spatial resolution. y-axis: 

frequency resolution. (a) discrete sampling (no frequency localization ). (b) Fourier transform (no 

temporal localization). (c) windowed Fourier transform (constant Heisenberg boxes). (d) wavelet 

transform (variable Heisenberg boxes).  

 

To analyze transient signal structures of various supports and amplitudes in time, it is necessary to use 

time-frequency atoms with different support sizes for different temporal locations. For example, in the case of 

high frequency structures, which vary rapidly in time, we need higher temporal resolution to accurately trace the 

trajectory of the changes; on the other hand, for lower frequency, we will need a relatively higher absolute 

frequency resolution to give a better measurement on the value of frequency. 

 

IV. RELATED WORKS 
Many methods for image de noising have been suggested in the literature, and a complete review of 

them can be found in [4]. Methods for image restoration aim at preserving the image details and local features 

while removing the undesirable noise. In many approaches, an initial image is progressively approximated by 

filtered versions which are smoother or simpler in some sense. Total Variation (TV) minimization [21], 

nonlinear diffusion [2, 19, 24], mode filters [25] or regularization methods [18, 21] are among the methods of 

choice for noise removal.  Most of these methods are based on a weighted average of the gray values of the 

pixels in a spatial neighborhood [10, 23]. One of the earliest examples of such filters has been proposed by Lee 

[16]. An evolution of this approach has been presented by Tomasi et al [23], who devised the bilateral filter 

which includes both a spatial and an intensity neighborhood. Recently, the relationships between bilateral 

filtering and local mode filtering [25], local M-2estimators [26] and non-linear diffusion [1] have been 

established. In the context of statistical methods,  between the Bayesian estimators applied on a Gibbs 

distribution resulting with a penalty functional [12], and averaging methods for smoothing has also been 

described in [10]. Finally, statistical averaging schemes enhanced via incorporating a variable spatial 

neighborhood scheme have been proposed in [13, 14, 20]. All these methods aim at removing noise while 

preserving relevant image information. The trade-off between noise removal and image preservation is 

performed by tuning the filter parameters, which is not an easy task in practice. In this paper we propose to 

overcome this problem with a 3D sub-bands wavelet mixing. As in [17], we have chosen to combine a multi 

resolution approach with the NL-means filter [4] which has recently shown very promising results. Recently 

introduced by Buades et al. [4], the NL-means filter proposes a new approach for the de-noising problem. 

Contrary to most de-noising methods based on a local recovery paradigm, the NL-means filter is based on the 

idea that any periodic, textured or natural image has redundancy, and that any voxel of the image has similar 

voxels that are not necessarily located in a spatial neighborhood. This new non-local recovery paradigm allows 

to improve the two most desired properties of a de-noising algorithm: edge preservation and noise removal. 

 

C. Methods 

In this section, we introduce the following notations: 

is the image, where  represents the image grid, considered as 

cubic for the sake of simplicity and without loss of generality . 

• for the original voxelwise NL-means approach 

– u(xi) is the intensity observed at voxel xi. 

– Vi is the cubic search volume centered on voxel xi of size |Vi| = (2M + 1)3, M " N. 

– Ni is the cubic local neighborhood of xi of size |Ni| = (2d + 1)3, d " N. 

– u(Ni) = (u(1)(Ni), ..., u(|Ni|)(Ni))T is the vector containing the intensities of Ni (that we term “patch” in the 

following). 

– NL(u)(xi) is the restored value of voxel xi. 

– w(xi, xj) is the weight of voxel xj when restoring u(xi). 

• for the block wise NL-means approach 

– Bi is the block centered on xi of size  

– u(Bi) is the vector containing the intensities of the block Bi. 

– NL(u)(Bi) is the vector containing the restored value of Bi. 

– w(Bi,Bj) is the weight of block Bj when restoring the block u(Bi). 

– the blocks Bik are centered on voxels xik which represent a subset of the image voxels, equally regularly 

distributed over "3 (see Fig 2). 

– n represents the distance between the centers of the blocks Bik (see Fig 2) 
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The Non Local Means filter 

In the classical formulation of the NL means filter [4], the restored intensity NL(u)(xi) of the voxel xi, is a 

weighted average of the voxels intensities u(xi) in the “search volume” Vi of size (2M+1)3:3 

 

........................(1) 

where w(xi, xj) is the weight assigned to value u(xj) to restore voxel xi. More precisely, the weight evaluates the 

similarity between the intensity of the local 

           
Figure 2: Left: Usual voxel wise NL-means filter: 2D illustration of the NL- means principle. The restored  

voxel xi (in red) is the weighted average of all intensities of voxels xj in the search volume Vi, based on the 

similarity of their intensity neighborhoods u(Ni) and u(Nj ). In this example, we set d = 1 and M = 8. 

Right: Blockwise NL-means filter: 2D illustration of the block wise NL-means principle. The restored 

value of the block Bik is the weighted average of all the blocks Bj in the search volume Vik . In this 

example, we set  = 1 and M = 8. 

 

neighborhoods Ni and Nj centered on voxels xi and xj , such that  " [0, 1] and 

" 

 (cf Fig. 2Left).For each voxel xj in Vi, the computation of the weight is 

based on the Euclidean distance between patches u(Nj) and u(Ni), defined as: 

 

…………………….(2)  

where Zi is a normalization constant ensuring that  , and h acts as a filtering 

parameter controlling the decay of the exponential function. Automatic tuning of the filtering parameter h. As 

explained in the introduction, de-noising is usually the first step of complex image processing procedures. The 

number and the dimensions of the data to process being continually increasing, each step of the procedures 

needs to be as automatic 4 as possible. In this section we propose an automatic tuning of the filtering parameter 

h. First, it has been shown that the optimal smoothing parameter h is proportional to the standard deviation of 

the noise  [4]. Second, if we want the filter independent of the neighborhood size, the optimal h must depend 

on |Ni| (see Eq. 2). Thus, the automatic tuning of the filtering parameter h amounts to determining the 

relationship  where # is a constant. Firstly, the standard deviation of the noise  needs to 

be estimated. In case of an additive white Gaussian noise, this estimation can be based on pseudoresiduals  

as defined in [3, 11]. For each voxel xi of the volume et us define: 

 

…………………………..(3) 
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Pi being the 6-neighborhood at voxel xi and the constant  is used to ensure  that ] in the 

homogeneous areas. Thus, the standard deviation of noise  is computed as: 

 

……………………………………(4)  

 

Based on the fact that, in the case of Gaussian noise and with normalized L2- norm, the optimal de-noising is 

obtained for  (2) can be written as: 

         

………………………………..(5) 

                                        

 where only the adjusting constant  needs to be manually tuned. If our estimation ˆ" of the standard deviation 

of the noise " is correct, should be close to 

1.The optimal choice for # will be discussed later. 

Blockwise implementation 

The main problem of the NL-means filter being its computational time, a blockwise approach can be used to 5 

decrease the algorithmic complexity. Indeed, instead of de-noising the image at a voxel level, entire blocks are 

directly restored. A blockwise implementation of the NL-means filter consists in a) dividing the volume into 

blocks with overlapping supports, b) performing NL-means like restoration of these blocks and c) restoring the 

voxels  values based on the restored values of the blocks they belong to: 

2. A partition of the volume into overlapping blocks Bik of size (2!+1)3 is performed, such as 

k Bik , under the constraint that each block Bik intersects with at least one other block of the 

partition. These blocks are centered on voxels xik which constitute a subset of . The voxels xik are equally 

distributed at positions where n represents the distance between 

the centers of Bik . To ensure a global continuity in the de-noised image, the overlapping support of blocks is 

non empty:  

For each block Bik , a NL-means-like restoration is performed as follows: 

 

……..(6) 

where Zik is a normalization constant ensuring that  (see Fig. 2(right). 

 

For a voxel xi included in several blocks Bik , several estimations of the restored intensity NL(u)(xi) are obtained 

in different NL(u)(Bik ). Theestimations given by different NL(u)(Bik ) for a voxel xi are stored in a vector Ai. 

The final restored intensity of voxel xi is then defined as: 

 

…………………………………………….(7) 

where Ai(p) denotes the pth element of the vector Ai. 
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Figure 3: Blockwise NL-means Filter. For each block Bik centered on voxel xik , a NL-means like 

restoration is 

                                                                                     

performed from blocks Bj . 

In this way, for a voxel xi included in several blocks, several estimations are obtained. The restored value of 

voxel xi is the average of the different estimations stored in vector Ai.In this example 

The main advantage of this approach is to significantly reduce the complexity of 

the algorithm. Indeed, for a volume "3 of size N3, the global complexity is 

.For instance, with n = 2, the complexity is divided by a factor 8.Wavelet 

Sub-bands Mixing. 

 

A. Hybrid approaches 

Recently, hybrid approaches coupling the NL-means filter and a wavelet decomposition have been 

proposed [9, 17, 22]. In [9], a wavelet-based de-noising of blocks is performed before the computation of the 

non local means. The NL-means filter is performed with de-noised version of blocks in order to improve the de-

noising result. In [22], the NL-means filter is applied directly on wavelet coefficients in transform domain. This 

approach allows a direct de-noising of compressed images (such as JPEG2000) and a reduction of 

computational time since smaller images are processed. In [17], a multi-resolution framework is proposed to 

adaptively combine the result of de-noising algorithms at different space-frequency resolutions. This idea relies 

on the fact that a set of filtering parameters is not optimal over all the space-frequency resolutions. Thus, by 

combining in the transform domain the results obtained with different sets of filtering parameters, the de-noising 

is expected to be improved. 

 

V. OVERALL PROCESSING 
In order to improve the de-noising result of the NL-means filter, we propose a Multi-resolution 

framework similar to [17] to implicitly adapt the filtering parameters (h, |Bi|) over the different space-frequency 

resolutions of the image. This adaptation is based on the fact that the size of the patches impacts the De-noising 

properties of the NL-means filter. Indeed, the weight given to a bl depends on its similarity with the block under 

consideration, but the similarity between the blocks depends on their sizes. Thus, given the size of the blocks, 

removal or preservation of image components can be favored. In the transform domain, the main features of the 

image correspond to low frequency information while finer details and noise are associated to high frequencies. 

Nonetheless, noise is not a pure high frequency component in most images. Noise is spanned over a certain 

range of frequencies in the image, with mainly middle and high components [17]. In NL-means-based 

restoration, large blocks and setting # = 1 efficiently remove all frequencies of noise but tend to spoil the main 

features of the image,whereas small blocks and low smoothing parameter (# = 0.5) tend to better preserve the 

image components but cannot completely remove all frequencies of noise.  De-noising of the original image I 

using wo sets of filtering parameters: one adapted to the noise components removal (i.e. large blocks and 

) and the other adapted to the image features preservation (i.e. small blocks and 

 = 0.5). This yields two images Io and Iu. In Io, the noise is efficiently removed and, conversely, in Iu the 

image features are preserved.  
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• Decomposing Io and Iu into low and high frequency sub-bands. The first level decomposition of the images is 

performed with a 3D discrete Wavelet Transform (DWT). 

• Mixing the highest frequency sub-bands of Io and the lowest frequency sub-bands of Iu. 

• Reconstructing the final image by an inverse 3D DWT from the combination of the selected high and low 

frequencies. 

 In this paper, we propose an implementation of this approach using our optimized blockwise NL-means filter 

and the 3D DWT Daubechies-8 basis. The latter is implemented in Qccpack1 in the form of dyadic sub-band 

pyramids. This DWT is widely used in image compression due to its robustness and efficiency. 

 

VI. VISUAL ASSESSMENT 
Visually, the proposed method combines the most important attributes of a De-noising algorithm: edge 

preservation and noise removal. Fig.4 shows that our filter removes noise while keeping the integrity of MS 

lesions (i.e. no structure appears in the removed noise). Fig. 4 focuses on the differences between the  Optimized 

Blockwise NLM and the Optimized Blockwise NLM with WM filters. The de-noising result obtained with the 

Optimized Blockwise NLM with WM filter visually preserves the edges better than the Optimized Blockwise 

NLM filter. This is also confirmed by visual inspection of the comparison with the “ground truth”. The images 

of difference between phantom and the de-noised image show that less structures have been removed with the 

Optimized Blockwise NLM with WM filter. Thus, the multi-resolution approach allows to better preserve the 

edges and to enhance the contrast between tissues. 

 

                 
     Figure 4: Fully-automatic restoration obtained with the optimized blockwise NL-means with wavelet 

mixing filter in 3 minutes on a Dual Core Intel(R) Pentium( R) D CPU 3.40GHz. The image is a T2-w 

phantom MRI with MS of 181 × 217 × 181 voxels and 9% of noise. 

 

VII. ISSUES AND CHALLENGES WHILE PROVIDING IMAGE DE-NOISING 

TECHNIQUE 

Medical imaging technology is becoming an important component of large number of applications such 

as the diagnosis research and treatment. It enables the physicians to create the images of the human body for the 

clinical purposes. Medical images like X-Ray, CT, MRI and PET, SPECT have minute information about the 

heart brain and nerves. These images suffer from a lot of short comings including the acquisition of noise from 

the equipment, ambient noise from the environment and the presence of background tissue, other organs and 

anatomical influences such as body fat and breathing motion. Noise reduction therefore becomes very 

important. The main techniques of image de-noising are filters wavelets and neural networks. The BPNN based 

approach is a powerful and effective method for image de-noising. Earlier proposed methods suffered from 

drawbacks such as noise, artifacts and degradation. Although all the spatial filters performs well on the digital 

images but still suffered from some constraints such as resolution degradation these filters operated by 

smoothing over a fixed window and it produces artifacts around the object and sometimes caused over 

smoothing thus causing the blurring of image. Wavelet transform outperforms the filters because of its 

properties like sparsity, multi resolution and multi scale nature and proved promising as they are capable of 

suppressing noise while maintaining high frequency signal details. But the limitation with wavelet transform 

was that the local scale- space information of the image is not adaptively considered by the standard wavelet 

thresholding methods. Other difficulty was that the soft thresholding function was a piecewise function and does 

not have high order derivates. A new type of thresholding neural network was presented which outperforms the 

soft thresholding using wavelet transform but still does not promised a high performance in terms of PSNR, 

MSE and visual test. Considering and analyzing the drawbacks of the previous methods we propose a new 

improved BPNN approach and Fuzzy to de-noise the medical images. This approach includes using both mean 

and median statistical functions for calculating the output pixels of the NN and Fuzzy. This uses a part of 

degraded image pixels to generate the system training pattern. Different test, images noise levels and 
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neighborhood sizes are used. Based on using samples of degraded pixels neighborhoods as input, the output of 

the proposed approach provided a good image de-noising performance which exhibits a promising results of the 

degraded noisy image in terms of PSNR, MSE and visual test. 

 

VIII. COMPARISON WITH OTHER METHODS 
In this section, we compare the proposed method with two of the most used approaches in MRI 

domain: the Non Linear Diffusion (NLD) filter r [19] and the Total Variation (TV) minimization [21]. The main 

difficulty to achieve this comparison is related to the tuning of smoothing parameters in order to obtain the best 

results for NLD filter and TV minimization scheme. After quantifying the parameter space, we exhaustively 

tested all possible parameters within a certain range. This allows us to obtain the best possible results for the 

NLD filter and the TV minimization.For the Optimized Blockwise NLM with WM the same set of parameters 

Su = (!u,MW, #u) = (1, 3, 0.5) and So = (!o,MW, #o) = (2, 3, 1) are used for all noise levels. The automatic 

tuning of h adapts the smoothing to the noise level.For NLD filter, the parameter K varied from 0.05 to 1 with a 

step of 0.05 and the number of iterations varied from 1 to 10. For TV minimization, the parameter & varied 

from 0.01 to 1 with a step of 0.01 and the number of iterations varied from 1 to 10. The results obtained for a 

9% of Gaussian noise are presented , but this screening was performed for the four levels of noise. It is 

important to underline that the results giving the best  PSNR are used, but these results do not necessary give the 

best visual output. Actually, the best PSNR value for the NLD filter and TV minimization are obtained for a 

visually under-smoothed image since these methods tend to spoil the edges (see Fig. 5). This is explained by the 

fact that the optimal PSNR is obtained when a good trade-off is reached between edge preserving and noise 

removing. 

 

 
Figure 5: Result for the NLD filter and the TV minimization on phantom images with Gaussian noise at 

9%. For the NLD filter, K varied from 0.05 to 1 with a step of 0.05 and the number of iterations varied 

from 1 to 10. For the TV minimization, & varied from 0.01 to 1 with a step of 0.01 and the number of 

iterations varied from 1 to 10. 

 

IX. QUANTITATIVE RESULTS 

                                         
Figure 6: Comparison between Non Linear Diffusion, Total Variation and Optimized Blockwise NL-

means with 

 

wavelet mixing denoising. The PSNR experiments show that the Optimized Blockwise NL-means with wavelet 

mixing filter significantly outperforms the well-established Total Variation minimization process and the Non 
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Linear Diffusion approach. As presented in Fig. 6, our block optimized NL-means with wavelet mixing filter 

produced the best PSNR values whatever the noise level. 

 

X. VISUAL ASSESSMENT 
The de-noising results obtained by the NLD filter, the TV minimization and our Optimized blockwise 

NLM with WM. Visually, the NL means- based approach produced the best de-noising. The removed noise 

shows that the proposed method removes significantly less structures than NLD filter or TV minimization. 

Finally, the comparison with the “ground truth” underlines that the NL-means restoration gives a result very 

close to the “ground truth” and better preserves the anatomical structure compared to NLD filter and TV 

minimization. 

 

XI. EXPERIMENTS ON CLINICAL DATA 
The T1-weighted MR images used for experiments were obtained with T1 sense 3D sequence on 3T 

Philips Gyroscan scanner. The restoration results, presented in Fig. 7, show good preservation of the cerebellum. 

Fully automatic segmentation and quantitative analysis of such structures are still a challenge, to improve 

restoration schemes could greatly improve these processings. 

 
Figure 7: Fully-automatic restoration obtained with the optimized blockwise NL-means with wavelet 

mixing filter on a 3 Tesla T1-w MRI data of 2563 voxels in less than 4 minutes on a Dual Core Intel(R) 

Pentium(R) D CPU 3.40GHz. 

 

XII. SHIFT INVARIANT REDUNDANT DISCRETE 
Wavelet Transform generally, DWT [6], [8] is used in wavelet based medical image analysis as it 

preserves frequency information in stable form and allows good localization both in time and spatial frequency 

domain. However, one of the major drawbacks of DWT is that the transformation does not provide shift 

invariance. This causes a major change in the wavelet coefficients of the image even for minor shifts in the input 

image. In medical imaging, we need to know and preserve exact location of different information; but shift 

variance may lead to inaccuracies. For example, in medical image de-noising it is important to preserve edge 

information and remove noise, but DWT based de-noising may produce specularities along the edges. Several 

techniques have been proposed to address shift variance in de-noising and segmentation [9]. In this paper, we 

use RDWT [6], [7], [10] to overcome the shift variance problem of DWT. RDWT can be considered as an 

approximation to discrete wavelet transform that removes the down-sampling operation from traditional 

critically sampled DWT, produces an over complete representation, and provide noise per sub band relationship 

[7]. The shift variance of DWT arises from the use of down-sampling whereas RDWT is shift invariant because 

the spatial sampling rate is fixed across scale. Similar to DWT, RDWT and Inverse RDWT (IRDWT) of a two 

dimensional image or three dimensional volume data is obtained by computing each dimension separately where 

detailed and approximation bands are of the same size as the input image/data  

1.Fusion based Two Stage Approach to Medical Image De-noising This section presents a fusion based 

de-noising algorithm that utilizes the concept of image fusion. In this two stage approach, we first concurrently 

apply two de-noising algorithms globally and then, in the second stage, generate the quality enhanced image by 

locally combining the good quality regions from the two de-noised images. In this research, we use Perona 

Malik’s algorithm [11] and RDWT based de-noising algorithm as the two ingredient algorithms and the outputs 

of these two algorithms are combined using the proposed fusion technique. This section first describes the 

RDWT based de-noising algorithm followed by the fusion approach. RDWT base Image De-noising Let IT be 

the true image and N be the noise component. As described by Jin et al. [2], the relationship of noisy image IN 

corresponding to IT and N can be written as:  
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………………………..(8) 

 

De-noising IN using wavelet transform to recover the true signal IT can be represented as, 

 

……………………(9) 

  where IR represents the reconstructed signal, W represents the wavelet based de-noising, l represents 

the level of decomposition, and t is the function that aims at eliminating noise components in the transform 

domain while preserving the true signal coefficients. In ideal conditions, IR = IT . DWT based de-noising 

algorithms have been proposed in [12]-[13] using different wavelet basis and thresholding schemes. All these 

algorithms use some technique to handle shift variance but suffer due to presence of visual artifacts and Gibbs 

phenomenon. Here, we use RDWT in the proposed de-noising algorithm to address shift invariance and 

challenges due to artifacts. IN is decomposed at l levels using 3D/2D RDWT. Soft thresholding technique [14] 

is applied on the RDWT coefficients of sub band Ci (i = 1, 2, · · · , l) with threshold ti to obtain the de-noised 

sub band C0i . 

 

………(10) 

where the threshold for each sub band ti is computed using Equation 4 

…………………………………..(11) 

Here,  is the standard derivation for the  sub band and the noise variance for each sub band i , is  

computed using Equation 5, 

…………….(12) 

The scale parameter S is computed using  i.e length of sub band at  scale, 

……………………..(13) 

Finally, the medical volume/image is reconstructed by applying 3D/2D IRDWT on  to get the de-noised 

medical data. 

 

XIII. MEDICAL IMAGE SEGMENTATION USING RDWT  

ENTROPY FEATURES 
Segmentation of biomedical images is the basis for 3D visualization and operation simulation. 

Precision in segmentation is critical to diagnosis and treatment. Conventionally, segmentation methods are 

divided into region based segmentation and edge or gradient based segmentation. Region based segmentation 

[16], [17] is usually based on the concept of finding similar features such as brightness and texture patterns. 

Edge based segmentation methods [18] are based on finding the high gradient value in the image and then 

connect them to form a curve representing a boundary of the object. In this section, we propose RDWT based 

medical image segmentation algorithm which is a region-based method but inherently provides the features of 

edge-based segmentation method too. Since the detail bands of RDWT decomposed image provide gradient 

information, we can use these information for region segmentation. The proposed region based segmentation 

algorithm is described as follows: Let I be the medical image/volume data to be segmented. This image is 

decomposed into n levels using RDWT. The proposed approach uses the wavelet energy features computed 

from the approximation band and all the detailed bands using block size of  (In our 
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experiments, we chose the block size as 3×3). fi, the energy features for RDWT sub bands (where i = {a, h, v, d} 

and a- approximation , v - vertical, d - diagonal, h - horizontal),are computed using Equations 14 

………..(14) 

 

These energy features, fa, fv, fd, and fh, reflect the texture property of an image, and the wavelet 

energy features computed from detailed sub bands provide the gradient information which facilitates the robust 

segmentation. Further, we  use k-means clustering based learning algorithm which first learns from the training 

data and then identifies different feature regions at the testing time. Training data is used to train the k-means 

clustering algorithm [19] and form different clusters or groups of brain regions such as background, skull, and 

fat. As shown in Figure 3,  we consider six regions present in the brain image namely, background, CSF, grey 

matter, white matter, skull, and fat. k-means clustering algorithm is trained using the simulated brain data as 

training data and different colors are assigned to the clusters. For segmentation, the test image is first 

decomposed into n = 3 levels and wavelet energy features are computed  for every level. For the nth level, 

trained k-means algorithm classifies every feature and assigns a color to each feature. The segmented sub bands 

are reconstructed to get the n – 1 level of segmented decomposition. At this point of time, approximation band is 

the segmented image obtained from previous step and detailed sub bands are non-segmented. The same 

procedure is applied till the reconstruction reaches to 0th level which gives the final segmented image. This 

algorithm uses the concept of multi-resolution analysis since the results of nth level are used to compute the 

results of (n −1) th level. Figure 5 shows the segmentation results on the brainweb database.  

 

XIV. EXPERIMENTAL EVALUATION 
  To evaluate the performance of the proposed de-noising and segmentation algorithms, we use the 3D 

Brainweb database [15]. This database contains images with different noise factors along with the ground truths. 

To quantitatively evaluate the de-noising algorithm, Mean Square Error (MSE) and Structural SImilarity 

Metrics (SSIM) [20] are used. Table 1 delineates the experimental results for the proposed de-noising 

algorithm.Using the ground truth and noisy images with 7% noise, MSE is 121.4500 and SSIM is 0.5613 

whereas with 9% noise, MSE is 189.6959 and SSIM is 0.5040. De-noising algorithm should decrease the MSE 

and increase the SSIM values. On applying Perona Malik’s de-noising algorithm[11] to the 7% noisy brain 

volume, MSE is reduced to 93.9106 and SSIM is increased to 0.6449 whereas with the RDWT based de-noising 

algorithm, MSE is 88.3808 and SSIM is 0.6494. Compared to existing algorithms, the proposed fusion based 

algorithm significantly improves the visual quality of the brain image. This observation also holds with the 9% 

noisy brain data (Table 1). These results also suggest that the Perona Malik’s de-noising algorithm and RDWT 

based de-noising algorithm provide complementary information and the fusion approach combines the globally 

de-noised images such that the fused information provide better quality image. An interesting observation is 

related to the time taken to de-noise the image. With Perona Malik’s algorithm, time to de-noise the image is 

very much dependent on the amount of noise present in the image. With RDWT based de-noising algorithm, 

computational requirement is reduced because of inherent advantages of shift invariance and able to tolerate 

noise. For fusion based approach, the computational time includes time to globally de-noise the brain image and 

to fuse the de-noised images. Although the computational time for fusion approach is higher than constituent 

algorithms but the visual quality is significantly increased, thereby making it applicable to medical applications. 

Next, correct classification accuracy is used to evaluate the segmentation algorithm. Figure 5 shows a close 

view of the segmentation result. Visually, the results are encouraging and preserve both the region and edge 

information. Since the Brainweb database provides the ground truth, correct classification accuracy 

quantitatively represents the performance of the segmentation algorithm. For the six categories or regions, Table 

4 shows that the proposed algorithm provides the accuracy in the range of 91.9-94.8%. In comparison with the 

existing SVM based segmentation algorithm [21], the proposed algorithm yields similar results. However, the 

main advantage is with computational time. With the proposed algorithm, the time taken to segment the regions 

of 3D brain volume is 5.37 seconds (at an average) whereas with the SVM based algorithm, it is 37.22 seconds. 

Further, in another experiment, we segment the noisy brain data (Figure 5). It is clear from this result that the 

segmentation of noisy images yield erroneous results. However, when the brain image is first de-noised and then 

segmented, the results show clear and correct segmentation. Furthermore, visual results were shown to eminent 

medical professionals and they asserted that the proposed de-noising and segmentation algorithms provide better 

information compared to existing algorithms. 
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                                 Fig. 8: De-noising medical data using RDWT based algorithm. 

                                                                 

                                                                   
                                                 Fig. 9: Comparison of Denoising algorithms 

                                                                              

 
                                  Fig. 10: Training data used for training the clustering algorithm. 
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Fig. 11: Segmentation using RDWT based algorithm. 

 
                     Fig. 12: Segmentation of noisy and de-noised brain image. 

 

XV. DISCUSSION AND CONCLUSION 

This paper presented a fully-automated blockwise version of the Non Local (NL) means filter with sub-

bands wavelet mixing. Experiments were carried out on the Brain Web dataset [6] and real data set. The results 

on phantom shows that the proposed Optimized Blockwise NL-means with sub-bands wavelet mixing filter 

outperforms the classical implementation of the NL-means filter and the optimized implementation presented in 

[7, 8], in terms of PSNR values and computational time. Compared to the classical NL-means filter, our 

implementation (with block selection, blockwise implementation and wavelet sub-bands mixing) considerably 

decreases the required computational time (up to a factor of 20) and significantly increases the PSNR of the de-

noised image. The comparison of the filtering process with and without wavelet mixing shows that the sub-

bands mixing better preserves edges and better enhances the contrast between the tissues. This multi resolution 

approach allows to adapt the smoothing parameters along the frequencies by combining several de-noised 

images. The comparison with well-established methods such as NLD filter and TV minimization shows that the 

NL-means-based restoration produces better results. Finally, the impact of the proposed multi resolution 

approach based on wavelet sub-bands mixing should be investigated further, for instance when combined to the 

Non Linear diffusion filter [19] and the Total Variation minimization [21]. Computer assisted diagnosis and 

therapy, in general, require image processing operations such as de-noising and segmentation. Sophisticated 

imaging techniques such as MRI and CAT scanning provide abundant information but require preprocessing 

techniques so that 3D image/volume can be optimally used for diagnosis. This paper presents fusion based de-

noising algorithm and RDWT entropy based region segmentation algorithm. Using the 3D Brainweb database, 
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the proposed algorithms show significant improvement over existing algorithms. In future, fusion based de-

noising algorithm and segmentation will be extended with the non-linear learning approach for further reducing 

the errors.  
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