
American Journal of Engineering Research (AJER) 2013

American Journal of Engineering Research (AJER)

e-ISSN : 2320-0847 p-ISSN : 2320-0936

Volume-02, Issue-03, pp-07-12

www.ajer.us

Research Paper Open Access

Advanced Linux Security

Ranjit Nimbalkar
1
, Paras Patel

2
, Dr. B. B. Meshram

3

1,2,3
(Department of Computer Engg. & Information Technology, Veermata Jijabai Technological

Institute, India)

 Abstract : Using mandatory access control greatly increases the secu-rity of an operating system. SELinux,

which is an implemen-tation of Linux Security Modules (LSM), implements several measures to prevent

unauthorized system usage. The se-curity architecture used is named Flask, and provides a clean separation of

security policy and enforcement. This paper is an overview of the Flask architecture and the implementation in

Linux.

Keywords: Kernel, Linux, MAC, Security, SELinux.

I. INTRODUCTION
Security is a very broad concept, and so is the security of a system. All too often, people believe that a

system is way more secure that it in practice is, but the biggest problems is still the human factor of the users;

the possibility of careless or malicious users are commonly overlooked.

The standard “Unix way” of providing authentication and authorization is not very well suited for more

complicated and dynamic environments. The available Discretionary Access Control mechanisms gives the

same rights to all users in a certain group, and all processes created by a user have exactly the same privileges.

The acquired permissions can also be transferred to other subjects, and so a flaw in one software can lead to all

the users’ data being compromised. Some system wide permission restrictions can be enforced by using several

user groups, limiting the use of certain soft-ware to users belonging to that group, but each user process still

ahve all the permissions of all the groups that the owning user belongs to[1]. Government agencies, among other

similar organizations, need a more advanced way of defining system security policies. That is why the National

Security Agency (NSA) began developing, for internal use, their own set of patches to the Linux kernel. These

patches became known as Security-Enhanced Linux (SELinux) and was later released under the GPL and

included in the main Linux kernel tree.

Nowadays SELinux is a security module for the Linux Security Modules framework. This paper is an

overview of the SELinux features and how it changes the security con-figuration aspect of Linux. The

architecture that SELinux implements, the Flask architecture, and its components are described in section 3.1. A

brief description of the SELinux LSM module is given in section 3.2. Section 4 describes some of the other

projects that aim to increase Linux security.This paper is intended as a brief overview of the technologies used,

and thus does not contain very detailed in-formation. There is plenty of in-depth documentation of the internals

in the sources of this paper[2][3] .

II. PROBLEM STATEMENT
Real security cannot be provided in user-space only. The need for security mechanisms in the operating

system itself is evident as indicated in this section. The access control mechanisms used in most operating

systems (usually Discretionary Access Control) are not ca-pable of providing strong enough system security.

One of the obstacles for creating really secure systems, is that there is not a single security architecture that

could satisfy nearly all the different security needs.

 Malicious code, that manages to bypass the application level security, will usually be executed with

the same per-missions the current user has. This means that all the users’ applications and data is compromised

http://www.vjti.ac.in/
http://www.vjti.ac.in/
http://www.vjti.ac.in/

American Journal of Engineering Research (AJER) 2013

at once, and in case the user is an administrator, the whole system is compromised. It is not possible to limit the

resources different programs can access, so a web browser can access the files belonging to the mail program,

and also all other, possibly sensitive, files the user has access to.

Malicious or careless users might also leak sensitive data unless the rules for handling such data are not

enforced by the system. Even very experienced and careful users might be using flawed programs that could

leak information [4]. From the system point of view, there is really no point in making a distinction between

malicious or flawed programs and hostile users. Proper security mechanisms would handle them in a similar

manner anyway.

2.1 Sandboxes and signatures

One attempt to minimize the effects of malicious code is run-ning code in a so called sandbox. The

sandbox is a virtual environment set up by the code interpreter, such as the Java Virtual Machine, or Adobe

Flash. This model relies entirely on the virtual machine implementation to be secure, and so a flaw in the virtual

machine might grant the malicious code access to the host system with the privileges of the virtual machine;

often administrative or even root.

Another way of trying to secure programs is to use code signing and allowing applications from trusted

sources only. One problem with this solution is the cumbersomeness of getting even the smallest applets signed

by a trusted party. Another problem is that the signed code might be getting way more privileges than actually

needed or desired. The signature verification mechanisms and key storage must also be protected against

tampering for this method to have any effect. For any of the solutions mentioned above to be effective, a secure

operating system is needed to provide the basic prim-itives needed to secure them.

2.2 Data links

Data transmission between systems also needs to be secured. The current solutions such as IPSec and

SSL only provide a partial solution, since they run in user space and therefore cannot provide a complete end-to-

end secure channel. A compromise of the unsecured data on one of the endpoints renders the whole channel

useless.

III. SELINUX
SELinux started as a security research project at NSA, together with Secure Computing Corporation

and the University of Utah, to demonstrate the benefits of mandatory access control over the user/group schema.

Today SELinux is included in the mainstream Linux kernel as a security module in the LSM framework.

SELinux implements a flexible mandatory access control (MAC) architecture in the major subsystems of the

kernel and provides a mechanism to en-force the separation of information based on confidentiality and integrity

requirements [2].

2.3 Basic architecture

NSA tried to get their SELinux patches included in the 2.5 development branch kernel back in 2001,

but Linus Torvalds rejected the proposal since there were other similar ongoing projects at the same time. A

more general solution was needed so that the kernel would be able to support as many security architectures and

implementations as possible, with-out sticking too much to the ideas of any specific implementation.

2.3.1 Linux security modules

To support various security models, an interface “Linux Security Module Interface" was proposed [3]

by Crispin Cowan. The Linux Security Modules framework development got contributions from huge

corporations, such as IBM and SGI, and naturally NSA.

In 2006, the only widely used LSM module included in the mainstream kernel was SELinux, but

Torvalds still wanted to keep the door open for other implementations1 and so SELinux was finally included in

the mainstream 2.6 kernel as a security module in late 2003.

Figure 3.1 flask architecture

American Journal of Engineering Research (AJER) 2013

2.3.2 Flask architecture and concepts

The very flexible MAC architecture used in SELinux is Flask[6], which was derived from a micro-

kernel based op-erating system named Fluke. Flask clearly separates the se-curity policy from the enforcement

mechanism (Fig. 3.1).

All subjects (processes) and objects (files, sockets, . . .) have a set of security attributes, referred to as

the security context of the object. The attributes depend on the specific security policy in use, but generally

contain the user id, a role and type enforcement domain.

Instead of working with the security context all the time, the security server maintains a mapping

between security at-tribute sets and security identifiers (SIDs). When the object manager, the enforcing

component, request labeling or ac-cess decisions, it typically passes a pair of SIDs to the secu-rity server, which

looks up the related security contexts and makes the decision based on the policy in use.

Polyinstantiation is used when a certain resource needs to be shared by many clients. Such a resource

could be the /tmp directory or the TCP port space. Filenames or port numbers might disclose some information

about the owning process, and shared directories are subject to race-condition attacks. With polyinstantiation,

each user can only see his or her own version of the resource based on username and/or security context.

The security server exists to provide policy decisions, map security contexts to SIDs, provide new SIDs

and manage the Access Vector Caches (AVC), which is presented in section 3.2.1. It usually also provides

means for loading policies and it keeps track of which subjects can access its services.

2.3.3 Type Enforcement

The SELinux Type Enforcement (TE) model differs slightly from traditional models; by using the

security class infor-mation provided by the Flask architecture and using a single type attribute for both processes

and objects. This effectively means that a single matrix is used to specify the access to and interaction between

different types, and objects of the same type can be treated differently if their associated se-curity classes differ.

Users are not directly bound to security types, but instead RBAC, which is presented in section 3.1.4, is used.

Process transition rules are based on the current process domain, while types created through object

transition rules are based on the creating process domain2 (the security type of the process identifier), the object

security class and the type of the related object (e.g. parent directory for files). A process cannot change its

domain during execution.

Transition rules and access vectors have default policies for cases where a rule is not explicitly defined;

Allowed transitions are not audited unless defined by a audit allow rule, transitions are allowed only if explicitly

allow rule and denied transitions are audited. All kinds of access vectors can have rules, including allow, audit

allow, don’t audit etc.

2.3.4 Role-Based Access Control

Role-based access control (RBAC) is used to define a set of roles that can be assigned to users. It is a

more flexible model than standard DAC or MAC, and can simulate both of them using suitable rules. SELinux

further extends the RBAC model to restrict roles to specified TE domains, and roles can be arranged in a

priority hierarchy. Restricting roles to certain security domains allows most of the security decisions to be made

through the TE configuration. The security context of a process contains a role attribute and also, while they are

not actually applied, to objects. Role transitions are usually limited to a few TE domains to limit transitions to

defined programs and users that need the ability, thus reducing the impact of malicious code being executed.

2.3.5 MLS

While type enforcement is the most important provider of mandatory access control, there might

sometimes be a need for traditional multilevel security (MLS). SELinux option-ally provides MLS abilities,

which allows defining a hierarchical “sensitivity” level and categories to objects and sub-jects (processes).

Subjects and objects can have a range of security levels (e.g. directories might contain files with dif-ferent

security levels and some “trusted processes" might need to downgrade information) defined when needed, but

usually only one level is used. Any MLS defined constraints are enforced in addition to the TE policy, which

means that checks must pass both of them for access to be granted.

2.3.6 User Identity

The “Unix” way of representing user identities using UIDs and GIDs is insufficient for SELinux, since

changing a user role (e.g. su) involves changing the UID, which means that the actions following are actually

performed as the other user and not just as the same user in another role. This makes auditing and accounting

very difficult. SELinux user identity attribute is persistent in the security context, which is independent of the

American Journal of Engineering Research (AJER) 2013

current UID. This means that SELinux policies can be enforced without affecting compatibility with Linux

DAC permissions.

Only a limited number of programs, like login, sshd and cron, need the ability to change the User

Identity, so it is usually restricted to their respective TE domains. Depending on security configuration, the

programs may or may not be able to change the user identity more than once. Allowing programs started from

cron to change their user identity, for example, impacts accountability.

2.4 SELinux LSM Module

SELinux uses the LSM framework to accomplish its mission. The framework adds security fields to

kernel data structures and calls to hook functions in critical points (kernel calls), to manage the security fields

and perform access control. The most commonly used filesystems have been updated to sup-port the file

security attributes3. The hook calls are initialized to a dummy module that emulates traditional “Unix”

superuser logic, and each security module, at load-time, registers the hooks it uses.

2.5 Internal Architecture

The SELinux module has six major components; the security server, the access vector cache, the

network interface table, the netlink event notification code, the selinuxfs pseudo filesystem and the hook

function implementations.

The default security server implements a combination of the Flask architecture components (TE,

RBAC and option-ally MLS), but it can be changed or replaced without affecting the rest of the SELinux

module. The AVC provides caching of the decisions provided by the security server to minimize overhead in

hook function calls and also provides an interface to the security server for managing the cache, like propagating

policy updates. One of the drawbacks of the LSM framework is that it does not provide a security field for

network devices, therefore a separate mapping to security contexts, the network interface table, is needed.

Network interfaces are added and removed automatically, and there are callback functions defined for device

configuration or policy changes. The netlink event notification code is used to keep the userspace AVC in sync

with the kernel one, which enables the use of user-space enforcers, like security-enhanced X. The selinuxfs

pseudo filesystem provides the security server API to processes and provides the low level support for policy

manipulation calls. The hook functions are responsible for retrieving security information from the security

server and AVC, and for en-forcing the policies. They also maintain the security context of files. The SELinux

module provides only rudimentary support for stacking with other LSM modules, but there is ongoing work to

improve the stacking support.

2.6 What is new?

SELinux is constantly evolving and expanding. Some of the latest key extensions and feature

improvements [8] are presented here.

1) SELinux Loadable policy modules: An attempt to ease policy maintenance, reduce resource requirements

by removing the need for a policy development environ-ment and allow for loosely coupled policies. Local

customizations can be made to more generic or even 3rd party policies, and the policy source need not be

avail-able.

2) The Reference Policy [6] aims to be a baseline security policy, on which custom policies are easy to build.

The policy is based on a single source and is clean and mod-ular. It was originally based on the NSA

example pol-icy, which is somewhat difficult to comprehend without a good understanding of the

underlying SELinux technologies, but has since evolved quite a bit.

3) Policy Management Interface: In addition to the Policy Modules, a new policy server is being developed. It

facilitates fine-grained control over who can change the policy and how (currently any process that can

change the policy, can change everything), User-space Object Managers to extend TE to user-space (e.g.

the Security Enhanced X-Window system). Network wide deployment and management of security policies

will also be possible through the use of security modules. A standard library for policy management

(libsemanage) is introduced for policy tools to use.

4) Enhanced Audit Support: Syscall audit records have been extended with security contexts, audit records can

be filtered based on security context and auditing of several SELinux specific events has been added.

5) Enhanced Multi Level Security Support (labeled net-working, application integration), end-to-end network

data labeling and traffic control (including policy-based packet filtering). Separation of network data

labeling from enforcement; iptables is used for data labeling and SELinux for enforcing the policies.

6) Securing the desktop: The X Access Control Extension (XACE) framework is integrated into the Xorg

server as of version 1.2. It is a general framework for X, much like the LSM kernel framework but for user-

space. A Flask policy module, XSELinux, which will provide flexible MAC is also under development.

American Journal of Engineering Research (AJER) 2013

7) Troubleshooting and reporting has been improved, and several tools for security policy generation and

manage- have been added or updated

IV. RELATED WORK
SELinux is not the only security project going on. This chap-ter aims to give a short introduction to related

projects.

2.7 TrustedBSD

TrustedBSD consists of several branches; Access Control Lists, Event Auditing and OpenBSM,

Extended Attributes and UFS2, Fine-Grained Capabilities, GEOM, Mandatory Access Control and

OpenPAM[5]. The MAC Framework provides discretionary access con-trol for all subjects and objects.

Security-Enhanced BSD (SEBSD) is a port of the FLASK/TE implementation from SELinux that works as a

module in the TrustedBSD MAC framework, but is not yet ready for production use due to lacking support in

vital userspace applications.

The features included in the base FreeBSD distribution are Access Control Lists (basically an

implementation of the POSIX.1eD17 draft specification), Security Event Auditing (based on Sun’s Basic

Security Module API), UFS2 (default file system which supports file tagging), GEOM (provides data

transformation services between the kernel and I/O de-vices), OpenPAM (similar to Linux PAM, but more

compatible with the Solaris PAM implementation).

2.8 AppArmor

AppArmor is a Linux Security Module, which relies on application profiles for decision making [1]. It

provides Mandatory Access Control for file paths, instead of by inode. AppArmor was mostly maintained by

Novell from 2005 to September 2007 as part of their SUSE distributions, but is now available under the GPL in

other distributions also.

2.9 LIDS

The LIDS (Linux Intrusion Detection System) kernel patch version 1 was designed for Linux kernel

version 2.2 and later 2.4. Version 2 will be turned into a module for the LSM framework, but is currently work

in progress. LIDS includes several measures to minimize damage in case of a system compromise. Files can be

marked as immutable, and changes to vital system configurations (like network set-ting and loaded modules)

can be prevented. Even the root user cannot circumvent the protection without first stopping the LIDS system,

which requires a password which is set at compile time.

2.10 Trusted Solaris

Solaris 10 has a component called Trusted Solaris Extensions, which is the successor of the former

Trusted Solaris re-lease. Trusted Solaris includes accounting, auditing, RBAC and Mandatory Access Control

Labeling. MAC is enforced in every aspect of the OS by adding sensitivity labels to objects, allowing only

explicitly authorized users or applications to access the objects.

2.11 GRSecurity

One major component of GRSecurity is PaX[2]. Memory page access is guarded by least privilege

protection, the program memory is randomly arranged, and pages can be flagged as non-executable or non-

writable. PaX reduces the impact of buffer overruns and other possible arbitrary code execution attacks to a

mere Denial of Service attack, causing only the affected program to crash.

GRSecurity also provides a full Role-Based Access Control system, advanced auditing of specified

user groups, and chroot jail hardening. Access to certain programs like dmesg and netstat is usually limited to

root only, and Trusted Path Execution can optionally prohibit users from executing non-root owned binaries,

effectively eliminating trojans and other malicious code from being run. Table captions appear centered above

the table in upper and lower case letters. When referring to a table in the text, no abbreviation is used and

"Table" is capitalized.

V. CONCLUSION

SELinux provides a much more fine-grained control over the security of a Linux system compared to

the “Unix" standard. The baseline security configuration is almost usable for most environments, but some

configuration is needed in most cases. The difficulty of configuration has maybe been the reason why most

people have not taken SELinux in use, but the policy management tools are getting better.

Some people claim4 that the security framework provided by LSM is not extensive enough, that

American Journal of Engineering Research (AJER) 2013

several critical security hooks are missing and that SELinux security relies on the kernel being bug free. These

claims are probably at least partially true, but the latest development in SELinux tries to address the remaining

security issues (e.g. minimize the processed that can change the policy etc).

Complete system security is an utopia, but SELinux is one step in that direction. It is being included in

most major Linux distributions, even though it might not be enabled by default. Installing or activating SELinux

is pretty straight-forward, and no enforcement is being done until the user has checked the logfiles for possible

problems and decides that the configuration is good enough.

REFERENCES
[1]. P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor, S. J. Turner, and J. F. Farrell. The Inevitabil-ity of Failure: The

Flawed Assumption of Security in Modern Computing Environments. In 21st National Information Systems Security Conference,
pages 303– 314. NSA, 1998.

[2]. C. J. PeBenito, F. Mayer, and K. MacMillan. Refer-ence Policy for Security Enhanced Linux. In SELinux Symposium, 2006.

[3]. R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. An-dersen, and J. Lepreau. The Flask Security Architec-ture: System Support
for Diverse Security Policies. In The Eighth USENIX Security Symposium, pages 123– 139, August 1999.

[4]. R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. An-dersen, and J. Lepreau. The Flask Security Architec-ture: System Support

for Diverse Security Policies. In The Eighth USENIX Security Symposium, pages 123– 139, August 1999.
[5]. Nigel Edwards, Joubert Berger, and Tse Houng Choo. A Secure Linux Platform. In Proceedings of the 5th Annual Linux Showcase

and Conference, November 2001

[6]. Crispin Cowan, Steve Beattie, Calton Pu, PerryWagle, and Virgil Gligor. SubDomain: Parsimonious Server Security. In USENIX
14th Systems Administration Conference (LISA), New Orleans, LA, December 2000.

[7]. R. Wita and Y. Teng-Amnuay. Vulnerability profile for linux. In Proceedings of the 19th International Conference on Advanced

Information Networking and Applications, pages 953–958. IEEE, 2005.
[8]. Rhat enterprise linux 6 security guide (Red Hat Engineering Content Services).

