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Abstract: - This paper presents the development results of the 10 DOF biped robot with stable and human-like 

walking using the simple hardware configuration. Kinematics model of the 10 DOF biped robot and its dynamic 

model based on the 3D inverted pendulum are presented. Under assumption that the COM of the biped robot 

moves on the horizontal constraint plane, ZMP equations of the biped robot depending on the coordinate of the 

center of the pelvis link obtained from the dynamic model of the biped robot are given based on the 

D’Alembert’s principle. A ZMP servo control system is constructed to track the ZMP of the biped robot to ZMP 

reference input which is decided by the footprint of the biped robot. A discrete time optimal controller is 
designed to control ZMP of the biped robot to track trajectories reference inputs based on discrete time systems. 

When ZMP of biped robot is controlled to track trajectory reference input decided inside stable region, a 

trajectory of COM is generated as stable walking pattern of the biped robot. Based on the stable walking pattern 

of the biped robot, a stable walking control method of the biped robot is proposed. From the trajectory of COM 

of the biped robot and trajectory reference input of the swinging leg, inverse kinematics solved by solid 

geometry method is used to compute the angle of joints of the biped robot. Because joint’s angles reference of 

the biped robot are computed from the stable walking pattern of the biped robot, the walking of the biped robot 

is stable if the joint’s angles of the biped robot are controlled to track those references. The stable walking 
control method of the biped robot is implemented by simple hardware using PIC18F4431 and dsPIC30F6014. 

The simulation and experimental results show the effectiveness of this control method.   

 

Keywords: - Discrete Time Optimal Control, ZMP Servo Control System, Biped Robot. 

 

I. INTRODUCTION 
  Research on humanoid robots and biped locomotion is currently one of the most exciting topics in the 

field of robotics and there exist many ongoing projects. Although some of those works have already 
demonstrated very reliable dynamic biped walking [12], it is still important to understand the theoretical 

background of the biped robot. The biped robot performs its locomotion relatively to ground while it is keeping 

its balance and not falling down. Since there is no base link fixed on the ground or the base, the gait planning 

and control of the biped robot is very important but difficult. Up so far, numerous approaches have been 

proposed. The common method of these numerous approaches is to restrict zero moment point (ZMP) within 

stable region to protect biped robot from falling down [8].   

  In the recent years, a great amount of scientific and engineering research has been devoted to the 

development of legged robots able to attain gait patterns more or less similar to human beings. Towards this 
objective, many scientific papers have been published, focusing on different aspects of the problem. Sunil, 

Agrawal and Abbas [3] proposed motion control of a novel planar biped with nearly linear dynamics. They 

introduced a biped robot that the model was nearly linear. The motion control for trajectory following used 

nonlinear control method. Jong Hyeon Park [4] proposed impedance control for biped robot locomotion so that 

both legs of the biped robot were controlled by the impedance control, where the desired impedance at the hip 

and the swing foot was specified. Qiang Huang and Yoshihiko [5] introduced sensory reflex control for 

humanoid walking so that the walking control consisted of a feedforward dynamic pattern and a feedback 

sensory reflex. In these papers, the moving of the body of the robot was assumed to be only on the sagittal plane. 
The biped robot was controlled based on the dynamic model. The ZMP of the biped robot was measured by 

sensor so that the structure of the biped robot was complex and required high speed controller hardware system.   

This paper presents a stable walking control of biped robot by using inverse kinematics with simple hardware 

configuration based on the walking pattern which is generated by ZMP servo system. The robot’s body can 



American Journal of Engineering Research (AJER) 2013 
 

 
w w w . a j e r . o r g  

 
Page 130 

move on sagittal and lateral plane. Furthermore, the walking pattern is generated based on the ZMP of the biped 

robot so that the stable of the biped robot during walking or running is guaranteed without the sensor system to 

measure ZMP of biped robot. In addition, a simple inverse kinematics using solid geometry is used to obtain 

angle of joints of the biped robot based on the stable walking pattern. The biped robot is modeled as 3D inverted 
pendulum [1]. A ZMP servo system is constructed based on the ZMP equation to generate trajectory of center of 

mass (COM). A discrete time optimal tracking controller is also designed to control ZMP servo system. From 

the trajectory of COM, inverse kinematics of the biped robot is solved by solid geometry method to obtain angle 

joints of the biped robot. It is used to control walking of the biped robot. 

 

II. MATHEMATIC MODEL OF THE BIPED ROBOT 
2.1 Kinematics Model of Biped Robot 
  A 10 DOF biped robot developed in this thesis is considered as shown in Fig. 1. It is assumed that the 

biped robot is supported by right leg and swung by left leg. 

In Fig. 1, l1 and l5 are length of the lower links of the right leg and left leg, l2 and l4 are length of the upper links 

of the right leg and left leg, l3 is length of the pelvis link, (xb, yb, zb) and (xe, ye, ze) are coordinates of the ankle 

joints B2 and E, and (xc, yc, zc) is coordinate of the center of pelvis link C. 

  

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
  The biped robot consists of five links that are one torso, two links in each leg with upper link and lower 

link, and two feet. The two legs of the biped robot are connected with torso via two DOF rotating hip joints. Hip 

joints can rotate the legs in the angles 5 for left leg and 7 for right leg on sagittal plane, and in the angles 4 for 

left leg and 6 for right leg on frontal plane. The upper links are connected with the lower links via one DOF 
rotating knee joints which can rotate only on sagittal plane. Right knee joint can rotate lower link and upper link 

of the right leg in angle 3, and left knee joint can rotate lower link and upper link of the left leg in angle 8. The 

lower links are connected with feet via two DOF ankle joints. The ankle joints can rotate the feet in angle 1 (for 

left leg) and 10 (for right leg) on the sigattal plane, and in angle 2 for left leg and 9 for right leg on the in 
frontal plane. All the rotating joints are considered to be friction free and each one is driven by one DC motor.  

In choosing Cartesian coordinate a whose origin is taken on the ankle joint, position of the center of the pelvis 
link is expressed as follows: 

  13211ca sinlsinlx    (1) 

    42
3

213221ca cos
2

l
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    42
3

2132211ca sin
2

l
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 (3) 

Fig. 1: Configuration of 10 DOF biped robot model. 
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where xca, yca and zca are position of the center of the pelvis link in the coordinate system a. 

Similarly, position of the ankle joint of swinging leg is expressed in the coordinate system h as: 

  78574eh sinlsinlx    (4) 

   678564
3

eh sincoslsinl
2

l
y    (5) 

   6785764eh coscoslcoscoslz    (6) 

It is assumed that the center of mass of each link is concentrated at the tip of the link.   

The center of mass of the robot can be obtained as follows: 

 

e43c21b

ee4433cc2211bb
com

mmmmmmm

xmxmxmxmxmxmxm
x






 (7) 

 

e43c21b

ee4433cc2211bb
com

mmmmmmm

ymymymymymymym
y






 (8) 

 

e43c21b

ee4433cc2211bb
com

mmmmmmm

zmzmzmzmzmzmzm
z






 (9) 

where 

mb, m1, m2, mc, m3, m4 and me are mass of the ankle joint of the right leg B2, knee joint of the right leg B1, hip 

joint of the right leg B, center of the pelvis link C, hip joint of the left leg K, knee joint of the left leg K1 and 

ankle joint of the left leg E. 

(xb, yb, zb), (xe, ye, ze),  (x1, y1, z1), (x4, y4, z4), (x2, y2, z2), (x3, y3, z3) and (xc, yc, zc) are coordinates of the ankle 

joints B2, E, knee joints B1, K1, hip joints B, K, and center of pelvis link C. 

It is assumed that the mass of links of legs is negligible compared with mass of the trunk. Eqs. (7)~(9) can be 

rewritten as follows: 

 ccom xx  , ccom yy   and ccom zz   (10) 

This means that the center of mass (COM) is concentrated at the center of the pelvis link.  

 

2.2 Dynamic Model of Biped Robot 

  When the biped robot is supported by one leg, the dynamics of the robot can be approximated by a 

simple 3D inverted pendulum whose base is the foot of biped robot and head is COM of biped robot as shown in 

Fig. 2. The length of inverted pendulum r is able to be expanded or contracted. The position of the COM of the 

inverted pendulum C(xca, yca, zca) in the Cartesian coordinate can be uniquely specified by q = [r, p, r]T in the 
polar coordinate as follows [1]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Three dimension (3D) inverted pendulum. 
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  ca

222

ca mgz)zyx(m
2

1
L caca    (14) 

where m is the total mass of the biped robot, and g is the gravitational acceleration. 

Based on the Largange’s equation, the dynamics of 3D inverted pendulum can be obtained in the Cartesian 

coordinate as follows: 
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where J is Jacobian matrix which is expressed as 
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The dynamics equation of inverted pendulum along ya axis can be obtained as 

   caxcacacaca mgyzyyzm   . (17) 

where r

r

x
C

D
   is the torque around xa axis.  

Using similar procedure, the dynamics equation of inverted pendulum along xa axis can be derived as 

   caycacacaca mgxzxxzm    (18) 

where 
p

p

y
C

D
   is the torque around ya axis.  

  There are many classes of moving pattern of inverted pendulum. For selecting one of them, a constraint 

is applied to limit the motion of the inverted pendulum. That is, the motions of the COM of inverted pendulum 
are constrained on the plane whose normal vector vcp is [kx,ky,-1]T and za intersection is zcd as shown in Fig. 3. 

 

 

 

 

 

 

 
 

 

Fig. 3: Motion of inverted pendulum on constraint plane. 

 

It is assumed that the constraint plane intersects the za axis at Q(0,0,zcd) as shown in Fig. 3. Because C(xca,yca,zca) 

is located on the constraint plane, vector cpv  is perpendicular to vector QC . The constraint condition of the 

motion of the COM of inverted pendulum is expressed as 

 cdcaycaxca zykxkz   (19) 

where kx, ky and zcd are constants. 

When the biped robot walks on a rugged terrain, the normal vector of the constraint plane should be 

perpendicular to the slope of the ground, and za intersection zcd in the coordinate system a is set as distance 
between COM and the ground.  

The second order derivative of Eq. (19) is 
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Substituting Eqs. (19)~(20) into Eqs. (17)~(18), the equation of motion of 3D inverted pendulum under 

constraint can be expressed as 
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zero. It means that the COM of inverted pendulum moves on a horizontal plane which has height zca = zcd as 

shown in Fig. 3.  

Eqs. (21)~(22) can be rewritten as: 

 x

cd

ca

cd

ca
mz

y
z

g
y 

1
  (23) 

 y

cd

ca

cd

ca
mz

x
z

g
x 

1
 . (24) 

When the inverted pendulum moves on the horizontal plane, the dynamic equations along the xa axis and ya axis 

are independent each other and can be rewritten as linear differential equations.  

(xzmp, yzmp) is defined as location of ZMP on the floor as shown in Fig. 4.  

 
 

 

 

 

 

 

 

Fig. 4: ZMP of inverted pendulum. 
 

(xca,yca,zca) is projection of COM in the coordinate system a. 
ZMP is a point where the net support torques from floor about xa axis and ya axis are zero. From D’Alembert’s 

principle, ZMP of inverted pendulum under constraint can be expressed as 

    ca
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g

z
xx   (25) 

 ca
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g

z
yy  . (26) 

Eq. (25) shows that position of ZMP along xa axis depends only on the position and acceleration of COM along 

xa axis. Similarly, position of ZMP along ya axis does not depend on the position of COM along xa axis, but it 

depends only on the position and acceleration of COM along ya axis. 

When the biped robot moves with slow speed, Eqs. (25)~(26) can be approximated as Eqs. (27). It is shown that 

coordinate of the ZMP is projection of COM.  

      cazmp xx   and cazmp yy   (27) 

Since there are no actions torques that cause robot to fall down at ZMP, ZMP is very important for walking 

robot and generally used as dynamic criterion for gait planning and control. During the walking of robot, ZMP is 
located inside of the footprint of supported foot or inside the supported polygon. 

 

III. WALKING PATTERN GENERATION 
 The objective of controlling the biped robot is to realize a stable walking or running. The stable walking or 

running of the biped robot depends on walking pattern. Walking pattern generation is used to generate a 

trajectory for COM of the biped robot. For the stable walking or running of the biped robot, the walking pattern 
should satisfy the condition that the ZMP of the biped robot always exists inside the stable region. Since 

position of COM of the biped robot has the close relationship with position of ZMP as shown in Eqs. (25)~(26), 

trajectory of COM can be obtained from the trajectory of ZMP. Based on a sequence of desired footprint and 

period time of each step of the biped robot, a reference trajectory of ZMP can be specified. Fig. 5 illustrates 

footprint and reference trajectory of ZMP to guarantee stable gait. 

 
 

Fig. 5: Footprint and reference trajectory of ZMP. 
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3.1 Walking Pattern Generation Based on Servo Control of ZMP 

  When a biped robot is modeled as 3D inverted pendulum which is moved on horizontal plane, the ZMP’s 

position of the biped robot is expressed by linear independent equations along xa and ya directions which are 

shown as Eqs. (25)~(26).  

cacax xx
dt

d
u    and cacay yy

dt

d
u    are defined as the time derivative of the horizontal acceleration 

along xa and ya directions of the COM, xu and yu  are introduced as inputs. Eqs. (25)~(26) can be rewritten in 

strictly proper form as follows: 
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where position of ZMP along xa axis, zmpx , is output of system (28), position of ZMP along ya axis, zmpy , is 

output of system (29), cax and cay are position of COM with respect to xa and ya axes, and cax , cax , cay , 

cay  are horizontal velocity and acceleration with respect to ax  and ay  directions, respectively.  

Instead of solving differential Eqs. (25)~(26), position of COM can be obtained by constructing a controller to 

track the ZMP as output of Eqs. (28)~(29). When zmpx  and zmpy  are controlled to track reference trajectory of 

ZMP, COM trajectory can be obtained from state variables cax and cay . According to this pattern, the walking 

or running of the biped robot are stable. 

By constructing ZMP tracking control systems, walking pattern generation problem turns into designing 

tracking controller to track ZMP’s reference trajectory.  
To control output of the systems with Eqs. (28)~(29), There are many type of controllers can be applied. In this 

paper, a discrete time optimal control theory is chosen to design tracking controller.    

The systems (28) and (29) can be discretized with sampling time T as follows [6]: 
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where         TkTxkTxkTxk xx and         TkTykTykTyk yx are states vectors, 
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The controllability matrix of systems (30) and (31) has full rank. The system is controllable and stabilizable [6].  

Similarly, observability matrix Od of them has full rank. 
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3.2 Controller Design for ZMP Tracking Control 

In this section, discrete time optimal tracking controller utilizing the future values of reference input is designed 

to control the systems (30) and (31) to track ZMP reference input. 

A time invariant discrete time system is considered as follows: 

 
      

   kky

kukk

xC

BxAx

d

dd



1
  (32) 

where x(k)  n1 is n1 state vector, y(k)   is output, u(k)   is control input, and        Ad  nn, Bd  

n1, Cd  1n are matrices with corresponding dimensions. 

An error signal e(k)   is defined as the difference between reference input r(k) and output of the system  y(k) 
as follows: 

      kykrke   (33) 

It is denoted that the incremental control input is      1kukuku   and the incremental state is 

     1kkk  xxx . If the system (32) is controllable and observable, it can be rewritten in the 

increment as follows: 

 
      

   kky

kΔuk1k

xC

BxAx

d

dd



 
  (34) 

The error at the k+1th sample time can be obtained from Eq. (33) as 

      1ky1kr1ke  .  (35) 

Substituting Eq. (34) into result of subtracting Eq. (33) from Eq. (35) yields 

          kuk1krke1ke  dddd BCxAC  .  (36) 

where      kr1kr1kr     

From the first row of Eq. (34) and Eq. (36), the error system can be obtained as 

  
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
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GGXAX

B
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0xA0

AC

x

RE

1
11

1

1

1

 (37) 

where     1n1k X , 
   n1n1 EA , 

  1n1 RG  and 
  1n1 G . 

It is assumed that at each time k, the reference inputs of the error system (37) can be known for N future values 

as well as the present and the past values are available.  

A scalar cost function of the quadratic form is chosen as 

       





0k

2 kuRkkJ QXX
T

 (38) 

where    n1n1

nn1n

n1eQ
















00

0
Q

 is semi-positive definite matrix, eQ , and R  are positive scalar. 

An optimal problem is solved by minimizing the cost function (38).   

It is assumed that N future values of the reference input      Nk,r,2k,r1kr    can be utilized. The 

future values of reference beyond time  Nk   are approximated by  Nkr  .  It means that the following 

is satisfied. 

    ,2N,1Ni0ikr  . (39) 

         1NT
NkΔr2kΔr1kΔrk  RX  is defined as a future reference input 

incremental vector depending on N incremental future values of the reference input.  
The augmented error system with future values of reference input is obtained as 
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. (40) 

 

where 
       Nn1

1n11n1PR



  00GG R   , and      

 

The cost function (38) can be rewritten as 
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       
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k

k
kkJ 

X

X

00

0Q
XX

 (41) 

The optimal control signal  ku  that minimizes cost function (41) of system (40) can be obtained as [6] 

      
 

 
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
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













k

k
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R1nN

1N

1

1N

1N
X

X

A0
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P0G

0

G
P0GR

R

PRETT  (42) 

where P  is semi-positive definite matrix that is a solution of the algebraic Ricatti equation corresponding to Eq. 

(40) [6]. 

P  can be partitioned as follows:  

    Nn1Nn1 









2

T

1

PW

WP
P

. (43) 

where 
   1n1n 1P , 

NN

2

P  and 
  N1n W  

   E1

T1

1

T

1

T

EE1

T

E1 APGGPGRGPAAPAQP


  (44) 

     RPR1

T1

1

T

1

T

E WAGPGGPGRGPIAW 
  (45) 

The optimal control signal  ku  becomes 

    
 
 

   kk
k

k
ku R21

R

21 XKXK
X

X
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






  (45) 

 Where      n11 
 E1

T1

1

T

1x1e1 APGGPGRKKK  is defined as feedback gain matrix 

and     N1
 RPR1

T1

1

T

2 WAGPGGPGRK  is defined as feed forward matrix.  

Corresponding with N future values of reference input, feed forward matrix 2K and W  can be rewritten as 

       N21 WWWW   (47) 

       N21 2222 KKKK   (48) 

where     N,2,1i,i 11n  
W ;   N,2,1i,i2 K  

Using Eq. (40) and Eq. (47), Eq. (48) is re-expressed as  

  
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 (49) 

From Eq. (40) and Eq. (47), Eq. (44) becomes 

          
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  (50) 

It is defined that   T1

1

T

1

T

E GGPGRGPIAF


 .  

Eq. (50) yields 

   N 1,2,..,ii R

i  GPFW 1
  (51) 

From Eq. (49),   ,N,,2,1i,i2 K can be obtained as 

     R1

1iT1

1

T

2 GPFGGPGRK


i . (52) 

Eq. (45) can be rewritten as 

          ikriKkkeKku
N

1i

2e1  


 xK1x
 (53) 

By taking the initial values as zero and integrating both side of Eq. (53), the control law  ku  can be obtained 

as 

          ikriKkke
1z

z
Kku

N

1i

2e1 


 


xK1x
 (54) 

The block diagram of the closed loop ZMP tracking control system using discrete time optimal tracking 

controller utilizing the future values of reference input is shown in Fig. 6. 
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Fig. 6: Closed loop ZMP control system with discrete time optimal tracking controller. 

 

IV. WALKING CONTROL OF THE BIPED ROBOT 
  Based on the walking pattern generation discussed in previous sections, a trajectory of COM of the biped 

robot is generated by ZMP servo control system. The ZMP reference input trajectory of the ZMP servo system is 
chosen to satisfy the stable condition of the biped robot. The control objective for the stable walking of the 

biped robot is to track the center of pelvis link to the COM trajectory. The inverse kinematics of the biped robot 

is solved to obtain the angle of each joint of the biped robot. The walking control of the biped robot is 

performed based on the solutions of the inverse kinematics which is solved by solid geometry method.  

 

4.1 Inverse Kinematics of the Biped Robot 

   The configuration of a 10 DOF biped robot is shown in Fig. 1. The relationship between biped robot 

and 3D inverted pendulum is shown in Fig. 7. Solving the inverse kinematics problems directly from kinematics 
models is complex. An inverse kinematics based on the solid geometry method is presented in this section.   

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 7: Biped robot and 3D inverted pendulum. 

 

During the walking of the biped robot, the following assumptions are supposed 

 Trunk of robot is always located on the sagittal and lateral plane: when the trunk of robot is located on the 

sagittal and lateral plane, from the geometric structure of the biped robot, it is easy to 

obtain
42

  and
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 The feet of robot are always parallel with floor: when the trunk of robot is on the sagittal plane, the feet of 

robot are parallel with floor if following conditions are satisfied 

 1078513 ,   . (55) 

 The walking of the biped robot is divided into three phases: Two-legs supported, right-leg supported and 

left-leg supported. When the robot is supported by one leg, another leg swings. 

 
 

 

 

 

 

 The origin of the 3D inverted pendulum is located at the center of the ankle joint of supported leg.       

 

4.1.1 Inverse kinematics of biped robot in one-leg supported phase 

It is supposed that biped robot is with the right-leg supported and left-leg swinging. The coordinate of the COM 

in coordinate system a whose origin is taken at the center of the ankle joint of supported leg can be obtained as  

 bca xxx  , bca yyy   and bca zzz   (56) 

where (x,y,z) and (xb,yb,zb) are coordinate of the COM and center of the ankle joint of supported leg in the world 

coordinate and (xca,yca,zca) is Coordinate of the COM in the coordinate a. 
Solving Eqs. (11)~(13) at kth sample time with zca = zcd yields  

        kykxkzkr 2

ca

2

ca

2

cd   (57) 

Since the trunk of robot is always located on the sagittal plane, the pelvis link is always on the horizontal plane 

CBDC1 as shown in Fig. 9.  The BC line is perpendicular to the line 0A at A, and it yields 
r

2



0CB . 

Using the cosine’s law, the length of 0B side of the triangle 0BC at the kth sample time is obtained as follows:   
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  (58) 

The angle  k  between 2l  and 1l  sides of the triangle 0BB1 is calculated by the cosine’s law as follows: 
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Fig. 9: Inverted pendulum and supported leg. 

(a) 

Two-leg supported phase 

(b) 

Right-leg supported and left-

leg swinging phase 

(c) 

Left-leg supported and right 

leg swinging phase 

Fig. 8: Three walking phases of the biped robot. 

 

Left Right Left Right Left Right 

l3/2 

COM 

r 
r P 

xa 

ya 

za 

A1(0,0, zcd) 

3 

0 

C(xca,yca,zca) 

B 

l1 

l2 

h 
 

D 

2 

A 

1 

B1 

C1 

A1 

xca 
yca 



American Journal of Engineering Research (AJER) 2013 
 

 
w w w . a j e r . o r g  

 
Page 139 

 From  k  in Eq. (59), the knee joint angle of the biped robot is gotten as Eq. (60).   

    kk3    (60) 

In Fig. 9, the BC line is perpendicular to the line 0A at A. From the right-triangle 0AB, the ankle joint angle 

 k2  can be obtained as      
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3
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Since height of COM of the biped robot is always kept equal to constant cdz  and COM is on sagittal plane 

during walking of biped robot, the BD line is perpendicular to aa zy0  plane. It means that the BD line is 

perpendicular to 0D line. The triangles OBB1 and ODB lie on the same plane which contains the links 1l  and 

2l  of the biped robot as shown in Fig. 9. The angle  k1  can be obtained as follows 
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4.1.2 Inverse kinematics of swinging leg 

It is assumed that the biped robot is supported by right leg and is swung by left leg as shown in Fig. 10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Swinging leg of biped robot. 

 

A coordinate system h with the origin taken at the middle of pelvis link is defined as shown in Fig. 10. During 

the swing of this leg, the coordinate ehy  of the foot of swinging leg is constant.  

 k'r  is defined as the distance between ankle joint and hip joint of swinging leg at the kth sample time. It is 

expressed in the coordinate system h  as follows: 
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where (xeh(k),yeh(k),zeh(k)) is coordinate of the ankle joint of swinging leg in the coordinate h at the kth sample 

time. 

Since EF line is perpendicular to the line KF at F, the hip angle  k6  of the swinging leg is obtained based on 

the right-triangle KEF as  
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The minus sign in (64) means counterclockwise.  
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The links 4l  and 5l  lie on the plane which contains right-triangle KGE. The hip angle  k7  is equal to the 

angle between link l4 and Cyhzh plane. It is can be expressed as 
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Using the cosine’s law, the angle of knee of swinging leg can be obtained as  
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Similarly, when the biped robot is supported by left leg and is swung by right leg. The angles of right leg are 

calculated from Eqs. (64)~(66). 

 

4.1.3 Inverse kinematics of biped robot in two-leg supported phase 

It is assumed that the swinging leg of the biped robot contacts the ground after swinging phase as shown in Fig. 

11. The biped robot is supported by two legs. 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

Fig. 11: Biped robot with two legs supported. 

The coordinate of COM is expressed in coordinate system f  whose origin is taken at the ankle joint of new 

supported leg as   
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    kzkz cacf   (69) 

where  eaeaea z,y,x  is coordinate of the ankle joint of the new supported leg in coordinate system a , 

 cacaca z,y,x is coordinate of the COM in coordinate system a  and  cfcfcf z,y,x  is coordinate of the 

COM in coordinate system f . 
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coordinate of COM in coordinate system f  as  

        kzkykxkr 2
cf

2
cf

2
cf

2
1   (70) 

Similarly to the procedure in one-leg supported phase, the inverse kinematics of the biped robot in two-leg 

supported phase can be obtained. It can be expressed as following equations. 
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where h  and 1h  are distance between right hip joint and ankle of right and left legs. 

 

4.2 Control of the biped robot 

Considering one step walking of the biped robot is illustrated by consequent movement as shown in Fig. 12. 

At the beginning of walking step, the left leg leaves the ground to start swinging. This leg swings with following 

a reference trajectory. During the swing of the left leg, the ZMP of the biped robot exists at the geometry center 

of the right foot. At the end of swinging, the left leg is contacted on the ground, and the biped robot is supported 

by two legs. 
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   During two-leg supported phase, the ZMP of the biped robot moves from geometry center of the right 

foot to that of left foot. The left leg becomes new supported leg and the right leg becomes swinging leg for next 

step. Based on the reference trajectory of swinging leg and the trajectory of COM which is generated by ZMP 

servo system, the inverse kinematics is solved to obtain the angle of each joint of the biped robot. The control 
problem of biped robot becomes tracking control problem of DC motors of joints. The block diagram of the 

biped robot control system is shown in Fig. 13. 

 

 
Fig. 13: Block diagram of the biped control system. 

 

V. SIMULATION AND EXPERIMENTAL RESULTS 
5.1 Hardware of the Biped Robot 

The walking control method proposed in previous sections is implemented in CIMEC-1 developed for this paper 

as shown in Fig. 14. 

 

 
Fig. 14: CIMEC-1 biped robot. 

 

A simple hardware configuration using three PIC18F4431 and one dsPIC30F6014 for CIMEC-1 is shown in Fig. 

15.  
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Fig. 15: Hardware configuration of the CIMEC-1. 

 
  dsPIC30F6014 is used as master unit, and PIC18F4431 is used as slave unit. The master unit and slave 

units communicate each other via I2C communication. The master unit is used to solve the inverse kinematics 

problem based on the trajectory of the center of the pelvis of the biped robot and trajectory of the ankle of 

swinging leg which are contained in its memory. It can also communicate personal computer via RS-232 

communication. The angles at the kth sample time obtained from inverse kinematics are sent to slave units as 

reference signals. 

 

5.2 Simulation and experimental results 
  To demonstrate the performance of the biped walking based on the ZMP walking pattern generation 

combined with the inverse kinematics, the simulation results for walking on the flat floor of the biped robot 

using Matlab are shown. The period of step is 10 seconds: changing supported leg time is 5 seconds and 

swinging leg time is 5 seconds. The length of step is 20 cm. During the moving of the biped robot, the height of 

the center of pelvis link is constant. In the one-leg supported phase, ZMP is located at the center of the 

supported foot. When two legs of the biped robot are contacted on the ground, the ZMP moves from center of 

foot of current supported leg to the center of foot of the new supported leg. 

The parameters values of the biped robot used in the simulation and experiment are given in Table 4.1. 

 

Table 4.1 Numerical values of the biped robot’ parameters used in simulation and experiment 

 Parameters Description Values Units 

51 ll   Length of lower leg links 0.28 [m] 

42 ll   Length of upper leg links 0.28 [m] 

3l  Length of pelvis link 0.2 [m] 

a  Width of foot 0.18 [m] 

b  Length of foot 0.24 [m] 

cdz  Height of center of pelvis link 0.5 [m] 
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01  Initial value of 1  26.75 [deg] 

02  Initial value of 2  0 [deg] 

03  Initial value of 3  53.5 [deg] 

04  Initial value of 4  0 [deg] 

05  Initial value of 5  26.75 [deg] 

06  Initial value of 6  0 [deg] 

07  Initial value of 7  26.75 [deg] 

08  Initial value of 8  53.5 [deg] 

09  Initial value of 9  0 [deg] 

010  Initial value of 10  26.75 [deg] 

 

The footprint and the Zigzag reference trajectory of ZMP are shown in Fig. 16.    

 

 
 

 

 

 

 

 

 

 
 

 

Fig. 16: Footprint and zigzag reference trajectory of ZMP. 

 

The x and y ZMP trajectories versus times corresponding to the zigzag reference trajectory of ZMP in Fig. 16 

can be obtained as shown in Fig. 17.  

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

               (a) x ZMP reference input versus time.                             (b) y ZMP reference input versus time. 

Fig. 17: Zigzag ZMP reference input trajectory versus time. 

 

The reference input trajectory of the ankle joint of swinging leg is an arc which has radius equal to 0.1 [m]. The 

reference input trajectory equations of arc are expressed as Eq. (81) for left leg and Eq. (82) for right leg.  
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 1.0x1.0for
ly

01.0zx
af

3af

2

af

2

af











 (82) 

where  aaaaaa z,y,x  is coordinate of the point on the arc in the coordinate system a , and   afafaf z,y,x  is 

coordinate of the point on the arc in the coordinate system f . 

The x, y ZMP servo control systems (30) and (31) are sampled with sampling time            T = 1 [ms] and 

controlled by discrete time optimal tracking controller with 1R  , 









00

012.0
Q  and number of sample  

  time in future of reference input 1200N  . The simulation and experimental results are shown in Figs. 

18~27.  Fig. 18 and Fig. 20 show the ZMP reference inputs, outputs and positions of the COM in x and y 

directions with respect to time. Fig. 19 and Fig. 21 show that the tracking errors of x and y ZMP servo systems 

converge to zeros and the errors at the transition points of reference inputs are very small. Figs. 22~26 show 

angles of each joint of the biped robot. In these figures, the sharp points occur at the transition states of the biped 

robot where joints of the biped robot change its direction of rotation. The movement of the COM of the biped 

robot is shown in Fig. 27.     
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(b) A region. 

Fig. 18: x ZMP reference input, x ZMP output and position of COM. 
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Fig. 19: x ZMP position error. 
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Fig. 20: y ZMP reference input, y ZMP output and position of COM. 
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Fig. 21: y ZMP position error. 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 22: Simulation and experimental results of ankle joints angle 1 and 10. 
 

 
 

  

 

 

 

 

 

 
 

 

 

 

 

 

 

 
a) 

 

 

 

 

 

 

E
rr

o
r 

[m
] 

0 10 20 30 40 50 60 70

10

15

20

25

30

35

40

45

50

55

Time [sec]

A
n

k
le

 j
o

in
t 
a

n
g

le
  
 
1

Reference input

Experiment result

Simulation result
1 10

1: Supported leg. 

2: Change supported leg. 

3: Swing leg. 

4: Change supported leg. 

5: Supported leg. 

1 2 3 4 5 

0 10 20 30 40 50 60 70 80
-15

-10

-5

0

5

10

15

20

25

Time [sec]

A
n

k
le

 j
o

in
t 
a

n
g

le
  
 
2

Reference input

Experiment result

Simulation result
2

4

A

  

A
n

k
le

 j
o

in
t 

an
g

le
 

1
 a

n
d

 
1

0
 [

d
eg

] 
A

n
k

le
 j

o
in

t 
an

d
 h

ip
 j

o
in

t 
an

g
le

 o
f 

ri
g

h
t 

le
g

 
2
 a

n
d

 
4
 [

d
eg

] 



American Journal of Engineering Research (AJER) 2013 
 

 
w w w . a j e r . o r g  

 
Page 148 

15 20 25 30

4

5

6

7

8

9

10

11

12

13

14

Time [sec]

A
n

k
le

 j
o

in
t 
a

n
g

le
  
 
2

Reference input 

Experiment result

Simulation result

 
b) A region. 

Fig. 23: Simulation and experimental results of ankle and hip joints angle 2 and 4. 
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Fig. 24: Simulation and experimental results of knee joints angle 3 and 8. 
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Fig. 25: Simulation and experimental results of hip and ankle joints angle 6 and 9. 
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Fig. 26: Simulation and experimental results of hip joints angle 5 and 7. 
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Fig. 27: Movement of the center of pelvis link. 

 

VI. CONCLUSIONS 
   In this paper, a 10 DOF biped robot is developed. The kinematics and dynamic model of the biped 
robot are presented. For the stable walking, a controller using the discrete time optimal theory is designed to 

generate the trajectory of COM. The walking control of biped robot is performed based on the solutions of the 

inverse kinematics which is solved by solid geometry method. A simple hardware configuration is constructed to 

control for biped robot. The simulation and experimental results are shown to prove effectiveness of proposed 

controller. 
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