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Abstract: - An electrical engineer always tries to generate transmit and distribute electrical energy at affordable 

cost while satisfying the constraints. So optimal power flow is the problem which is mathematically modeling 

this objective.OPF is the allocation of optimal load to each committed generators while satisfying the power 

flow and plant constraints. The objective is to minimize the fuel cost and reduce the total losses by maintaining 

the generation power in limits. In this proposed work two case studies are carried out on and IEEE-30 bus 

systems. The solution methodology is developed as a software tool in Matlab 7.0.1. In this project fuel cost is 

taken as an objective function & it is compared with the results of Matpower package. The GA tool box is 

utilized for these two case studies. 

 

Keywords: - OPF (Optimal Power Flow), GA (Genetic Algorithm), NR (Newton Raphson), PSO (Practical 

Swarm Optimization). 

 

I. INTRODUCTION 
 The definition of optimal power flow and solution of optimal power flow by conventional methods 

given in [1] and [2] will be briefly explained. Effective optimal power flow is limited by (i) the high 

dimensionality of power systems and (ii) the incomplete domain dependent knowledge of power system 

engineers. GAOPF requires two load flow to be performed per entity, per iteration because all convenient 

variables are included in the fitness. In this project, a simple genetic algorithm applied to the problem of optimal 

power flow in large power distribution systems. OPF is a tool used for both the operation and planning of a 

power system. It can be intuitively explained in the following way. If we are to provide a given requirement, and 

if we have generation units committed (participating in the dispatch), OPF gives an answer as to how much 
power each unit has to produce (dispatch) as well as how to adjust transformer settings in order to supply 

demand most economically, while respecting all the constraints imposed on the system. 

 

II. PROBLEM FORMULATION 
The standard OPF predicament can be written in the subsequent form, 

Minimize F(x)  (the objective function) subject to : 

hi(x)=0, i=1,2,…n     (parity constraints) --------------(2.1) 

gi(x) ≤ 0,  j=1,2,….m  (disparity constraints)  ---------(2.2) 

 
 where x is the vector of the control variables, that is those which can be varied by a control center 

operator (generated active and reactive powers, cohort bus voltage magnitudes, transformers taps etc.); The 

essence of the optimal power flow problem resides in reducing the objective function and concurrently 

satisfying the load flow equations (parity constraints) without violating the dissimilarity constraints. 

 

III. OBJECTIVE FUNCTION 

 The most commonly used objective in the OPF problem formulation is the minimization of the total 

cost of real power generation. The individual costs of each generating unit are assumed to be function, only, of 
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active power generation and are represented by quadratic curves of second order. The objective function for the 

entire power system can then be written as the sum of the quadratic cost model at each generator. 
c(p ) = ap2

 

+ bp + c                             ---------------------(2.3) 

 

Where p is in MW (or per unit) output of the generator and a, b, c are constant coefficients. 

 

IV. CONSTRAINTS 
 As we stated, the OPF is a constrained optimization problem. The set of constraints can be divided into 

parity constraints and disparity constraints. The parity constraint set typically consists of power balance (active 

and reactive) at each node of the network which results from Kirchhoff’s current law. Another set of constraints 

are disparity constraints, which are usually limits resulting from network constituent boundaries. A frequent set 
of disparity constraints consists of: 

 

• Generator power constraints (P and Q) 

• Line power constraints (P) 

• Voltage, tap ratios, and phase shifter angle constraints 

 

 Generators are rated by maximum apparent power which they can produce. The combination of P, Q 

produced by a generator must obey the apparent circle equation P2 +Q2≤ S
max. 

The maximum active power 

(Pmax) produced by generator is limited by  the turbine’s physical limits, while maximum reactive power (Qmax) 

is often determined so that heating of the rotor is within a pre specified tolerance. Likewise, a minimum 

generation level is usually precise. Therefore for each and every generator in the network is subject to the 

following constraints: 

 

Pmin ≤ P ≤ Pmax  
                            -------------------------------- (2.4) 

Qmin ≤ Q ≤ Qmax
                           -------------------------------- (2.5) 

 

Besides generators, transformers provide an additional means of control of the flow of both active and reactive 
power.  

 There are two types of controllable transformers: tap changers and phase shifters, even though some 

transformers control both the magnitude and phase angle. Controllable transformers are those which provide a 

small adjustment of voltage magnitude, usually in the range ±10% or which shift the phase angle of the line 

voltages. A type of transformer considered for small adjustments of voltage rather than for changing voltage 

levels is called a regulating transformer. 

 

V. TYPES OF PARITY CONSTRAINTS 
 While minimizing the cost function, it’s necessary to make sure that the generation still supplies the 

load demands plus losses in transmission lines. Usually the power flow equations are used as parity constraints. 
Pi(V,Ө )- (Pgi-Pdi) =0        -----------------------(2.6) 

Qi(V,Ө )-(Qgi-Qdi) =0       -----------------------(2.7) 

 

Where active and reactive power injection at bus i are defined in the following equation: 

Pi =∑ |Vi||Vk|(GikcosӨ ik+BiksinӨ ik) -----------------------(2.8) 

Qi =∑ |Vi||Vk|(Gik sinӨ ik-Bik cosӨ ik)  ----------------------(2.9) 
Where i=bus no.  & k=1,2,3……n 

 

VI. TYPES OF DISPARITY CONSTRAINTS 

 The disparity constraints of the OPF replicate the limits on physical devices in the power scheme as 

well as the limits created to ensure system protection. The most natural types of disparity constraints are 
advanced bus voltage limits at generations and load buses, lower bus voltage confines at load buses, var. 

confines at production buses, greatest active power limits corresponding to lower limits at some generators, 

maximum line loading limits and limits on tap setting of TCULs and phase shifter. The disparity constraints on 

the dilemma variables measured include: 

i) Upper and lower bounds on the active generations at generator buses Pgi
min ≤Pgi ≤ Pgi

max , i = 1, ng.\ 

ii) Upper and lower bounds on the reactive power generations at generator buses   and reactive power injection 

at buses with VAR compensation Qgi
min ≤ Qgi ≤ Qgi

max, i = 1, npv 

iii) Upper and lower bounds on the voltage magnitude at the all buses Vi
min ≤ Vi ≤ Vi

max    i = 1, nbus. 

iv) Upper and lower bounds on the bus voltage phase angles: Ө i
min≤Ө i≤Ө i

max  i=1 to n bus. 
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 It can be seen that the comprehensive objective function F is a non-linear, the number of the parity and 
disparity constraints boost with the size of the power allotment systems. Applications of a predictable 

optimization technique such as the gradient-based algorithms to a large power allocation system with a very 

non-linear objective functions and enormous quantity of constraints are not good enough to solve this problem. 

Because it depend on the subsistence of the first and the second derivatives of the objective function and on the 

well computing of these derivative in huge investigate space. 

 

VII. EXPERIMENTAL INVESTIGATIONS 

 For experimental investigation the knowledge of genetic algorithm tool box is necessary. The Genetic 

Algorithm toolbox is a collection of functions that extend the capabilities of the Optimization Toolbox and the 
MATLAB numeric computing environment. The Genetic Algorithm toolbox includes routines for solving 

optimization problems using Genetic algorithm. This algorithm enables you to solve a variety of optimization 

problems that lie outside the scope of the standard Optimization Toolbox.  

 All the toolbox functions are MATLAB M-files, made up of MATLAB statements that implement 

specialized optimization algorithms. The capabilities of the Genetic Algorithm toolbox can be extended by 

writing own M-files, or by using the toolbox in combination with other toolboxes, or with MATLAB or 

Simulink.   

 

Genetic algorithm in optimal power flow 

 The genetic algorithms are part of the evolutionary algorithms family, which are computational models, 

inspired in the Nature. Genetic algorithms are powerful stochastic search algorithms based on the mechanism of 

natural selection and natural genetics.  
 GAs works with a population of binary string, searching many peaks in parallel. By employing genetic 

operators, they exchange information between the peaks, hence reducing the possibility of ending at a local 

optimum.  

 GAs are more flexible than most search methods because they require only information concerning the 

quality of the solution produced by each parameter set (objective function values) and not lake many 

optimization methods which require derivative information, or worse yet, complete knowledge of the problem 

structure and parameters. 

 

GA Applied to optimal power flow 

 A simple Genetic Algorithm is an iterative procedure, which maintains a constant size population P of 

candidate solutions. During each iteration step (generation) three genetic operators (reproduction, crossover, and 
mutation) are performing to generate new populations (offspring), and the chromosomes of the new populations 

are evaluated via the value of the fitness which is related to cost function. Based on these genetic operators and 

the evaluations, the better new populations of candidate solution are formed. 

 

With the above description, a simple genetic algorithm is given as follow [6]: 

1.  Generate randomly a population of binary string 

2.  Calculate the fitness for each string in the population 

3.  Create offspring strings through reproduction, crossover and mutation operation. 

4.  Evaluate the new strings and calculate the fitness for each string (chromosome). 

5.  If the search goal is achieved, or an allowable generation is attained, return the best chromosome as the 

solution; otherwise go to step 3. 

 

VIII. CROSSOVER 
 Crossover is the primary genetic operator, which promotes the exploration of new regions in the search 

space. For a pair of parents selected from the population the recombination operation divides two strings of bits 

into segments by setting a crossover point at random, i.e. Single Point Crossover.  

 The segments of bits from the parents behind the crossover point are exchanged with each other to 

generate their offspring. The mixture is performed by choosing a point of the strings randomly, and switching 

their segments to the left of this point. The new strings belong to the next generation of possible solutions. The 

strings to be crossed are selected according to their scores using the roulette wheel [6]. Thus, the strings with 

larger scores have more chances to be mixed with other strings because all the copies in the roulette have the 
same probability to be selected. 
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IX. MUTATION 
 Mutation is a secondary operator and prevents the premature stopping of the algorithm in a local 

solution. The mutation operator is defined by a random bit value change in a chosen string with a low 

probability of such change. The mutation adds a random search character to the genetic algorithm, and it is 

necessary to avoid that, after some generations, all possible solutions were very similar ones. 

 All strings and bits have the same probability of mutation. For example, in the string 110011101101, if 

the mutation affects to time bit number six, the string obtained is 110011001101. 

 

X. REPRODUCTION 
 Reproduction is based on the principle of survival of the better fitness. It is an operator that obtains a 

fixed number of copies of solutions according to their fitness value. If the score increases, then the number of 

copies increases too. A score value is of associated to a given solution according to its distance of the optimal 

solution (closer distances to the optimal solution mean higher scores). 

 

XI. COST FUNCTION 
The cost function is defined as: 

F(x) = 
i

 (aPi
2+bPi+c) Pi

min  Pi  Pi
max   -------------- (3.1) 

Our objective is to search the generation powers in their admissible limits to achieve the optimization problem 

of OPF. 

Using the above components, a standard GA procedure for solving the optimal power flow problem is 

summarized in the diagram of the Fig 1. 
 

 
Fig 1. Simple flow chart of the GA OPF 

 

 The use of penalty functions in many OPF solutions techniques to handle generation bus reactive 

power limits can lead to convergence problem due to the distortion of the solution surface. In this method no 

penalty functions are required. Because only the active power of generators are used in the fitness. And the 

reactive levels are scheduled in the load flow process. Because his essence of this idea is that the constraints are 

partitioned in two types of constraints, active constraints are checked using the GA procedure and the reactive 

constraints are updating using an efficient Newton-Raphson Load flow procedure. 

 

XII. LOAD FLOW CALCULATION 
 After the search goal is achieved, or an allowable generation is attained by the genetic algorithm. It’s 

required to performing a load flow solution in order to make fine adjustments on the optimum values obtained 

from the GAOPF procedure. This will provide updated voltages, angles and transformer taps and points out 

generators having exceeded reactive limits. 

 

 Employing the simple GA to solve the optimal power flow problem. 

 

i) IEEE-30 BUS SYSTEM: 
CHROMOSOME CODING AND DECODING: 

 GAs works with a population of binary string, not the parameters themselves. With the binary coding 
method, the active generation power set of  30 bus system(P1,P2,P5,P8,P11,P13) would be coded as binary string of 

O’s and 1’ with length B1, B2, B5,B8,B11 and B13 (may be different), respectively. Each parameter Pi have upper 

bound Ui and lower bound Li .The choice of B1, B2, B5,B8,B11 and B13 for the parameters is concerned with the 

resolution specified by the designer in the search space. In the binary coding method, the bit length Bi and the 

corresponding resolution 

Ri is related by       
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Ri= (Ui-Li)/(2
Bi-1)  

where Ri =resolution 
 As result, the Pi set can be transformed into a binary string (chromosome) with cetain length and then 

the search space is explored. Note that each chromosome presents one possible solution to the problem. Power 

generation limits & generator cost parameters of IEEE-30 bus system are shown in Table 1. 

 

Table 1: Power generation limits & generator cost parameters of IEEE-30 bus system in p.u.(Sb=100mva) 

buss Pmin Pmax Vmin Vmax a b c 

1 0.50 2.0 0.95 1.10 200 200 0 

2 0.20 0.80 0.95 1.10 175 175 0 

5 0.15 0.50 0.95 1.10 625 100 0 

8 0.10 0.35 0.95 1.10 83.4 325 0 

11 0.10 0.30 0.95 1.10 250 300 0 

13 0.10 0.40 0.95 1.10 250 300 0 

 

a in($/MW2hr), b in ($/MWhr) and c in ($/hr) 

Depending on the resolution the parameter set:        

 (P1,P2,P5,P8,P11,P13) can   be coded according to the following Table 2.A. 

 

Table 2 (A): Coding of pi parameter set 

P1 code P2 code P5 code 

0.5 0000 0.25 0000 0.15 0000 

0.6 0001 0.30 0001 0.175 0001 

0.7 0010 0.35 0010 0.20 0010 

0.8 0011 0.40 0011 0.225 0011 

0.9 0100 0.45 0100 0.25 0100 

1.0 0101 0.50 0101 0.275 0101 

1.1 0110 0.55 0110 0.30 0110 

1.2 0111 0.60 0111 0.325 0111 

1.3 1000 0.65 1000 0.35 1000 

1.4 1001 0.70 1001 0.375 1001 

1.5 1010 0.75 1010 0.40 1010 

1.6 1011 0.80 1011 0.425 1011 

1.7 1100 0.85 1100 0.45 1100 

1.8 1101 0.90 1101 0.475 1101 

1.9 1110 0.95 1110 0.50 1110 

2.0 1111 1.00 1111 0.525 1111 

 

Table 2 (B): Coding of pi parameter set 

P8 code P11 code P13 code 

0.10 0000 0.10 0000 0.10 0000 

0.12 0001 0.12 0001 0.12 0001 

0.14 0010 0.14 0010 0.14 0010 

0.16 0011 0.16 0011 0.16 0011 

0.18 0100 0.18 0100 0.18 0100 

0.20 0101 0.20 0101 0.20 0101 

0.22 0110 0.22 0110 0.22 0110 

0.24 0111 0.24 0111 0.24 0111 

0.26 1000 0.26 1000 0.26 1000 

0.28 1001 0.28 1001 0.28 1001 

0.30 1010 0.30 1010 0.30 1010 

0.32 1011 0.32 1011 0.32 1011 

0.34 1100 0.34 1100 0.34 1100 

0.36 1101 0.36 1101 0.36 1101 

0.38 1110 0.38 1110 0.38 1110 

0.40 1111 0.40 1111 0.40 1111 
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If the candidate parameters set is (1.9, 0.80, 0.50,0.38,0.32,0.30), then the chromosome is a binary string 

1110|1011|1110|1110|1011|1010. The decoding procedure is the reverse procedure. 
 The first step of any genetic algorithm is to generate the initial population. A binary string of length L 

is associated to each member (individual) of the population. The string is usually known as a chromosome and 

represents a solution of the problem. A sampling of this initial population creates an intermediate population. 

Thus, some operators (reproduction, crossover and mutation) are applied to this new intermediate population in 

order to obtain a new one. 

 

Process, that starts from the present population and leads to the new population, is named as generation. When 

executing a genetic algorithm for IEEE -30 bus system, the results after first generation are shown in Table 3. 

 

For this IEEE-30 bus system to apply GA we require initial population. This initial population can be obtained 

by using NR method. By NR method, 

 
Results after 3rd iteration are P1=130 MW, P2=60.2MW,  P5=27.5MW, P8=34MW,P11=18MW,  P13=16MW. By 

substituting these values in cost function F(x)= 
i

 (aPi
2+bPi+c),we get total generation cost=51,320 rs/hr. 

Results after 4th iteration are P1=139.9 MW, P2=57.56MW, P5=24.5MW, P8=35MW, P11=17.9MW, 

P13=16.9MW. By substituting these values in cost function F(x)= 
i

 (aPi
2+bPi+c),we get total generation 

cost=50,520 rs/hr. 

 

Table 3: First generation of GA process for 30 bus system 

 Chromo- some initial population cost(rs/hr) 

3
rd

 iteration 1 1000|0111|0101|1100|01

00|0011 

51,320 

4
th 

iteration 2 1001|0110|0100|1100|01

00|0011 

50,520 

After single pt 

Crossover 

3 

4 

1000|0110|0100|1100|01

00|0011 

1001|0111|0101|1100|01

00|0011 

48,040 

43,600 

After Mutation 5 1001|0011|0101|1100|01

00|0011 

39,200 

 

After 100 generations we get chromosome as 0010|1110|1010|1100|0110|0101. In decoded form P1=71.56MW, 

P2=97.63MW, P5=41.54MW, P8=34.8MW, P11=22.06MW, P13=20.02MW. For this case total generation 

cost=31,960 rs/hr & it is the optimal solution by using GA. 

 

The corresponding IEEE -30 bus system is shown Fig-2 

 
Fig 2: IEEE- 30 BUS SYSTEM 

 

XIII. RESULTS AND ANALYSIS     
Results of OPF using GA and Matpower for IEEE-30 buses will be given and they are compared. 

Results            
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Table 4: Total cost and Losses for ieee-30 bus system using matpower: 

PARAMETER VALUE 

i)TOTAL COST 32,000 (rs/hr) 

ii)TOTAL LOSSES 4.34 (MW) 

 

Description: For IEEE-30 bus system using Matpower we get, 

Total generation cost =32,000 (rs/hr) 

Total transmission losses =4.34(MW) 

 

Table 4.1 Generated power for IEEE-30 bus system using matpower: 

VARIABLE VALUE (MW) 

P1 69.93 

P2 96.56 

P5 41.71 

P8 36.45 

P11 22.31 

P13 20.76 

 

Description: Total active power generated for IEEE-30 bus system using 
Matpower =P1+P2+P5+P8+P11+P13=287.74(MW) 

And total load demanded =283.4 (MW) 

 

Table 4.2 total cost and losses for ieee-30 bus system using GA: 

PARAMETER VALUE 

i) TOTAL COST 31,960  (rs/hr) 

ii) TOTAL LOSSES 4.23 (MW) 

 

Description: For IEEE-30 bus system using GA we get, 

Total generation cost =31,960(rs/hr) 

Total transmission losses =4.23(MW) 
 

Table 4.3 Generated power for IEEE 30 bus system with GA: 

VARIABLE VALUE (MW) 

P1 71.56 

P2 97.63 

P5 41.54 

P8 34.8 

P11 22.16 

P13 20.02 

 

Description: Total active power generated for IEEE-30 bus system using 

GA = P1+P2+P5+P8+P11+P13=287.63(MW) 

And total load demanded =283.4 (MW) 

 

XIV. COMPARISON OF RESULTS OF GA WITH MATPOWER 
Table 4.4. Total cost and Losses for IEEE-30 bus system: 

PARAMETER WITH   GA WITH  MATPOWER 

i) TOTAL COST 31,960  (rs/hr) 32,000 (rs/hr) 

ii)TOTAL LOSSES 4.23 (MW) 4.34 (MW) 

 

Description: To meet the load demand of 283.4 MW for IEEE-30 bus system, total generated power cost using 

Matpower=32,000(rs/hr) & using GA =31,960(rs/hr). 

Since demand is constant for both the methods, losses are less for GA compared to Matpower. 
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Table 4.5 Generated power for IEEE-30 bus system 

VARIABLE WITH  MATPOWER WITH GA 

P1(MW) 69.93 71.56 

P2(MW) 96.56 97.63 

P5(MW) 41.71 41.54 

P8(MW) 36.45 34.8 

P11(MW) 22.31 22.06 

P13(MW) 20.76 20.02 

 

Description :Here P1,P2,P5,P8,P11 and P13are the generated powers at buses 1,2,5,8,11 & 13  resp.To meet the 

demand of 283.4MW for IEEE-30 bus system ,total power generated using Matpower =287.74(MW) & using 

GA=287.63(MW) 

 

 
Fig 3: Total cost curve of a IEEE-30 bus system 

 

 
Fig 4: GA tool for IEEE -30 bus system 
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XV. CONCLUSION 
 Application of Genetic approach to Optimal Power Flow has been explored and tested. A simulation 

results show that a simple genetic algorithm can give a best result using only simple genetic operations such as 

proportionate reproduction, simple mutation, and one-point crossover in binary codes. It’s recommended to 

indicate that in large-scale system the numbers of constraints are very large consequently the GA accomplished 

in a large CPU time. 

 To save an important CPU time, the constraints are to be decomposing in active constraints and 

reactive ones. The active constraints are the parameters whose enter directly in the cost function and the reactive 

constraints are infecting the cost function indirectly. With this approach, only the active constraints are taken to 

calculate the optimal solution set. And the reactive constraints are taking in an efficient load flow by recalculate 

active power of the slack bus. The developed system was then tested and validated on the IEEE-30 bus systems. 
Solutions obtained with the developed Genetic Algorithm Optimal Power Flow program has shown to be almost 

as fast as the solutions given by Matpower package. 

 

XVI. FUTURE WORK 
In this project OPF is solved by using GA method for IEEE-30 bus systems.OPF problem using GA in 

combination with the Particle Swarm Optimization technique can give better results compared to GA method 

alone. 
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