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l. INTRODUCTION

After the introduction of fuzzy sets by Zadeh [15] in 1965 and fuzzy topology by chang [4] in 1967.
Several researches were conducted on the generalizations of the notions of fuzzy sets and fuzzy topology. The
concept of fuzzy sets was introduced by Atanassov [1] as a generalization of fuzzy sets . In the last 20 years
various concepts of fuzzy mathematics have been extended for fuzzy sets. In 1997 Coker [5] introduced the
concept of fuzzy topological spaces. Recently many fuzzy topological concepts such as fuzzy compactness [8],
fuzzy connectedness [14], fuzzy multi functions [9] fuzzy g -super closed set [11] and fuzzy g -super continuity
[12] have been generalized for fuzzy topological spaces. Topological space. In the present paper we introduce
and study the concept of fuzzy gc-super irresolute mappings in fuzzy topological space.

1. PRELIMINARIES
Definition 2.1[8,9,12]: A fuzzy set A of a fuzzy topological space (X,3) is called a
(@) fuzzy generalized super closed ( fuzzy g -super closed) if cl(A) <O
Whenever A<Oand Ois fuzzy super open.
(b) Fuzzy generalized super open if its complement is fuzzy generalized super closed.

Remark 2.1 [8,9,12]: Every fuzzy super closed set is fuzzy g -super closed set but its converse may not be true.

Definition 2.2[9]: Let (X,3) and (Y,®) be two fuzzy topological spaces and let f: X—Y be a function. Then

(@) fissaidtobe fuzzy super continuous if the pre image of each fuzzy open set in Y isan fuzzy super open
set in X.[8]

(b) fissaidtobe fuzzy g -super continuous if the inverse image of every fuzzy super closed set of Y is fuzzy
g -super closed set in X.[13]

Definition 2.3[8,9,13]: An fuzzy topological space X is called fuzzy g -super connected if there is no proper
fuzzy set of X which is both fuzzy g -super open and fuzzy g -super closed.

Definition 2.4[8,9,13]: An fuzzy set B of a fuzzy topological space (X,3) is said to be fuzzy GO- super
compact relative to X, if for every collection {A;: ien} of fuzzy g —super open sets of X such that B < U{A;:
ien}. There exists a finite subset Aq Of A such that B < U{A;: ienc}.

Definition 2.5[8,9,13] : A crisp subset Y of an fuzzy topological space (X,3) is said to be fuzzy GO- super
compact if Y is fuzzy GO- super compact as a fuzzy subspace of X.
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Definition 2.6.[8,9,13]: Let (X, 3J) be an fuzzy topological space. The generalized closure of a fuzzy set A of
X denoted by gcl(A) is the intersection of all fuzzy g -super closed sets of X which contains A.

1. FUZZY GC-SUPER IRRESOLUTE MAPPINGS
Definition 3.1: A mapping f from an fuzzy topological space (X,3) to another fuzzy topological space (Y,c) is
said to be fuzzy gc-super irresolute if the inverse image of every fuzzy g -super closed set of Y is fuzzy g -
super closed in X.
Theorem 3.1: A mapping f: (X,3)—(Y,o0) is fuzzy gc-super irresolute if and only if the inverse image of
every fuzzy g —super open set in Y is fuzzy g -super open in X.
Proof: It is obvious because f (U°) = (f (U))¢, for every fuzzy set U of Y.
Remark 3.1: Since every fuzzy closed set is fuzzy g -super closed it is clear that every fuzzy gc-super irresolute
mapping is fuzzy g -super continuous but the converse may not be true.
Remark 3.2: Example (3.1) and example (3.2) asserts that the concepts of fuzzy gc-super irresolute and fuzzy
super continuous mappings are independent.
Theorem 3.2: If a mapping f: (X,3)—(Y,o) is fuzzy gc-super irresolute then
(a) f(gcl(A)) <gcl(f(A)
(b) gel(f *(B)) < f “(gcl(B)).
Proof: Obvious.
Theorem 3.3: Let f: (X,3)—(Y,o) is bijective fuzzy super open and fuzzy g -super continuous then fis fuzzy
gc- super irresolute.
Proof: Let A be a fuzzy g -super closed set in Y and let f “(A) < G where G is fuzzy open set in X. Then A <
f(G). Since f(G) is fuzzy super open and A is fuzzy g -super closed in Y, cl(A) < f(G) and f *(cl(A)) <G. Since
f is fuzzy g -super continuous and cl(A) is fuzzy super closed in Y, cl(f *(cl(A))) < G. And so cl(f (A)) < G.
Therefore f *(A) is fuzzy g -super closed in X. Hence f is fuzzy gc- super irresolute.
Theorem 3.4: Let f: (X,3)—(Y,0) and g: (Y,6)—(Z,n) be two fuzzy gc-super irresolute mappings, then gof :
(X,3)—>(Z, ) is fuzzy gc- super irresolute.
Proof : Obvious.
Theorem 3.5: Let f: (X,3) = (Y,0) is fuzzy gc-super irresolute and g: (Y,o0)—>(Zn) is fuzzy g -super
continuous then the gof : (X,3)—(Z, n) is fuzzy g -super continuous.
Proof: Obvious.
Theorem 3.6: Let f: (X,3)—>(Y,o0) is fuzzy gc-super irresolute mappings, then gof : (X,3)—>(Z, n) is fuzzy
gc-super irresolute and if B is fuzzy GO- super compact relative to X, then the image f(B) is fuzzy GO-
super compact relative to Y.
Proof : Let {Ai: iea}be any collection of fuzzy g-super open set of Y such that f(B) < U{Ai: iea}. Then B <
U{f (Ai): ien}. By using the assumption, there exists a finite subset Ao of A such that B < U{f (Ai): ieao}.
Therefore, f(B) <{Ai: ieng}. Which shows that f(B) is fuzzy GO- super compact relative to Y.
Corollary 3. 1: A fuzzy gc-super irresolute image of a fuzzy GO- super compact space is fuzzy GO- super
compact.
Theorem 3.8: Let (XXY, 3xo) be the fuzzy product space of non-empty fuzzy topological spaces (X,3) and
(Y,o). Then the projection mapping p: XxY—X is fuzzy gc- super irresolute.
Proof: Let F be any fuzzy g-superclosed set of X. Then fxi(= p™(F)) is fuzzy g -super closed and
hence p is fuzzy gc- super irresolute.
Theorem 3.9: If the product space (XXY, 3xc) of two non empty fuzzy topological spaces (X,3) and (Y,o) is
fuzzy GO-super compact, then each factor space is fuzzy GO- super compact.
Proof: Obvious.
Theorem: 3.10: Let f: (X,3)—(Y,c) isan fuzzy gc-super irresolute surjection and (X,3) is fuzzy GO- super
connected, then (Y,o) is fuzzy GO- super connected.
Proof: Suppose Y is not fuzzy GO- super connected then there exists a proper fuzzy set G of Y which is both
fuzzy g -super open and Fuzzy g -super closed, therefore f *(G) is a proper fuzzy set of X, which is both fuzzy g
-super open and fuzzy g -super closed, because f is fuzzy g -super continuous surjection. Therefore X is not
fuzzy GO- super connected, which is a contradiction. Hence Y is fuzzy GO- super connected.
Theorem 3.11: If the product space (XxY ,3xo) of two non-empty fuzzy topological spaces (X,3) and (Y,oc)
is fuzzy GO- super connected, then each factor fuzzy space is fuzzy GO- super connected.
Proof: Obvious.
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