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ABSTRACT : In this work, we present a novel strategy for correcting imperfections in occupancy grid maps 

called Map Decay. The objective of Map Decay is to correct invalid occupancy probabilities of map cells that 

are unobservable by sensors. The strategy was inspired by an analogy between the memory architecture 

believed to exist in the human brain and the maps maintained by an autonomous vehicle. It consists in merging 

sensory information obtained during runtime (online) with a priori data from a high-precision map constructed 

offline. In Map Decay, cells observed by sensors are updated using traditional occupancy grid mapping 

techniques and unobserved cells are adjusted so that their occupancy probabilities tend to the values found in 

the offline map. This strategy is grounded in the idea that the most precise information available about an 

unobservable cell is the value found in the high-precision offline map. Map decay was successfully tested and is 

still in use in the IARA autonomous vehicle from Universidade Federal do Espírito Santo. 
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I. INTRODUCTION 
The brain allows humans to operate in highly dynamic and complex environments, and to solve general 

purpose problems. The idea of giving these abilities to artificial entities by reproducing the brain’s cognitive 

processes always fascinated researchers. In several works in the literature, the brain and its processes inspired 

algorithms and new strategies to solve problems. Milford and Wyeth [1], and posteriorly Ball et al. [2], for 

example, developed an artificial model of the rat’s hippocampus, a region of the brain that is known to represent 

places. This model was successfully used in Simultaneous Localization and Mapping (SLAM) applications. 

Rivest et al. [3] analyzed the brain’s dopaminergic pathways, i.e. the neural pathways associated with reward-

motivated behavior, to propose new reinforcement learning algorithms. Berger et al. presented a novel visual 

tracking technique inspired by the brain’s regions related to saccadic eye movements [4]. The brain’s visual 

cortex also inspired several other robotics applications in cognitive map building and scene understanding [5], 

self-motion estimation [6], and feature extraction and place recognition [7]. 

For this work, we also searched for inspiration in the brain to propose improvements in existing 

algorithms involved in the operation of autonomous vehicles. The brain and its functions were analyzed from 

the cognitive psychology point of view [8]; in special, the cognitive processes related to memory in its different 

levels. 
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The ability of storing information in memory and recalling it when necessary is fundamental to allow 

the execution of physical procedures, and the pursuit of long-term goals. As important as the capacity of 

remembering concepts and experiences, is the ability of forgetting what is irrelevant and focusing attention on 

what momentarily matters. 

We analyzed the similarities between the visual-memory architecture believed to exist in the brain and 

the process of building maps in robotics (and, more specifically, in autonomous cars).  Inspired by these 

similarities, we proposed a novel strategy for removing online noise from occupancy grid maps, called Map 

Decay. Map Decay consists of merging sensory information obtained in runtime (online) with a priori data from 

a high-precision map constructed offline. Online or offline data are emphasized according to whether the map 

cells are observed by the sensors or not. Cells observed by sensors are updated using traditional occupancy grid 

mapping techniques. However, cells that are not observed are adjusted so that their occupancy probabilities tend 

to the values found in the offline map. The effect of this adjustment is an apparent fading (decay) of online 

information in unobservable regions of the map, while high precision offline information is retained. 

The main reason for using Map Decay is to correct occupancy probabilities of map cells that were 

improperly adjusted because of moving objects or incorrect sensor measurements. Although further observations 

of the cells would correct their occupancy probabilities, due to several factors, the cells may not be observed 

again. Among these factors, we can mention the sparsity of sensors, the presence of sensorial blind spots, and 

the natural movement of the autonomous car away from the cell, increasing the flexibility of system [9]. 

Map Decay addresses these issues by slowly turning the cells probabilities into the values found in the 

offline map. This strategy was developed under the assumption that the most precise information available about 

an unobservable cell is the value present in the high-precision offline map. Map Decay was successfully 

employed and is still in use in the IARA autonomous vehicle (IARA is an acronym for Intelligent and 

Autonomous Robotic Automobile, figure 1) from Universidade Federal do Espirito Santo (UFES). 

 

 
Fig. 1: IARA autonomous vehicle from UFES. 

 

II. MEMORIES AND MAPS 
In this section, we review the brain’s visual-memory architecture as suggested by the cognitive 

psychology research field. Later, IARA’s map architecture is described and, finally, an analogy between the 

brain’s memory architecture and the mapping processes of IARA is discussed. 

A. The Brain's Memory Architecture 

Cognitive psychologists organize the human memory systems in three levels: sensory memory, short-

term memory (or working memory), and long-term memory [8], [10]. Although all of these memories have the 
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common role of retaining information, they vary in several aspects such as how long memories last in them, 

how memories are encoded, and how much associations they have with other memories previously acquired. 

The sensory memory is the first level of memory (the nearest to the sensing organ) and stores 

information coming from our sense organs for very short time. This information is constantly updated and 

quickly decay as new stimuli arrive [11]. Visual sensory memory manifests itself as the image that we still see 

for a moment after closing our eyes. 

The short-term memory receives information from several sources (both external information from 

sensors, and internal information from different brain processes) and is able to store integrated information for a 

time long enough to enable the accomplishment of simple day-to-day tasks, such as rotating the image of an 

object [8]. It also has control processes that allow the exchange of information with the long term memory [8; 

11]. 

The long-term memory can store large amounts of information for long periods time.  The information 

stored in   this memory, such as names of old friends, places where we lived, and what we have learned, can be 

brought to the short-term memory if necessary and used in day-to-day tasks [11]. The long-term memory is the 

ground over which our life experience is build. It stores the network of concepts that allows us to make sense of 

the world and holds the brain’s most consolidated information. 

B. IARA's Mapping Architecture 

IARA represents the world using occupancy grid maps [12]. In these maps, the environment is 

represented as a two-dimensional grid. Each cell of the grid stores the probability that the region it covers is 

occupied by obstacles [13]. IARA employs three occupancy grid maps: an instantaneous map, an offline map, 

and an online map. 

The instantaneous map is constructed projecting sensorial data into a momentary occupancy grid map. 

This map only lasts while novel sensory information does not arrive. As soon as new sensor data are received, 

the last instantaneous map is discarded and a new one is constructed. This map reflects the area of the world 

observed by the most recent sensor reading. The instantaneous map is not directly used and it is only employed 

as an intermediary resource for the construction of the other maps. 

The offline map is constructed prior to runtime by (i) driving IARA over a path of interest while 

storing its sensorial data, (ii) estimating the poses visited by IARA using as much resources and data as possible, 

and (iii) by integrating consecutive instantaneous maps in a single map of the whole environment [12]. A human 

expert performs a post processing in this map to remove eventual imperfections still present in the map 

(basically, moving objects registered as static objects). The offline map is used during runtime for estimating the 

IARA’s position in the world (global localization and position tracking [7], [14]) and also as source of 

information for the production of the online map. 

The online map represents the state of the world at runtime. It is constructed by merging the offline 

map and the instantaneous map. The motivation for merging these maps is the benefit of using the high quality 

information present in the offline map and the most recent information present in the instantaneous map. The 

online map is used by the IARA’s software modules related to planning and navigation. 

Fig. 2 (a), (b), and (c) show examples of instantaneous, offline, and online maps, respectively. In these 

maps, grayscale pixels represent the cell’s occupancy probabilities with black being maximal occupancy 

probability and white being minimal occupancy probability. Blue pixels represent cells that were not observed 

by sensors yet. 

C. Analogy between Memories and Maps 

Like the long-term memory, that is responsible for keeping our life long experience, the offline map 

stores the most consolidated and reliable information the car has about the world. Such information serves as 

working material to other processes when the instantaneous information they need cannot be observed by 

sensors. 

Like the short-term memory, that integrates information coming from the long-term memory and from 

other external sensors, the online map integrates consolidated data (offline map, long-term memory) with new 

data perceived by the sensors, and keeps such information as long as necessary for allowing the execution of 

relevant tasks. These tasks take in consideration what IARA has learned during the offline phase and also the 

current appearance of the world, as observed by sensors. 

To complete our analogy, the instantaneous map, like the sensory memory, keeps the information 

captured by sensors, while a new reading is not performed. However, in this work, differently from the human 

sensorial memory in which information fades away with time, we consider that the instantaneous map decays 

immediately with the arrival of new information. 

The analogy between maps and memories has the potential of inspiring new insights and new 

algorithms. This potential is leveraged by our Map Decay strategy. Map Decay was inspired by the brain’s 
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ability of forgetting short-term memory information that is no longer necessary and the ability of using 

information from the long-term memory to make sense of incomplete sensorial information. 

 

III. IARA SYSTEM 
In this section, we start by presenting the hardware and software of IARA, with emphasis to the set of 

modules that support its mapping system. Next, the algorithm employed to construct the offline and 

instantaneous maps from sensorial data is discussed. Finally, the algorithm for creating the online map and the 

Map Decay strategy are described. 

A. The IARA Platform 

IARA’s hardware is based on a Ford Escape Hybrid, which was adapted by Torc Robotics to enable: (i) 

electronic actuation of the steering wheel, throttle and brake; (ii) reading internal information (e.g., car 

odometry); and (iii) powering several high-performance sensors and computers. IARA is equipped with the 

following set of sensors: one Light Detection and Ranging (LIDAR) Velodyne HDL 32-E; a high precision GPS 

RTK Trimble; four stereo cameras Point Grey Bumblebee; an Inertial Measurement Unit (IMU) XSENS MTi; 

and up to four computers Dell Precision R5500 (currently only two are used). 

IARA’s software modules were structured using the LCAD’s version of the CARMEN robotics 

framework [14]. This local version is open to the scientific community (it can be accessed in 

https://github.com/LCAD-UFES/carmen_lcad). The software modules are factored into four main functions: 

mapping, localization, navigation, and control. Mapping addresses the problem of continuously creating a map 

of the environment, which contains information describing the places the car may or may not be able to navigate 

through. Localization addresses the problem of estimating the car’s pose (position and orientation) relative to 

the origin of the map. Navigation addresses the problem of continuously planning a trajectory (list of control 

commands composed of velocity and steering wheel angle, along with the respective execution durations) from 

a car’s state to a goal state using the map. Finally, the control module is responsible for calculating the set of 

steering wheel, throttle and brake efforts that allows the car to follow the trajectory planned by the navigation 

module. Other auxiliary modules were developed to provide additional features such as obstacle avoidance, 

health monitoring, behavior selection, logging, and simulation. 

B. The IARA Mapping System 

We refer to the set of modules related to mapping as the mapping system. The sensors used by the 

mapping system are GPS, IMU, car odometry (linear velocity, and steering wheel angle), and the Velodyne (3D 

point clouds). The mapping system presents two different operation modes depending on whether it is running 

offline or online. 

In the offline mode, a human drives IARA over a path and the data captured by the sensors are stored 

in a log file. The poses visited by IARA are calculated using the pose-based GraphSLAM presented in [12]. 

GraphSLAM is a Full-SLAM algorithm that uses all the data collected by sensors to estimate the robot poses. 

The set of estimated poses along with the Velodyne data are sent to the mapping system in order to construct the 

offline map. 

In the online mode, IARA drives itself autonomously from a starting point to a destination goal. In this 

operation mode, only the most recent data are used to compute IARA’s pose and to update the map. The process 

of computing the pose in online mode consists of two steps. In the first step, odometry, IMU and GPS data are 

fused together using a particle filter [15]. This data fusion process is performed by a fused odometry module that 

outputs a 6D pose (x, y, z, roll, pitch, yaw). In the second step, the x, y, and yaw components of the pose 

estimated by the fused odometry module are refined by a Monte Carlo localization algorithm [13] (the values of 

the other components remain the same). This algorithm refines the values of the components using a second 

particle filter. Firstly, particles are spread using odometry data and the IARA’s motion model. After that, the 

obstacles detected by Velodyne are projected to 2D using the technique presented in [12] and compared with the 

offline map to weight the particles. Finally, particles are resampled and the average pose is returned. As in the 

offline mode, the pose estimated by the localization algorithm and the Velodyne point cloud are sent to the 

mapping system in order to construct the online map. 

The mapping system, as the whole mapping architecture, has two modes operation modes: one online 

and the other offline. In both modes, the occupancy probabilities of the cells are updated considering whether 

Velodyne rays hit obstacles related to them or not. This update follows the traditional occupancy grid map 

algorithm [13]. However, both online and offline modes have unique features that differentiates them. 

The online mode has two particularities not present in the offline mode. The first difference is that the 

cells of the online map are initialized with the values found in the offline map. By doing so, the initial values of 

the online map are the most consolidated information available about the environment. As soon as new 

information arrives, the cells are updated to reflect the actual state of the world. The second difference of the 

https://github.com/LCAD-UFES/carmen_lcad
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online map is that the map is subject tomap decay (see below) before the update performed by the occupancy 

grid mapping algorithm. Given enough time, map decay will correct imperfections left in cells unobservable by 

sensors. 

The offline mode also has a peculiarity that is not present in the online mode. In order to improve the 

quality of the offline map, a post-processing step is performed by a human expert. In this post-processing step, 

the expert cleans-up potential imperfections present in the map, e.g., traces left by moving objects or inexistent 

obstacles caused by sensorial noise. 

In the following subsections, we present the general occupancy grid mapping rule used for updating the 

map probabilities in both modes of operation and, then, we describe the Map Decay algorithm used only in the 

online mode. 

C. Occupancy Grid Mapping 

The maps maintained by IARA are updated for every new point cloud captured by the Velodyne. The 

point cloud is firstly moved from the sensor reference system to the world reference system using a pose-

dependent transform. After that, an instantaneous map is constructed using the point cloud. Finally, the cells of 

the map (either online or offline) are updated according to the occupancy probabilities of the instantaneous map. 

The instantaneous map construction is directly related to the principle of data acquisition of the 

Velodyne. The sensor revolves a set of 32 lasers horizontally. The 32 lasers are positioned in an array with 

increasing vertical angles (the first laser points downwards, the second points a bit higher than the first, and so 

on). We will refer to this set of 32 rays as a vertical scan. A Velodyne point cloud is composed of several 

vertical scans captured with different horizontal angles. 

The instantaneous map is constructed: (i) by calculating the probability that each ray of a vertical scan 

hit an obstacle, 

(ii) by projecting the 3D points hit by the rays to the floor (i.e. to 2D), and (iii) by adjusting the 

occupancy probabilities of the cells corresponding to the projected points accordingly. The strategy for 

calculating the probability that a ray hit an obstacle is described in [12] and an alternative strategy can be found 

in [16]. The occupancy probabilities of all IARA’s maps are represented using log-odds [13]. To update the 

long-term and short-term maps, the cells of the instantaneous map are projected to the respective cells of the 

long-term or short-term map and the log-odds (that represent the occupancy probability) are summed. 

Besides adjusting the cells hit by the Velodyne rays, we also perform a raycast and set to free (i.e. close 

to zero probability) all cells between the position of the first ray of a vertical scan and the position of the first 

ray that hit an obstacle in the same vertical scan. These cells are set to free because we assume that, if there was 

an obstacle between these two positions, some ray would have hit it. 

D. Map Decay 

Map Decay is a method for removing imperfections from occupancy grid maps. We use it here inspired 

the brain’s ability of releasing from short-term memory information that is no longer necessary, and of making 

sense of incomplete sensorial data by filling it with long-term knowledge. 

These imperfections have several causes. When a dynamic object crosses the cells of a map, for 

example, their occupancy probabilities are raised. Due to IARA’s motion, these cells may no longer be observed 

leading to a trace in the map. The same happens when a false obstacle is detected due to natural sensor error. As 

before, the later observation of the region should correct the occupancy probability. However, if the cells are not 

observed again either because the robot is moving, or because the cells are into a sensorial blind spot, the 

occupancy probability will not be corrected. 

Imperfections left by moving objects could potentially be handled by one of the several techniques 

proposed in the literature for mapping in dynamic environments [12], [17]. The conventional technique to 

handle dynamic objects is to detect and track these objects, and then either treat them as outliers (in landmark 

maps) or filter them out from the map (in occupancy grid maps) [18], [19], [20]. An alternative technique is 

storing in the map an history of how the cells change over time, and try to identify moving obstacles analyzing 

the patterns of changes in the spatiotemporal data [21], [22]. Map Decay is a simpler and more efficient (in 

terms of use of computational resources) solution than the previously listed methods. 

The Map Decay strategy consists of making the probabilities of the cells of the online map tend to the 

values of the offline map with time. All cells of the online map are updated according to the following rule: 

 

𝑀𝑜𝑛  𝑥, 𝑦 =  
𝑀𝑜𝑛  𝑥, 𝑦 𝑊𝑜𝑛 + 𝑀𝑜𝑓𝑓  𝑥, 𝑦 𝑊𝑜𝑓𝑓

𝑊𝑜𝑛 + 𝑊𝑜𝑓𝑓

 (1) 

 

where 𝑀𝑜𝑛  𝑥, 𝑦  refers to the cell with coordinates  𝑥, 𝑦  from the online map, 𝑀𝑜𝑓𝑓  𝑥, 𝑦  refers to the cell with 

the same coordinates from the offline map, 𝑊𝑜𝑛 and 𝑊𝑜𝑓𝑓 are importance weights defined by an expert and used 



American Journal of Engineering Research (AJER) 2020 
 

 
w w w . a j e r . o r g  

w w w . a j e r . o r g  

 

Page 68 

to adjust how fast the decay will happen. Preliminary experiments have shown that 𝑊𝑜𝑛 = 10 and 𝑊𝑜𝑓𝑓 = 1 

present a good tradeoff between the maintenance of obstacles recently observed and the removal of long-term 

imperfections of the map for a car mapping system with update rate of 20𝐻𝑧. 

The Map Decay equation (Equation 1) can be seen as a weighted average between the values of the 

offline map and the values of the online map. The effect of Map Decay is that imperfections left in the map fade 

away when they are not observed by sensors for some time. The values of the unobservable cells of the online 

map are slowly replaced by the values found in the offline map – this highlights the importance of having a 

good offline map. On the other hand, regions observed by sensors, either free or occupied, retain their values 

and are not significantly affected by Map Decay. 

 

IV. EXPERIMENTS AND RESULTS 
To validate our mapping system, we used two real-world datasets collected in a large-scale and 

complex environment – the 3.7 km beltway of the main campus of Universidade Federal do Espírito Santo. The 

first dataset was used to build the offline map, and the second to build the online map and to evaluate the map 

decay strategy. 

The online mapping system with Map Decay was evaluated qualitatively. Figure 2 presents a 

comparison between the maps constructed by the online mapping system with and without Map Decay. The 

images in figure 3 (a) and figure 3 

(b) show the Velodyne point cloud (blue dots) and the occupied cells of the short-term map (red boxes) 

when a car is overtaking IARA. It can be seen that traces are left in the map due to the moving car. It is 

important to note that the cells affected by the car’s motion fall into a sensor blind spot and that its traces are not 

cleared up later. 

Figure 4 highlights the difference in the contents of the short-term map computed with and without 

Map Decay. Figure 4 (a), (c) and (e) show that, without Map Decay, the cells of the map remain occupied even 

when the car already passed IARA. As noted previously, the explanation for this comes from the fact that the 

Velodyne rays do not observe the affected cells again once they fall into a blind spot of the sensor. The inability 

to clear the cells hinders and can even forbid the execution of IARA’s navigation plan. 

Figure 4 (b), (d) and (f) show the effect of using Map Decay in the same situation. As time progresses, 

the cells set as occupied fade away, the information captured by sensors online decay, and their occupancy 

probabilities become the values found in the offline map. It is important to note that cells occupied by obstacles 

and observed by the sensor maintain high occupancy probability. Such situation is exemplified by the car behind 

IARA. Even when Map Decay is used, the car is still well represented in the map. A video that demonstrates the 

Map Decay strategy in action can be accessed online at https://youtu.be/cyIfGupar-8. In the video, the reader 

can appreciate the behavior of the algorithm with different decay rates. 

 

V. CONCLUSIONS AND FUTURE WORK 
In this work, an analogy between the memory architecture believed to exist in the human brain and the 

mapping algorithms of an autonomous car is presented. The offline map, a high precision representation of the 

world constructed in an offline phase using GraphSLAM is associated with the human long-term memory. The 

snapshot map, a map constructed using a single sensor reading is associated with the human sensory memory. 

Finally, the online map given by the integration of the offline and the snapshot maps and used by the navigation 

module to plan the actions of the autonomous vehicle is associated to the short-term memory. 

This analogy inspired the development of a strategy for removing noise from occupancy grid maps 

called Map Decay. Map Decay consists of making the occupancy probabilities of the online map tend to the 

values of the offline map as time progresses. It allows the correction of the values of map cells modified 

incorrectly and not observed again by the sensors. If not properly handled, such situations could forbid the 

correct operation of the autonomous vehicle. 

An important assumption of Map Decay is the high quality of the offline map. Although the structural 

quality of the map is guaranteed by the GraphSLAM algorithm, the occupancy probability of their cells is still 

subject to noise left by moving objects and incorrect measurements. In this work, these imperfections in the map 

were corrected by a human expert. In future works, the possibility of performing these corrections automatically 

will be studied. In special, we will investigate the removal of noise left by moving objects within a cognitive 

science perspective. 
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(a) 

 
(b) 

 
(c) 

Fig.2. Maps used by IARA. Blue pixels represent maps’ cells that were not observed by sensors yet, and 

pixels in shades of gray represent the occupancy probability of the maps’ cells. Black pixels represent 

maximal occupancy probability, while white pixels represent minimal occupancy probability (a) The 

instantaneous map that is constructed using a single Velodyne point cloud and represents the sensory 

memory. (b) The offline map that stores the most consolidated information that IARA has about the 

world. It represents the long-term memory. (c) The online map that is used by the navigation algorithms 

and represents the short-term memory 
 

 
(a) 

 
(b) 

Fig. 3. Comparison of the online mapping system output with and without map decay in an overtaking 

situation. The images in figures (a) and (b) show a 3D visualization of the overtaking. In these images, 

blue dots represent the points of the Velodyne readings and red boxes represent the cells with high 

occupancy probability. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 4. Comparison of the online mapping system output with and without map decay in an overtaking 

situation. The images (figures (c) to (h)) show IARA’s online map in the same situation of figure 3. If map 

decay is not employed, cells to the left of the car are marked as obstacles and are not set as free again 

because they fall into a sensor blind spot (see figures (c), (e) and (g)). If map decay is employed, the cells 

marked as obstacles slowly fade away as they decay to the offline map values (see figures (d), (f), and (h)). 
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