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ABSTRACT 

The quinquinomial power laws of motion make it possible to modeling laws of motion without finite and infinite 

spikes that result in better dynamic characteristics of high-speed, elastically deformable cam-lever systems 

compared to other laws of motion. Therefore, after applying a rational possibility for generating quinquinomial 

power laws of motion suitable for synthesizing polydyne cam mechanisms, a family of these laws has been 

studied. 

The derived family of normalized quinquinomial power functions makes it possible to compile laws of motion 

without a finite and infinite spikes of cam mechanisms with better dynamic characteristics compared to 

trinomial and quadrinomial power laws of motion in the synthesis of high-speed, flexible cam-lever systems. 

This is because the parameters of the functions are derived from the condition for zeroing the first four 

derivatives of the normalized function at the beginning and at the end of the output move. 

At low speeds, the real and the basic function of the output displacement practically coincide. At high values of 

speed, load, elastic deformations, and gaps of the cam-lever systems, a small part of the stroke of the executive 

link is lost. It is possible to preserve the type of the basic law of motion by slightly increasing the basic stroke of 

the output unit so as to compensate for the reduction in the travel (stroke) of the executive link. 
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I. INTRODUCTION 
It is generally accepted that the units of the cam mechanisms are non-gaps connected rigid bodies, 

whereby the mechanism generates a desired basic law of motion. In fact, the real laws of motion of the 

mechanisms differ as much from the basic ones as the speed of the cam, the load, the elastic deformations, and 

the gaps of the cam-lever systems are greater. Therefore, a number of authors [1], [2], take into account their 

influence on the output motion of the cam mechanisms when formulating a law of motion`s project. 

The cams, designed according to polynomial laws of motion, taking into account the dynamics and 

deformations of the cam-operated mechanical system, are calledpolydyne cams. The synthesis of such cams is 

necessary for the construction of high-speed and insufficiently rigid mechanical systems, such as cam-lever 

distributing valves mechanisms for automotive [3], [4], and some high-speed transmission mechanisms of textile 

machines [2], [5].  

The beginning of the development of methods for the synthesis of polydyne cams, set by Dudley, was 

supplemented and developed by many other authors mainly in connection with dynamic studies of cam-lever 

systems [6], [7], [8], [9], [10]. The main purpose of the methods is to exclude acceleration jumps, respectively 

of the inertial load of susceptible to flexible mechanical systems to achieve more accurate target motions with 

minimal vibration. If the desired law of motion needs to be observed as accurately as possible, then an 

additional correction is applied to the basic law of motion, which takes into account the speed of the cam, the 

inertial load, elasticity and gaps of the mechanical system, in order to obtain a law of motion`s project. 

The basic law of motion of insufficiently rigid high-speed mechanisms is influenced most importantly 

by the basic second transfer function. This function, multiplied by the dynamic constant of the cam-operated 

mechanical system, changes the output move, as the inertial load generated by the acceleration deforms the units 

of the system elastically. In other words, the second derivative (the basic second transfer function) also 

participates in the real displacement function.  
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Therefore, in order to avoid jumps in the first two real transfer functions, it is necessary to avoid jumps 

in the next two basic transfer functions - the third and fourth. The mentioned jumps will be avoided if the 

transfer function and its first four derivatives are continuous functions, which means that the polynomial has at 

least five terms and the exponents are numbers of not less than 5. For this purpose, a family of these laws was 

studied, after applying a rational possibility to generate power-law quinquinomial motion laws, suitable for the 

synthesis of polydyne cam mechanisms. 

 

II. DETERMINATION OF THE COEFFICIENTS OF NORMALIZED QUINQUINOMIAL 

POWER FUNCTIONS 
In a previous article by the authors [11]a rational formula for determining the coefficients of power 

polynomials with any number of integer and/or non-integer exponents was derived. From this formula, at 

selected values j = k, m, p, q, s of the exponents, a quinquinomial power functionswithcoefficientsisformed: 
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These coefficients are derived from the condition of zeroing the first four derivatives at the beginning 

and end of the move of the output link. 

Let the normalized quinquinomial power functions be determined with integer exponents from 5 to 10. 

The number of these laws is determined by the combinations without repetition of six elements (exponents 5, 6, 

7, 8, 9, 10): 
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The values of the coefficientsak, am, ap, aq, as when k, m, p, q, s are integers from 5 to 10 are calculated 

from ratios (1) and recorded in Table I. Figure 1 shows the first four power polynomials u(ξ) and their 

derivatives in the order of Table I. 

 

Table I. Coefficients  ai(i = 5, 6, 7, 8, 9, 10) 

Polynomial 5a  6a  7a  8a  9a  10a  

1 126 -420 540 -315 70 0 

2 112 -350 400 -175 0 14 

3 94,5 -262.5 225 0 -87.5 31.5 

4 72 -150 0 225 -200 54 

5 42 0 -300 525 -350 84 

6 0 210 -720 945 -560 126 
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polynomial 1  

k = 5, m = 6, p = 7, q = 8, s = 9 

polynomial 2   

k = 5, m = 6, p = 7, q = 8, s = 10 

  

polynomial 3  

k = 5, m = 6, p = 7, q = 9, s = 10 

polynomial 4 

 k = 5, m = 6, p = 8, q = 9, s = 10 

  

Figure 1. Graphics of the quinquinomials of Table I 

 

 

 polynomial 1. For the power quinquinomialu(ξ) with coefficients of row № 1 of Table I and its 

derivatives, is obtained: 
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There is a zeroing of these functions for the interval limits [0, 1]  . 

 

 polynomial 2. For the power quinquinomialu(ξ) with coefficients of row № 2 of Table I and its 

derivatives, is obtained: 
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(4)  
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There is a zeroing of these functions for the interval limits [0, 1]  . 

 

 polynomial 3. For the quinquinomial power u(ξ) with coefficients of row № 3 of Table I and its 

derivatives, is obtained: 
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        There is a zeroing of these functions for the interval limits [0, 1]  . 

 

 polynomial 4. For the power quinquinomialu(ξ) with coefficients of row № 4 of Table I and its 

derivatives, is obtained: 
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There is a zeroing of these functions for the interval limits [0, 1]  . 

 

The extremum values of the quinquinomial power laws of Figure 1 are recorded in Table II to assist 

engineers in selecting a basic law of motion suitable for the design of polydyne cams. 

 

Table II. Comparison table of the extremums of functions u ′, u ″ and u ‴ 

of Figure 1 

Functions u(ξ) maxu  maxu  minu  maxu  minu  

5 6 7 8 9126 420 540 315 70u           2.461 9.372 -9.372 51.428 -78.75 

5 6 7 8 10112 350 400 175 14u           2.463 9.288 -9.484 53.116 -78.992 

5 6 7 9 100.5(189 525 450 175 63 )u          2.753 9.228 -9.659 55.428 -79.963 

5 6 8 9 1072 150 225 200 54u           2.456 9.232 -9.932 58.651 -82.224 

5 7 8 9 1042 300 525 350 84u           2.526 9.388 -10.363 63.261 -86.74 

6 7 8 9 10210 720 945 560 126u           

 
2.602 9.893 -11.058 70.104 -95.289 
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From the graphs of Fig. 1 and Table 2 it is seen that as the values of the exponents increase in not very 

large limits, the extremums of the functions u′, u″ and u‴  increase, being zeroed for the limits of the argument 

1/ [0; 1]    . 

A detailed solution to the question of the laws of motion and synthesis of cam mechanisms was made by 

Galabov, Roussev, and Paleva-Kadiyska in [12]. 

 

III. CONCLUSION 
The derived family of normalized quinquinomial power functions makes it possible to compile laws of 

motion without a finite and infinite spikes of cam mechanisms with better dynamic characteristics compared to 

trinomial and quadrinomial power laws of motion in the synthesis of high-speed, flexible cam-lever systems. 

This is because the parameters of the functions are derived from the condition for zeroing the first four 

derivatives of the normalized function at the beginning and at the end of the output move. 

At low speeds, the real and the basic function of the output displacement practically coincide. At high 

values of speed, load, elastic deformations, and gaps of the cam-lever systems, a small part of the stroke of the 

executive link is lost. It is possible to preserve the type of the basic law of motion by slightly increasing the 

basic stroke of the output unit so as to compensate for the reduction in the travel (stroke) of the executive link. 
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