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ABSTRACT: To reduce the severity of vibration emanating from mass unbalance, a 3-way linear viscoelastic 

end-stops bearing was applied to the flexible rotor system. This paper employs three linear viscoelastic end-

stops attached to a linear bearing that acts axially and perpendicularly to improve the performance of the 

nonlinear flexible rotor system. The model of the rotor-3-way end stops bearing system is established as a 

modified Jeffcott rotor system. The numerical method of multiple scales is used to solve the equations of motion 

and the effects of the stiffness and damping ratios of the of the 3-way end stops bearing on the dynamic behavior 

are discussed. Its stability is then studied using the eigenvalue theory. The instability thresholds of the rotor-3-

way end-stops bearing system are obtained varying some parameters of the end-stops bearing. The results show 

that with dynamic parameters properly designed by using the 3-way viscoelastic end-stops bearing, the 

amplitude of vibration can be effectively suppressed and the jump can be eliminated. Besides, the 3-way end-

stops bearing can change the instability threshold and the instability vibration frequency. It is suggested that the 

parameters of the 3-way end-stops bearing be selected carefully to suppress the mass unbalance vibration of the 

rotor system.    
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I. INTRODUCTION 
Vibration in rotating machines is a serious problem, which can lead to failure of machine parts and 

sometimes to complete shutdown. Control of rotor vibration is very important for safe and stable operation of 

the machinery Bachschmid et al [1] and Muszynska [2]. Two main methods are mostly employed to control 

excessive vibration, and they are adjusting of parameters and applying external forces. The mass, stiffness, 

damping and clearance can be adjusted to suppress the excessive vibration. The dynamic balancing of the rotor 

is one common method of reducing vibration when the rotor passes the critical speed Zhang et al [3]. 

 Smart materials comprising of Shape Memory Alloys (SMAs) and Piezoelectric Actuators are 

commonly used to attenuate the rotor vibration by adjusting the stiffness. Atepor [4] presented the Antagonistic 

SMA/Composite Smart Bearing to control the rotor vibration caused by mass unbalance experimentally. An 

experimental test machine using a piezoelectric exciter mounted at the end of the shaft of the rotor to adjust the 

stiffness was used by Atepor [5] to successfully reduce the amplitude of vibration.  

Hemmatian and Ohadi [6] used the magnetorheological squeeze film damper to suppress the rotor 

vibration. In adjusting parameters Queiroz [7] made use of self-adjusted bearing parameters to extend the 

stability margins for the rotor system in investigating the active fluid-film bearing of the rotor system. In 

applying external force, Janik et al [8] proposed the use of force generated by electromagnetic exciters to control 

vibration in the rotor-shaft system.      

Viscoelastic materials have long been used as an efficient means of mitigating vibration and noise. 

They also exhibit the memory effect and their stiffness and damping properties depend on frequency and 

temperature Rade et al [9]. Viscoelastic materials have been successfully applied in a variety of engineering 

systems such as industrial equipment, airplanes, automobiles and civil constructions Bachschmid et al [1] and 

Muszynska [2]. Ribeiro et al [10] presented the viscoelastic supports for the vibration control in rotating 

machines. The above ideas have lead to the proposed design of a 3-way linear viscoelastic end-stops bearing 

that acts both axially and perpendicularly on the flexible rotor system to moderate the response of the pre-

existing mass unbalance vibration inherent in the rotor. The idea here is to use the 3-way viscoelastic end-stops 
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bearing to adjust the stiffness of the shaft both axially and laterally and to manipulate some of the parameters 

such that the inherent and predominant instabilities in the rotor system can be suppressed.  

Section “Mathematical Model and Perturbation Analysis” describes the dynamic model of the flexible 

rotor system with the 3-WESB and the analytical solutions of the developed model equations. Sub-Section 

“Calculation and Selection of the Spring Constant 4k ” describes the method used in selecting the spring used 

for keeping the 3-WESB setup in constant contact with the rotor shaft end. Section “Nonlinear Dynamic 

Analysis of the Flexible Rotor System” compares plots obtained from direct numerical integration using 

NDSolve integrator of the fourth order Runge-Kutta technique and that from the perturbation method of 

multiple scales. In the sub-section “ Effects of 3-WESB Parameters on Resonance Responses” the effects of the 

3-WESB parameters on resonance responses compared with that of the rotor system without the 3-WESB is 

illustrated. Three cases are considered: When 3 0   in case A, when 3 constant  and 3 is varied in case B 

and when 3 constant  and 3  is varied in case C. The section “ Stability of the Rotor-3-WESB System” 

compares the stability of the rotor system with and without the 3-WESB. The conclusions are stated in the 

section “Conclusion”.   

II. MATHEMATICAL MODEL 
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Fig. 1. A Jeffcott Rotor System with a 3-Way Elastomeric End-Stops Bearing  

 

A vibration controller model with a 3-Way elastomeric end-stops bearing (3-WESB) is considered as 

shown in Fig.1, which can be used to describe a flexible rotor system with the shaft end fitted to an end-stops  

bearing arrangement. The bearing is made of linear bushings and is for combined linear and rotary motion and it 

allows high speed with low friction. As attention is focused on the examination of the primary resonance, it is 

necessary to consider nonlinear characteristics of the system. The end-stops come into action mainly in domain 

around resonance which is only transient, thus, the linear assumption for the elastomeric end-stops. The 

equations of motion for the rotor system can be written as  

 2 3 2

5
ˆˆ ˆ , sinx cx a y x bx G x x t           

 2 3 2

5
ˆ ˆ , cosy cy a x y by G y y t                                                                                                

(1) 

Where, 25
5

ˆˆ ˆ, , , , ua m dk b c
a b c

m m m m m
      ,  k –linear stiffness coefficient, c -damping coefficient, ,x y -

displacements,  -natural frequency, b -nonlinear cubic stiffness coefficient,   -excitation frequency, m  - 

mass of the disk, um -mass unbalance situated at a distance d  from the geometric centre of the shaft, 5a -

characteristic equation coefficient associated with inertia,   is the linear undamped natural frequency of the 

free vibration and  

    2 2 2 2

3 3 4 3 3
ˆ ˆ, , 2 2

g
G x x x x x c xx y x c x

m
            

    2 2 2 2

3 3 4 3 3
ˆ ˆ, , 2 2

g
G y y y y y c yy x y c y

m
                                                                                  (2) 

The parameters of the 3-WESB are considered as follows. Picking the mass ratio as 0.01  , since 

the 3-WESB‟s mass ratio is limited for the practical consideration. It is known that the mass unbalance induced 
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vibration frequency is almost equal to the natural frequency of the rotor, for this, the natural frequency of the 3-

WESB is taken to be equal to that of the natural frequency of the rotor system. 

Where, 2 2 3
3

3

k

m
   , ˆ

c
c

m
 ,

ˆ

2

c



 , 3

3
ˆ

c
c

m
 , 3

3
3

ˆ

2

c

m



 , 3 0.01

m

m
   , 2 4

4
3

k

m
  , 3

3





 , 4

4





 , 3k

– stiffness coefficient of the 3-WESB, 3m - mass of the 3-WESB, 3c -damping coefficient of the 3-WESB and 

4k –linear stiffness coefficient of the supporting spring. 

 

2.1 Calculation and selection of the spring constant 4k  

As the rotor whirls there will be millimeter level axial contraction of the shaft leaving a gap which will 

have to be taken up by the 3-WESB. The 3-WESB will have to follow the end of the shaft as it contracts, but 

because the other end of the 3-WESB has to react against something, a spring is needed to provide sufficient 

reaction, and to take up the space left as the mass moves upwards. The maximum spring force available is given 

in equation (3) 

                                                   max 4 2sF k                                                                                                              

(3) 

Where, Fsmax is the maximum spring force, 4k is the spring constant and 2  is the maximum spring 

compression. Fig. 2(b) shows the shaft having displaced to the left as a consequence of whirl. The spring has 

extended to fill the gap,  , and the remaining spring compression is 1 This is a pre-compression and is set up 

via equation (4) such that it satisfies the need for the minimum spring force (Fsmin) offered by the spring to equal 

at least the maximum force which the 3-WESB is capable of FB, meaning  

                                         min 1s B sF F k                                                                                                               

(4) 

Where, 1  is the „preload‟ pre-compression. As the minimum spring force available must be enough to resist 

the maximum force generated by the 3-WESB, the 3-WESB then can transmit its force to the shaft, even when 

the shaft has travelled by its maximum displacement upwards. The free length of the spring is as shown in Fig. 

2(c). It can easily be seen that the relationship between the pre-compression 1  , the maximum compression 2  

, and the maximum displacement,   ,is given by the equation (5) 

                                                     1 2                                                                                                              

(5) 

This means that the maximum spring force can be written as in equation (6) 

                                                  max 4 1sF k                                                                                                    

(6) 
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Fig. 2. (a) Shaft-end assembly when rotor is not whirling, (b) Shaft-end assembly when the rotor is 

whirling at maximum amplitude. (c) Free length of spring. 

                                                                                                      

A spring was chosen based on the maximum required spring force and hence stiffness was obtained. 

Equation (1) was used to find the force BF  that is actually needed for the system. The NDSolve integrator within 

Mathematica
TM

 code was employed to solve the differential equation. All other parameters were fixed and the 

force term BF value was varied until a parametric plot was obtained as shown in Fig. 3 and the value at which 

the response is predicted was taken as a threshold value for the force BF . 

 

 
Fig. 3. Parametric Plot 

 

The axial loading relationship B

AE
F

l
  is used in finding the maximum displacement   , where 

the parameters for the calculation of spring are as follows: BF  is the 3-WESB force of 332N, 
2A r where r 

is the radius of the shaft, E is the modulus of elasticity of steel and l is the shaft length of 0.56m. 

Therefore 
0.018

Pl

AE
    (7) 
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Now 

2 0 25.2nL L mm     

 
(8) 

 

Giving  
1 2 25.182mm     (9) 

 

Spring constant is 
1min

4

1

13184SF
k Nm



   (10) 

 

Therefore  
max 4 2 332.2SF k N   (11) 

 
  

 

III. PERTURBATION ANALYSIS 
We nondimensionalise the time scale t  and order the equations (1) and (2) by introducing the small 

parameter  . Let nondimensional time   be t  , where,   is normalised to unity, therefore 1  . Thus 

equations (1) and (2) can be written as  
2

2 3 2 2 2 23 3
5 3 4 32

ˆ
2 2 sin

c cc b
x x a y x x x xx y x x t      

      

     
                 

   
 

2

2 3 2 2 2 23 3
5 3 4 32

ˆ
2 2 sin

c cc b
y y a x y y y yy x y y t      

      

     
                 

   
                                                                                                                                                                                    

(12) 

Then, the multiple scales method is used with the following approximate solution Cartmel et al [11] and Nayfeh 

& Mook [12]. 

       2

10 0 1 11 0 1, , ,x t x T T x T T O      

       2

10 0 1 11 0 1, , ,y t y T T y T T O                                                                                                        

(13) 

where,  10 0 1,x T T …  11 0 1,y T T  are functions of time scales 
n

nT t  for 0,1,...n  0T  is nominally 

considered as a fast time-scale and 1T as slower time-scale, such that 0T t , 1T t . It follows that the 

derivatives with respect to t  become expansions in terms of the partial derivatives with respect to the nT  

according to  

20 1 2
0 1 2

0 1 2

2
2 2 2 2

0 0 1 0 2 12
2 2

dT dT dTd
D D D

dt dt T dt T dt T

d
D D D D D D

dt

 

  

  
     

  

   

                                                                     (14) 

Applying Eqs. (13) and (14) to (12) and solving leads to the equation (15) describing the relationship 

between excitation amplitude  , the detuning parameter,  and the system‟s responses. This is a frequency–

response equation, which is a measure of deviation from the perfect forced primary resonance condition. 
1

2 22 2
2 2 2 3 2 25 5
4 3 4 3 32 2

ˆˆ ˆ4 12
2 2 4 8 4 2 2 4 8

2 2

a a b
a a a a a a a a a        

  

   
                 

 

                                                                                                                                                                                    

(15) 
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IV. NONLINEAR DYNAMIC ANALYSIS OF THE FLEXIBLE ROTOR SYSTEM 

 
Fig. 4. Comparison between analytical and numerical frequency responses. 

 

As shown in Fig. 4, the frequency response curves of the rotor system are plotted. The multiple scales 

method results are compared with the numerical results obtained through NDSolve  of the fourth order Runge-

Kutta technique. It can be observed that the approximate solutions and the numerical solutions are in excellent 

agreement. The results show evidence of a consistent phenomenon whereby the responses in the first mode 

show hardening characteristics, jump phenomena and both stable and unstable solutions. 

 

4.1Effects of 3-WESB Parameters on Resonance Responses 

In this section, keeping  and  constant, first mode response curves are obtained for varying the 

parameters 3 , 3 of the 3-way end-stops. In all the diagrams, the dotted lines represent stable motions, while 

the dashed lines represent the unstable motions. The jump phenomena occur at certain critical points when the 

frequency is increasing or decreasing. 

Case A: 3 0   

As shown in Fig.5, the degree of nonlinearity is not changed when 3 varies. However, varying and 

increasing the damping ratio 3  of the 3-WESB from 0.04 to 0.07 results in amplitude reduction of frequency 

responses from 12 to 8 and a shift in frequency from 1 to 0.99. Therefore, activating the 3-WESB has effect on 

the amplitude of vibration in the first mode of the nonlinear rotor system. 

 

 
Fig. 5. Frequency-response curves when 3 0  , and 3 is varied. 
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Case B: 3 Constant   

In this subsection, the value of the design parameter 3 for the 3-WESB is kept constant and 3  is varied and 

their effects on the frequency response are examined as shown in Fig. 6. Increasing the 3 from 0 0.5 1   

results in higher peak amplitudes ranging from 7 8 8.8   respectively and with the backbones of the curves 

bending more severely to the right. This shows that the positive stiffness of the 3-WESB brings a more hard 

nonlinearity to the system. Therefore, a too stiff end-stop when compared to the stiffness of the rotor system can 

be detrimental to the amplitude suppression being sort, since it rather caused the amplitude level to increase. 

However, it is able to shift the resonance levels backward and forward, that is from 0.991 1 1.015     

respectively. 

Case C: 3 Constant   

In this subsection the value of the parameter 3 is kept constant at 3 0.05  and 3 is varied and their effects 

on the frequency response are examined as shown in Fig. 7. Increasing the values of 3 from 

0.04 0.07 0.09  results in the peak amplitude values decreasing from 10 8 6.2   respectively. This 

further shows that choosing the correct set of parameters for the 3-WESB can result in reduction of the 

amplitude and in this particular case by 38%  when 3 is deliberately increased from 0.04  to 0.09which is 

consistent with results obtained in Atepor (2008). 

 

 
Fig.6 . Frequency-response curves when 3 constant  , and 3 is varied. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Frequency-response curves when 3 constant  , and 3 is varied. 
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V. STABILITY OF THE ROTOR-3-WESB SYSTEM 
This section derives the natural frequencies of the rotor-3-WESB system. The natural frequency and 

damping of the 3-WESB can influence the stability threshold of the flexible rotor system therefore the stability 

region of the flexible rotor system is examined under the influence of the 3-WESB. Taking the nonlinear terms 

out and equating the mass-unbalance to be zero we have the nonlinear equations of (1) becoming linear and are 

as stated in equation (16). The equations in (1) are linearized for the stability analysis using the eigenvalue 

theory. 

 

 

2 2 2

5 3 3 4
ˆ ˆ ˆ2 2 0y cy a x y y c y x                                                                                                          

(16) 

Let, 1
ei t

x A e


  and 2
ei t

y A e


  then we have 

2 2 2 2

1 1 5 2 1 3 1 3 1 4 2
ˆ ˆ ˆ2 2 0e e e e e e ei t i t i t i t i t i t i t

e e e eA e icA e i a A e A e A e ic A e A e
                      

2 2 2 2

2 2 5 1 2 3 2 3 2 4 1
ˆ ˆ ˆ2 2 0e e e e e e ei t i t i t i t i t i t i t

e e e eA e icA e i a A e A e A e ic A e A e
                            

(17) 

Dividing throughout by ei t
e


and rearranging leads to 

   

   

2 2 2 2

3 3 1 5 4 2

2 2 2 2

5 4 1 3 3 2

ˆ ˆ ˆ2 2 0

ˆ ˆ ˆ2 2 0

e e e e

e e e e

ic i c A ia A

ia A ic i c A

      

      

       

       
                                                                      

(18) 

For 1 0A  and 2 0A   

Let the determinant of equations in (18) be zero 
2 2 2 2

3 3 5 4

2 2 2 2

5 4 3 3

ˆ ˆ ˆ2 2

ˆ ˆ ˆ2 2

e e e e

e e e e

ic i c ia

ia ic i c

      

      

      

     
                                                             

(19) 

Solving equation (19) leads to 

   4 2 2 2 2 2 2 2 4 2 2 4 4

3 3 3 5 3 3 4
ˆ ˆˆ ˆ ˆ4 4 2 4 4 4 0e ec cc c a                                                      

(20) 

Let 
2

e  , then equation (20) becomes 

   2 2 2 2 2 2 2 4 2 2 4 4

3 3 3 5 3 3 4
ˆ ˆˆ ˆ ˆ4 4 2 4 4 4 0c cc c a                     

Thus,  

 
 

 

2
2 2 2 2 2 2

3 3 3 52 2 2 2 2 2

3 3 5 3
4 2 2 4 4

3 3 4

ˆ ˆ ˆ ˆ ˆ4 4 2 41
ˆ ˆ ˆ ˆ ˆ4 2 4 4

2 4 16 16 4

c cc c a
c cc c a

 
  

    

 
      

       
 

     

             

(21) 

Becoming,  
2 2

2 2 2 5
3 3 3 2

1
2 22 2

2 4 4 2 2 2 2 5
3 3 4 3 3 3 2

ˆ
1 2 2 8 8

ˆ1
      4 4 1 4 4 8 1 8

4

a

a

 

 

      


        



     

  
           
   

                                     

(22) 

The complex eigenvalues are obtained from equation (22). The system‟s response is said to be stable 

when the eigenvalue is negative and real. With a real but zero value the response is said to be at the threshold of 

stability. The response becomes unstable when the eigenvalue is positive and real. 

2 2 2

5 3 3 4
ˆ ˆ ˆ2 2 0x cx a y x x c x y           



American Journal of Engineering Research (AJER) 2020 
 

 
w w w . a j e r . o r g  

w w w . a j e r . o r g  

 

Page 107 

The instability threshold plots of the flexible rotor system with the 3-WESB are presented in Figs. 8 

to12. The red lines represent the instability threshold of the rotor system without the 3-WESB and the blue lines 

represent the instability threshold of the rotor system with the 3-WESB. Figs. 8 to 12 show the effect of the 

natural frequency of the 3-WESB on the stability of the system. As  increases, the instability threshold of the 

system with the 3-WESB is at first smaller, then bigger and again becomes smaller than the system without the 

3-WESB.  In Fig. 8, at 3 0.01  , the instability threshold of the flexible rotor system with the 3-WESB is 

smaller than that of the rotor system without the 3-WESB in the range of 0.1  to 0.75  and again in the 

range of 0.98  to 2  . It is however larger than that of the system without the 3-WESB in the range of 

0.75   to 0.98  . The maximum instability threshold occurs at 0.95  with 9.5a  . 

Further variation of the value of 3 from 0.02 to 0.09 in Figs. 9 to 12 portrays the same picture as 

observed in Fig. 8 with the values of the instability thresholds differing. Also the range of  at which the 

instability threshold of the rotor system with the 3-WESB is larger than that of the rotor system without the 3-

WESB varies with the 3 value. The lower limit of the range of  decreases 

 0.75 0.7 0.65 0.60 0.58    whilst the upper limit increases                                          

 0.98 1.05 1.10 1.13 1.15     as 3 increases. However, the maximum of the instability threshold 

increases first and then decreases  9.5 10.1 10.7 10.3 10.2    as 3 increases from 0.01 through to 0.09. 

10.7a  is the maximum of the instability threshold at 0.99  when 3 0.04.    

 
Fig. 8. Stability diagram of the rotor-3-WESB system when 3 0.01  . 

 
Fig. 9. Stability diagram of the rotor-3-WESB system when 3 0.02  . 



American Journal of Engineering Research (AJER) 2020 
 

 
w w w . a j e r . o r g  

w w w . a j e r . o r g  

 

Page 108 

 
Fig. 10. Stability diagram of the rotor-3-WESB system when 3 0.04  . 

 

 
Fig. 11. Stability diagram of the rotor-3-WESB system when 3 0.07  . 

 

 
Fig.12. Stability diagram of the rotor-3-WESB system when 3 0.09  . 
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VI. CONCLUSION 
The present paper has studied the effect of the 3-WESB on the nonlinear dynamic behaviour and stability of 

the mass unbalanced vibration of the flexible rotor system. The mathematical model of the rotor-3-WESB 

system is established. The perturbation method of multiple scales is used to solve the differential equations. The 

effects of the frequency and damping ratios of the 3-WESB on the dynamic behaviour of the mass unbalance 

induced vibration in the rotor system are discussed. The complex characteristic equation is deduced for the 

stability analysis and the effects of the 3-WESB on the stability region of the vibration in the rotor system are 

obtained. Some conclusions are as follows: 

1. The frequency response of the amplitude obtained from the multiple scales method agrees with the 

numerical integration method. 

2. Using the 3-WESB with the manipulations of some parameters, the resonant response of the amplitude can 

be suppressed and the jump phenomena can be effectively eliminated. 

3. It has been shown that two design parameters, the stiffness and damping ratios of the       3-WESB have 

interactive influence of each other on the performance of the flexible rotor system. 

4. The instability threshold of the flexible rotor system is changed by the 3-WESB. The instability threshold is 

decreased by the 3-WESB in some design parameter ranges. 

 

The main contribution of this work is the examination of the first mode response of the nonlinear 

flexible rotor system using a novel 3-way end-stops bearing. For further research, the author will work on the 

sub-harmonic and super-harmonic resonant solutions and test the 3-Way end-stop bearing experimentally. 
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