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ABSTRACT: A numerical study of transfers by forced laminar convection around a cone rotating around an 

inclined axis of revolution is presented. The flow, of the boundary layer type, is ascending vertical and the fluid 

considered is Newtonian. The speed outside the boundary layer is determined by [7].   Using a numerical 

model, the continuity, Navier-Stokes and energy conservation equations are solved by an implicit finite 

difference method.The influence of the rotation parameter B on transfers is analyzed. The results are presented 

by the temperatures profiles, the meridian velocity, the normal velocity, the Nusselt number and as well as the 

meridian friction coefficient. 

KEYWORDS: three-dimensional forced and rotary convection, three-dimensional boundary layer, cone of 
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Nomenclature 

Roman letter 

a thermal diffusivity of fluid,(m
2
.s

-1
) 

Cfu meridian friction coefficient 

Cfw azimuthal friction coefficient 

Cp  specifique heat capacity at      constant pressure of the fluid, (J.kg
-1

.K
-1

) 

Cfor  predominance coefficient of forced convection 

Crot     predominance coefficient of rotatory convection 

L lengh generative, (m) 

Nu local Nusselt number 

Ec Ekert number 

Pr Prandtl number 

r normal distance from the projected M of a point P of the fluid to the axis of revolution of revolution of 

thecone, (m) 

Re∞ Reynold number 

Reω rotation Reynold number 

B rotation parameter   

T     temperature of the fluid, (K)  

Tp temperature of the wall, (K) 

T∞ temperature of the fluid away from the wall, (K)  

Ue,  modulus of external speed 

Uex,,Ueφ components meridian and azimuthal of external speed, (m.s
-1

) 

U∞    flow velocity upstream of the body [m.s
-1

] 

Vx, Vy, Vφvelocity component in x, y, and φ, (m.s
-1

) 

 x, y   meridian and normal coordinates, (m) 

 

Greek letter 

φ azimuthal coordinate, (o)  

λ thermal conductivity, (W.m-1.K
-1

) 
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𝜔 speed angular rotation of the cone (rad. s
-2

) 

α angle of inclination, (
o
) 

 𝜈 kinematic viscosity, (m2s
-1

) 

𝜃0 demi-angle of opening of cone,(
o
) 

 

Indices / exponents 

+     dimensionless variables 

 

I. INTRODUCTION 
Although many theoretical and experimental studies have been carried out on convective transfers in 

the vicinity of a cone of revolution, most of the work only concerns natural or forced convection around a 

rotating vertical cone [2] or immobile and inclined [7]. The latter studied three-dimensional convective transfers 

around a cone of revolution closed on its upper part by a spherical cap and inclined with respect to the vertical. 

He determined the distribution of the velocity outside the boundary layer using the singularity method, and 

analyzed the influence of the angle of inclination of the cone and the heat transfer in the boundary layer that 

develops around this cone. Abdallah et al. [4] dedicated a numerical study of natural convection around an 

inclined cone of revolution. Thus, they studied the influence of the inclination angle of the cone on heat transfer. 

For this work, the objective is to analyze by a numerical simulation, the influence of the speed of rotation on the 

thermal and dynamic behavior of a laminar flow in forced and rotatory convection around its axis of revolution.  

 

II. THEORETICAL FOUNDATIONS 
The physical model considered consists of a vertical cone of revolution, rotating around its axis of revolution 

and immersed in a forced flow of a Newtonian fluid with an ascending vertical direction (Figure 1). 

 

2.1.   Simplifying assumptions 

In addition to these considerations and the classic boundary layer assumptions, we make the following 

additional assumptions: 

- the cone rotating around the axis of revolution, 

- transfers are three-dimensional, laminar and permanent, 

- transfers by radiation and dissipation of viscous energy are negligible, 

- the fluid is air, the physical properties of which are assumed to be constant. 

 

 
Figure 1. physical model and co-ordinates system 
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2.2. Conservation equations in the boundary layer 

The reference sizes 

𝑥+ =
𝑥

𝐿
𝑦+ =

𝑦

𝐿
 𝑅𝑒∞𝐶1+

= 𝑟+ =
𝑟

𝐿
 

𝑉𝑥
+ =

𝑉𝑥

𝑈∞
𝐶2𝑉𝑦

+ =
𝑉𝑦

𝑈∞
 𝑅𝑒∞𝐶3𝑉

+ =
𝑉

𝑈∞
𝐶2 𝑈𝑒+ =

𝑈𝑒

𝑈∞
𝐶4 

𝑈𝑒𝑥
+ =

𝑈𝑒𝑥

𝑈∞

𝑈𝑒
+ =

𝑈𝑒

𝑈∞

𝑇+ =
 𝑇 − 𝑇∞ 

1

2

𝑈∞
2

𝐶𝑝

𝐶5 

With:  

𝐶1 =
𝐶𝑓𝑜𝑟 + 𝐵

1

2𝐶𝑟𝑜𝑡

𝐶𝑓𝑜𝑟 + 𝐶𝑟𝑜𝑡
𝐶3 =

𝐶𝑓𝑜𝑟 + 𝐵− 
1

2𝐶𝑟𝑜𝑡

𝐶𝑓𝑜𝑟 + 𝐶𝑟𝑜𝑡
𝐶5 =

𝐶𝑓𝑜𝑟 + 𝐵−2𝐶𝑟𝑜𝑡

𝐶𝑓𝑜𝑟 + 𝐶𝑟𝑜𝑡
 

𝐶2 =
𝐶𝑓𝑜𝑟 +𝐵−1𝐶𝑟𝑜𝑡

𝐶𝑓𝑜𝑟 +𝐶𝑟𝑜𝑡
𝐶4 =

𝐶𝑓𝑜𝑟 +𝐵−1𝑅𝑒𝜔

1
2 𝐶𝑟𝑜𝑡

𝐶𝑓𝑜𝑟 +𝐶𝑟𝑜𝑡
   

𝐵 =
𝑅𝑒𝜔

𝑅𝑒∞
 : Rotation parameter 

𝑅𝑒𝜔 =
𝜔𝐿2

𝜈
 : Rotating Reynold number 

Moreover, in order to highlight the individual or simultaneous contributions of a predominance, it is possible to 

associate respectively with each of these convections the points Cfor and Crot according to the type of the 

corresponding convection. 

 Equation of continuity 
𝜕𝑉𝑥

+

𝜕𝑥+
+

𝐶1𝐶2

𝐶3

𝜕𝑉𝑦
+

𝜕𝑦+
+

𝑉𝑥
+

𝑟+

𝑑𝑟+

𝑑𝑥+
+

1

𝑟+

𝜕𝑉𝜑
+

𝜕𝜑+
= 0 (1) 

 Momentum equations 

𝑉𝑥
+ 𝜕𝑉𝑥

+

𝜕𝑥+
+

𝐶1𝐶2

𝐶3
𝑉𝑦

+ 𝜕𝑉𝑥
+

𝜕𝑦+
+

𝑉𝜑
+

𝑟+

𝜕𝑉𝑥
+

𝜕𝜑+
−

𝑉𝜑
+2

𝑟+

𝜕𝑟+

𝜕𝑥+
=

𝐶2
2

𝐶4
2 𝑈𝑒+ 𝜕𝑈𝑒

+

𝜕𝑥+
+ 𝐶2𝐶1

2 𝜕2𝑉𝑥
+

𝜕𝑦+
2  (2) 

𝑉𝑥
+ 𝜕𝑉𝜑

+

𝜕𝑥+
+

𝐶1𝐶2

𝐶3
𝑉𝑦

+ 𝜕𝑉𝜑
+

𝜕𝑦+
+

𝑉𝜑
+

𝑟+

𝜕𝑉𝜑
+

𝜕𝜑+
+

𝑉𝜑
+𝑉𝑥

+

𝑟+

𝜕𝑟+

𝜕𝑥+
=

𝐶2
2

𝐶4
2

𝑈𝑒 +

𝑟+

𝜕𝑈𝑒
+

𝜕𝜑+
+ 𝐶2𝐶1

2 𝜕2𝑉𝜑
+

𝜕𝑦+
2 (3) 

With: 

𝑈𝑒 =  𝑈𝑒𝑥
2 + 𝑈𝑒𝜑

2 :   Modulus of external speed [7] 

𝑈𝑒𝑥 =  𝑈∞ 𝐴𝜑𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝜑  (4) 

𝑈𝑒𝜑 =  𝑈∞ 𝐴𝑥𝑐𝑜𝑠𝛼 + 𝐵𝑥𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝜑  (5) 

𝐴𝑥 𝑥 = 0,68 + 3.0329𝑥 − 25,44074𝑥2 + 121,069𝑥3 + 318,64541𝑥4 + 466,99471𝑥5

−                    356,01959𝑥6 + 110,24752𝑥7 

𝐵𝑥 𝑥 =  −0,80834 + 2,69424𝑥 − 21,37757𝑥2 + 98,83137𝑥3 − 252,98221𝑥4 +                      363,05621𝑥5

− 272,50282𝑥6 + 83,5337𝑥7 

𝐴𝜑 = 2,3181 − 2,29665𝑥 + 5,87104𝑥2 − 10,90766𝑥3 + 10,3346𝑥4 − 4,06092𝑥5 

 Heatequation 

𝑉𝑥
+ 𝜕𝑇+

𝜕𝑥+
+

𝐶1𝐶2

𝐶3
𝑉𝑦

+ 𝜕𝑇+

𝜕𝑦+
+

𝑉𝜑
+

𝑟+

𝜕𝑇+

𝜕𝜑+
=  𝐶2𝐶1

2 1

𝑃𝑟

𝜕2𝑇+

𝜕𝑦+
2  (6) 

With  𝑃𝑟 =
𝜇𝐶𝑝

𝜆
=

𝜈

𝑎
 : Prandtl number 

2.3. Boundary conditions: 

On the wall:   y=0 

𝑇+ = +1   𝑉𝑥
+(𝑥+, 0, 𝜑+) = 0 

𝑉𝑦
+(𝑥+, 0, 𝜑+) = 0𝑉𝜑

+ 𝑥+, 0, 𝜑+ = 𝑟+𝐶2 (7) 

Away from the wall: y→∞ 

𝑇+(𝑥+, 𝑦+, 𝜑+) → 0 

𝑉𝑥
+ 𝑥+, 𝑦+, 𝜑+ →

𝐶2

𝐶4
𝑈𝑒𝑥

+𝑉𝜑
+ 𝑥+, 𝑦+, 𝜑+ →

𝐶2

𝐶4
𝑈𝑒𝜑

+ (8) 

2.4.Nusselt number and friction coefficients 

a. Nusselt number 

2 𝐶5𝐶1
−1𝐸𝑐−1𝑅𝑒∞

− 
1

2𝑁𝑢 = −  
𝜕𝑇+

𝜕𝑦+ 
𝑦+=0

 (9) 

With: 

𝑅𝑒∞ =
𝑈∞ 𝐿

𝜈
: Reynolds number 

𝐸𝑐 =  
𝑈∞

2

𝐶𝑝 ∆𝑇
:Eker number 
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b. Friction coefficients  

1

2
𝐶2𝐶1

−1𝑅𝑒∞

− 
1

2𝐶𝑓𝑢 =    
𝜕𝑉𝑥

+

𝜕𝑦+ 
𝑦+=0

 ;   
1

2
𝐶2𝐶1

−1𝑅𝑒∞

− 
1

2𝐶𝑓𝑤 =   
𝜕𝑉𝜑

+

𝜕𝑦+ 
𝑦+=0

 (10) 

 

III. NUMERICAL SOLUTION 
The flow studied is three-dimensional and stationary around the cone. We take as mesh of the network 

of finite number L × M × N stacks of elementary curvilinear parallelepipeds attached to the body and defined by 

the steps x+, y+, + wherex+is the dimensionless step of the curvilinear abscissa, y+the dimensionless step 

of the normal coordinate and+the dimensionless step of the azimuthal coordinate.L, M and N are respectively 

the maximum registration indices along the curvilinear abscissa x, the normal coordinate y and the azimuthal 

coordinate. L and N directly related to the geometrical discretization of the body. As for M, it characterizes the 

thickness of the boundary layer which is not known a priori and which changes from one stack to another. 

The value of the physical quantity 𝐺 = 𝐺(𝑥+, 𝑦+, 𝜑+)at the point (i, j, k) is noted𝐺𝑖,𝑗
𝑘  

As for the dimensionless normal component is calculated from the continuity equation: 

𝑉𝑖+1,𝑗 +1
𝑘 =

4𝑉𝑖+1,𝑗
𝑘

3
−

𝑉𝑖+1,𝑗−1
𝑘

3
−

2

3
∆𝑦+  

𝑈𝑖+1,𝑗
𝑘 𝑈𝑖,𝑗

𝑘

∆𝑥+
+

𝑊𝑖+1,𝑗
𝑘+1 −𝑊𝑖+1,𝑗

𝑘−1

𝑟𝑖+1
+  2∆𝜑+ 

+
𝑈𝑖+1,𝑗

𝑘

∆𝑥+
 

𝒓𝒊+𝟏
+ −𝒓𝒊

+

𝒓𝒊+𝟏
+    (11) 

The values of 𝑉𝑖+1,𝑗 +1
𝑘 are calculated step by step by increasing values of j from the wall characterized by j = 1. 

 

Solving algorithm 

Each of these systems of equations associated with the boundary conditions and given by the equations, taken 

individually, can be written in the form: 

𝐴𝑗𝐺𝑗−1 + 𝐵𝑗 𝐺𝑗 + 𝐶𝑗 𝐺𝑗 +1 = 𝐷𝑗   , 2 ≤ j ≤ Jmax (12) 

We proceed like Raminosoa [8] and Alidina [9] who proposed by evaluating 𝑉𝑥
+,𝑉𝑦

+,  𝑉𝜑
+respectively at 

nodes 𝑉𝑥
+ 𝑖+1

𝑘 ,  𝑉𝑦
+ 

𝑖+1

𝑘
and 𝑉𝜑

+ 
𝑖+1

𝑘
.  This technique allows more reliable results to be obtained despite the 

sometimes very long execution time caused by the iterations that are required. 

To lighten the notations, we pose: 

𝑈 = 𝑉𝑥
+ ;  𝑉 = 𝑉𝑦

+ ; 𝑊 = 𝑉𝜑
+ ;  𝑉𝑒 = 𝑈𝑒+ ;  𝑇 = 𝑇+ (13) 

The convergence criterion is 
𝐺𝑖+1,𝑗

𝑘 𝑛 
−𝐺𝑖+1,𝑗

𝑘 𝑛−1 

𝑚𝑎𝑥  𝐺𝑖+1,𝑗
𝑘 𝑛 

,𝐺𝑖+1,𝑗
𝑘 𝑛+1 

 
 ≤ 𝜀,  G = T, U, W (14) 

 

 

IV. RESULTS AND DISCUSSION 
In this paper, we study the axisymmetric case and wefixPr = 0.7, Δx = 0.071428, Δy = 0.0001, L = 1m, 

Re∞=3000 et θo= 20
o
, α = 0

o
. 

Ip = 2, 5, 7, 9, 11, 12 and 13,corresponds respectively to x+ = 0.0714, 0.2857, 0.4286, 0.5714, 0.7143, 0.7857 

and0.8571. 

Figures 2 and 3, illustrating the variations of the dimensionless temperature 𝑇+as a function of y +. On 

the one hand, at the wall, its value is maximum and is a decreasing function of y + and on the other hand, it 

decreases as it moves away from the wall. In addition, if the coefficient B is large or the speed of the cone 

increases and far from the apex O, the radius of the cone is greater, then the variation in temperature is lower 

and this as y + increases because of the speed of rotation of the cone and of fluid in forced convection, the heat 

could not be suitably transmitted by convection of particles which surround them and so on.This phenomenon is 

more marked for more distant particles. Moreover, we notice that the further we move away from the vertex O, 

the value of B seems more important. 

Figure 4 illustrates the temperature variation curves as a function of x + for φ = 60
o
 for several values 

of B. It is observed that, for y + fixed, the temperature field is practically uniform on the wall except at the top. 

The curves in figures 5 and 6 show the meridian component of the velocity varies linearly in the boundary layer 

along the normal to the wall and that the thickness of the boundary layer changes very rapidly along the wall. 

However, close to the wall the effect of the speed of rotation of the cone and fluid in forced convection disrupts 

the flow.We also notice that far from the wall, the speed of rotation of the cone has no effect, only the speed of 

the fluid present there. Close to the wall, the further away from the top of the cone, the radius increases, the 

coefficient of rotation B becomes important, in other words, the speed of rotation increases, and that 

consequently the meridian component is less important because of the speed of the fluid. Figure 7 shows us the 

meridian component is uniform over the circumference of the cone. 

Figures 8 and 9 illustrating the variations of the dimensionless normal component  𝑉𝑦
+as a function of y 

+, show us that the fluid is sucked in by the wall. 
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Figure 10 illustrates the variations of the local Nusselt number against x +,for several values of B. The 

results show that the heat exchange between the wall and the fluid takes place in a practically uniform manner 

along the surface of the cone, with the exception of the leading edge where the disturbance of the flow causes 

the exchange to decrease slightly of heat on the less exposed side.We give in Figure 11 the variations of the 

meridian parietal friction coefficient against x +, for several values of B. It shows the wall tension is maximum 

near the ends of the cone, the site of strong flow disturbance. 

 

V. CONCLUSION 
We carried out a numerical study of the flow and heat transfer in the boundary layer developed around 

a cone rotating around its axis of revolution and plunged into an ascending vertical forced flow. The transfer 

equations were solved by an implicit finite difference scheme. The results show in particular that the rapid 

variation in the rotational speed of the body generates a strong disturbance of the flow in the vicinity of the 

contact circumference and that the evolution of the external speed field is complex. This evolution is justified by 

the wall friction coefficient along the meridian line. The influence analysis of the rotational speed is represented 

by the rotation parameter B and the study is carried out within the framework of axisymmetric flow (α = 0). The 

perspective and the limit of this work are based on mixed convection: rotary, forced, natural and the variation of 

the angle of inclination and as well as the opening at the top of this cone. 
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