
American Journal of Engineering Research (AJER) 2019 

        American Journal of Engineering Research (AJER) 

e-ISSN: 2320-0847  p-ISSN : 2320-0936 

  Volume-8, Issue-6, pp-199-224 

  www.ajer.org 
Research Paper                                                                                                        Open Access 

 

 
w w w . a j e r . o r g  

w w w . a j e r . o r g  

 

Page 199 

Scheffe Optimization of Compressive Strength of Palm Nut Fibre 

Concrete. 
 

1
Alaneme George Uand

 2
Mbadike Elvis M.

 

1,2
Department of Civil Engineering, Michael Okpara University of Agriculture, Umudike, P. M. B. 7267, 

Umuahia 440109, Abia State, Nigeria 

Corresponding Author: Alaneme George Uand 

 

ABSTRACT: In this paper, a regression model is developed to optimize the compressive strength of palm nut 

fiber reinforced concrete (PFRC) using Scheffe’s regression theory. Using Scheffe’s Simplex method, the 

compressive strength of PFRC was determined for the different componential ratios. Control experiments were 

also carried out to test the adequacy of the model. After the test has been conducted, the adequacy of the model 

was tested using student’s t-test and analysis of variance (ANOVA) at 95% confidence level. The result of the 

adequacy of the model test shows a good correlation between the model and control results. The optimum 

compressive strength was found to be 31.53Nmm
2 

corresponding to mix ratio of 0.525:1.0:1.45:1.75:0.6 and 

minimum strength was found to be 17.25Nmm
2 

corresponding to mix ratio of 0.6:1.0:1.8:2.5:1.2. For water, 

cement, fine and coarse aggregate and palm nut fibre respectively. With the aid of computer software SPSS and 

MATLAB the experimental analysis was modelled, the mix ratios corresponding to a desired strength value can 

be predicted with reasonable accuracy and without waste of time. 
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I. INTRODUCTION 
Concrete plays a vital role as a construction material in the world. But the use of concrete as a 

structural material is limited to certain extent by deficiencies like brittleness, poor tensile strength and poor 

resistance to impact strength, fatigue, low ductility and low durability [1].Attempts have been made in the past 

to optimize the concrete mixture design using either the empirical/experimental methods or analytical /statistical 

methods. Empirical/experimental methods involve an extensive series of tests, sometimes conducted on a trial-

and-error basis, and the optimization results are often applicable only to a narrow range of local materials [2].In 

order to reduce the number of trial mixtures required to obtain an optimal mixture, efforts have been made 

towards developing analytical/statistical methods rationalizing the initial mixture proportioning into a more 

logical and systematic process. Analytical/ statistical methods help in searching for an optimum concrete 

mixture based on detailed knowledge of specific weight functions of the mixture components and on certain 

basic formulas, which result from previous experience without conducting expensive and time-consuming 

experimental works [3]. 

Scheffe's method, named after the American statistician Henry Scheffe, is a method for adjusting 

significance levels in a linear regression analysis to account for multiple comparisons [4]. It is particularly 

useful in analysis of variance (a special case of regression analysis), and in constructing simultaneous 

confidence bands for regressions involving basis functions. It is a single-step multiple comparison procedure 

which applies to the set of estimates of all possible contrasts among the factor level means. It is a theory where a 

polynomial expression of any degrees, is used to characterize a simplex lattice mixture components. The theory 

lends path to a unifying equation model capable of taking varying componential ratios to fix approximately 

equal mixture properties. The optimization is the selectability, from some criterial (mainly economic) view 

point, the optimal ratio from the component ratios list that can be automatedly generated [5].  

 

1.1 Fibre Concrete: 
 Concrete plays a vital role as a construction material in the world. But the use of concrete as a 

structural material is limited to certain extent by deficiencies like brittleness, poor tensile strength and poor 
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resistance to impact strength, fatigue, low ductility and low durability [6-7]. In the present scenario, waste 

materials from various industries and admixtures are added to the mix. The concept of using fibers to improve 

the characteristics of construction materials is very old. Early applications include addition of straw to mud 

bricks, horse hair to reinforce plaster and asbestos to reinforce pottery. Use of continuous reinforcement in 

concrete (reinforced concrete) increases strength and ductility, but requires careful placement and labour skill. 

Alternatively, introduction of fibers in discrete form in plain or reinforced concrete may provide a better 

solution [7-8]. Addition of fibers to concrete makes it a homogeneous and isotropic material. When concrete 

cracks, the randomly oriented fibers start functioning, arrest crack formation and propagation, and thus improve 

strength and ductility. The failure modes of FRC are either bond failure between fiber and matrix or material 

failure. The plain concrete fails suddenly when the deflection corresponding to the ultimate flexural strength is 

exceeded, on the other hand fiber-reinforced concrete continue to sustain considerable loads even at deflections 

considerably in excess of the fracture deflection of the plain concrete [9]. Their main purpose is to increase the 

energy absorption capacity and toughness of the material, but also increase tensile and flexural strength of 

concrete. There is considerable improvement in the post-cracking behavior of concretes containing fibers. 

Although in the fiber-reinforced concrete the ultimate tensile strengths do not increase appreciably, the tensile 

strains at rupture do. Compared to plain concrete, fiber reinforced concrete is much tougher and more resistant 

to impact [10]. 

 

 
Fig 1: Examination of fractured specimens of fiber-reinforced concrete shows that failure takes place primarily 

due to fiber pull-out or debonding 

 

1.2 Aims and Objectives of Study 
The work aims amongst others to: 

i. Investigate the use of palm nut fibre as a fifth component in concrete. 

ii. Determine the optimal combination of materials in palm nut fibre concrete in terms of compressive strength 

characteristics. 

iii. Investigate the use of Scheffe’s optimization theory in a five-component concrete mix. 

iv. Develop models for the optimization of mechanical properties of five component concrete mix. 

 

II. METHODOLOGY 

2.1 Mathematical Modelling and Formulation 

 Henry Scheffe developed a theory for experiments with mixture of which the property studied depends 

on the proportions of the components present and not on the quantity of the mixture [11]. Scheffe showed that if 

q represents the number of constituent components of the mixture, the space of the variables known also as the 

factor space is a (q − 1) dimensional simplex lattice. The composition may be expressed as molar, weight, or 

volume fraction or percentage. A simplex lattice is a structural representation of lines or planes joining the 

assumed coordinates (points) of the constituent materials of the mixture [12-15]. According to Scheffe [16], in 

exploring the whole factor space of a mix design with a uniformly spaced distribution of points over the factor 

space, we have what we shall call a [q, m] simplex lattice. 

 

2.1.1 Scheffe’s Optimization Theory 
 This is a theory where a polynomial expression of any degrees, is used to characterize a simplex lattice 

mixture components. In the theory only a single phase mixture is covered. The theory lends path to a unifying 

equation model capable of taking varying componential ratios to fix approximately equal mixture properties. 

The optimization is the selectability, from some criterial (mainly economic) view point, the optimal ratio from 

the component ratios list that can be automatedly generated. His theory is one of the adaptations to this work in 

the formulation of response function for compressive strength of palm nut fibre concrete [17, 18]. 

 

2.1.2 Scheffe’s Factor Space 

 When a product is formed by mixing together two or more ingredients, the product is called a mixture, 

and the ingredients are called mixture components. In a general mixture problem, the measured response is 
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assumed to depend only on the proportions of the ingredients in the mixture, not the amount of the mixture. The 

response in a mixture experiment usually is described by a polynomial function. This function represents how 

the components affect the response. To better study the shape of the response surface, the natural choice for a 

design would be the one whose points are spread evenly over the whole simplex [19]. An ordered arrangement 

consisting of a uniformly spaced distribution of points on a simplex is known as a lattice. Simplex is a structural 

representation (shape) of lines or planes joining assumed positions or points of the constituent materials (atoms) 

of a mixture [15], and they are equidistant from each other. Mathematically, a simplex lattice is a space of 

constituent variables of X1, X2, X3... and Xi which obey these laws: 

Xi < 0 

X ≠ negative 

0 ≤ xi  ≤ 1           (1) 

 xii=1 = l           (2) 

A {q, m} simplex lattice design for q components consists of points defined by the following coordinate 

settings: the proportions assumed by each component take the m+1 equally spaced values from 0 to 1, 

xi = 0 ,
1

m
 ,

2

m
 , … . . , 1i = 1, 2, …… . . , q       (3) 

 

2.2 Number of Coefficients 

 

P = 5, M = 2 

 

N =
 p+m−1 !

m ! p−1 !
          (4) 

N =
 5 + 2 − 1 !

2!  5 − 1 !
= N =

6!

2! 4!
= 15 

  

2.3 Five Component Factor Space 

 The mixture at the vertices of the simplex are pure component blends; a 100% mixture of the single 

factor assigned to each vertex. All blends along the vertices of the simplex are binary component blends. For the 

five component mixture, we have five vertices and ten spread in between the vertices of the simplex. All 

mixture interior to the perimeter of the simplex region are blends of all of the q-components. The factor space is 

the space within which all the experimental points will be distributed. 

The first five pseudo component are located at the vertices of the tetrahedron simplex.  

A1 [1:0:0: 0:0], A2 [0:1:0:0:0], A3 [0:0:1:0:0], A4 [0:0:0:1:0], A5 [0:0:0:0:1].  

Ten other pseudo mix ratios located at mid points of the lines joining the vertices of the simplex are  

 

A12 [0.5:0.5:0:0:0], A13 [0.5:0:0.5:0:0], A14 [0.5:0:0:0.5:0], A15 [0.5:0:0:0:0.5], A23 [0:0.5:05:0:0], A24 

[05:0:0:0.5:0], A25 [0:0.5:0:0:0.5], A34 [0:0:0.5:05:0], A35 [0:0:0.5:0:0.5], A45 [0:0:0:0.5:0.5]. 

 

2.4 Responses 

 Responses are the properties of fresh and hardened concrete. A simplex lattice is described as a 

structural representation of lines joining the atoms of a mixture. The atoms are constituent components of the 

mixture [20-25]. For a normal concrete mixture, the constituent elements are water, cement, fine and coarse 

aggregates and palmnutfibre. And so, it gives a simplex of a mixture of five components. Hence the simplex 

lattice of this five-component mixture is a three- dimensional solid equilateral tetrahedron. Mixture components 

are subject to the constraint that the sum of all the components must be equal to one [4]. 

 As a rule, the response surfaces in multi-component systems are very intricate. To describe such 

surfaces adequately, high degree polynomials are required, and hence a great many experimental trials. A 

polynomial of degree n in q variable has C
n

q+n coefficients. If a mixture has a total of q components and x1 be 

the proportion of the i
th

 component in the mixture such that, 

Xi ≥ 0(I= l,2....q)          (5) 

 

Then the sum of the component proportion is a whole unity i.e. 

X1 + X2 + X3 + X4 + X5 = 1 or ƩXi -1 = 0       (6) 

n= b0 +  𝑏𝑖𝑋𝑖 +  𝑏𝑖𝑗𝑋𝑖𝑋𝑗+  𝑏𝑖𝑗𝑘𝑋𝑖𝑋𝑗 𝑋𝐾 +...... + 𝑏𝑖1 𝑖2 …inXi1Xi . . . Xin  (7) 

Where l≤i≤q, l≤i≤j≤q, l≤i≤j≤k≤qand 1≤i1≤i1≤ ……..≤in≤q respectively (Simon et al., 1997). 

Y = b0 +b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b11X1
2
 + b12X1X2+ b13X1X3 + b14X1X4 + b15X1X5 + b22X2

2
 + b23 

X2X3 + b24X2X4 + b25X2X5 + b33X3
2
 + b34X3X4 + b35X3X5 + b44X4

2
 + b45X4X5 + b55X5

2
   

         (8) 
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Where b is a constant coefficient. 

 The relationship obtainable from Eqn.[8] is subjected to the normalization condition of Eqn. [6] for a 

sum of independent variables. For a ternary mixture, the reduced second degree polynomial can be obtained as 

follows: 

From Eqn. [2] X1+X2 +X3 + X4 + X5 = 1       (9) 

i.e. b0X1 + b0X2 + b0X3+ b0X4 + b0X5 = b0       (10) 

b0 = b0 (X1 +X2 +X3+X4 +X5)         

 

Multiplying Eqn. [9] by X1, X2, X3, X4, and X5 in succession gives  

X1
2
 = X1– X1X2 - X1X3 - X1X4 - X1X5 

X2
2
 = X2– X1X2 - X2X3 - X2X4 - X2X5      (11) 

X3
2
 = X3 - X1X3 - X2X3 - X3X4 - X3X5 

X4
2
 = X4 - X1X4 - X2X4 - X3X4 - X4X5 

X5
2
 = X5– X1X5 - X2X5 - X3X5 - X4X5 

Substituting Eqn. [10] and [11] into Eqn. [8], we obtain after necessary transformation that 

𝑌  = (b0 + b1 + b11) X1 + (b0 + b2 + b22) X2 + (b0 + b3 + b33) X3 + (b0 + b4 + b44) X4 + (b0 + b5 + b55) X5 + (b12– b11 

- b22) X1X2 + (b13– b11 - b33) X1X3 + (b14– b11 - b44) X1X4 + (b15– b11 - b55) X1X5 + (b23 -b22 - b33) X2X3 + (b24 - 

b22 - b44) X2X4 + (b25– b11 —b55) X2X5 + (b34 - b33 - b44) X3X4 + (b35 - b33 -b55) X3X5 + (b45 - b44 - b55) X4X5 

      (12) 

If we denote 

βi = b0 + bi + bii 

And  βij = bij - bii - bjj, 

 

Then we arrive at the second-degree polynomial: 

𝑌  = β1X1+ β2X2 + β3X3 + β4X4 + β5X5 + β12X1X2 + β13X1X3 + β14X1X4 + β15X1X5 + β23X2X3 + β24X2X4 + 

β25X2X5 + β34X3X4 + β35X3X5 + β45X4X5     (13) 

And doing so in succession for the other two points if the hexahedron, we obtain  

Y
1 
= β

1
, Y

2 
= β

2
, Y

3 
= β

3
, Y

4 
= β

4
, Y

5 
= β

5
.   

 

The substitution of the coordinates of the fourth point yields  

Y
12

 = ½ X
1
 + ½X

2 
+ ½X

1
.X

2
 = ½ β

1
 + ½ β 

2
 + 1/4 β

12 

But as β
i
 = Y

i  
then Y

12
 = ½ β

1
 - ½ β 

2
 - 1/4 β

12
 

Thus β
12

 = 4 Y
12

 - 2Y
1
 - 2Y

2
, β

13 
= 4Y

13
 – 2Y

1
 – 2Y

3
,β

14 
= 4Y

14
 – 2Y

1
 – 2Y

4
,  

β
15 

= 4Y
15

 – 2Y
1
 – 2Y

5
,β

23 
= 4Y

23
 – 2Y

2
 – 2Y

3
, β

24 
= 4Y

24
 – 2Y

2
 – 2Y

4
,   

β
25 

= 4Y
25

 – 2Y
2
 – 2Y

5
, β

34 
= 4Y

34
 – 2Y

3
 – 2Y

4
, β

35 
= 4Y

35
 – 2Y

3
 – 2Y

5, 
β

45 
= 4Y

45
 – 2Y

4
 – 2Y

5
  

  (14) 

 

2.4.1 Actual Components and Pseudo Components 

Z = AX          (15) 

Z represents the actual components while X represents the pseudo components, where A is the constant; a five 

by five matrix.The value of matrix A will be obtained from the first five mix ratios. The mix ratios are 

Z1 [0.45:1.0:1.25:1.45:0.2], Z2[0.5:1.0:1.35:1.6:0.4], Z3[0.55:1.0:1.55:1.9:0.8], Z4[0.6:1.0:1.8:2.5:1.2], Z5 

[0.65:1.0:2.0:3.0:1.8]. 

 

The corresponding pseudo mix ratios are  

X1 [1:0:0:0:0], X2[0:l:0:0:0], X3 [0:0:1:0:0], X4 [0:0:0:1:0], X5[0:0:0:0:l].  

Substitution ofXi and Zi into Equation [14] use the corresponding pseudo components to determine the 

corresponding actual mixture components. 

X1 = fraction of water cement ratio 

X2 = fraction of ordinary Portland cement 

X3 = fraction of fine aggregate 

X4= fraction of coarse aggregate 

X5 = fraction of palm nut fibre 
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𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

𝑎11

𝑎21
𝑎31
𝑎41

𝑎51

𝑎12

𝑎22
𝑎32
𝑎42

𝑎52

𝑎13

𝑎23
𝑎33
𝑎43

𝑎53

𝑎14

𝑎24
𝑎34
𝑎44

𝑎54

𝑎15

𝑎25
𝑎35
𝑎45

𝑎55 

 
 

 

 
 

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5 

 
 

 

For the first run  

 

 
 

0.45
1.0

1.25
1.45
0.2  

 
 

=

 

 
 

𝑎11

𝑎21
𝑎31
𝑎41

𝑎51

𝑎12

𝑎22
𝑎32
𝑎42

𝑎52

𝑎13

𝑎23
𝑎33
𝑎43

𝑎53

𝑎14

𝑎24
𝑎34
𝑎44

𝑎54

𝑎15

𝑎25
𝑎35
𝑎45

𝑎55 

 
 

 

 
 

1
0
0
0
0 

 
 

 

𝑎11= 0.45, 𝑎21= 1.0, 𝑎31= 1.25, 𝑎41= 1.45, 𝑎51= 0.2 

For the second run 

 

 
 

0.5
1.0

1.35
1.6
0.4  

 
 

=

 

 
 

𝑎11

𝑎21
𝑎31
𝑎41

𝑎51

𝑎12

𝑎22
𝑎32
𝑎42

𝑎52

𝑎13

𝑎23
𝑎33
𝑎43

𝑎53

𝑎14

𝑎24
𝑎34
𝑎44

𝑎54

𝑎15

𝑎25
𝑎35
𝑎45

𝑎55 

 
 

 

 
 

0
1
0
0
0 

 
 

 

𝑎12= 0.5, 𝑎22  = 1.0, 𝑎32= 1.35, 𝑎42= 1.6, 𝑎52= 0.4 

For the third run 

 

 
 

0.55
1.0

1.55
1.9
0.8  

 
 

=

 

 
 

𝑎11

𝑎21
𝑎31
𝑎41

𝑎51

𝑎12

𝑎22
𝑎32
𝑎42

𝑎52

𝑎13

𝑎23
𝑎33
𝑎43

𝑎53

𝑎14

𝑎24
𝑎34
𝑎44

𝑎54

𝑎15

𝑎25
𝑎35
𝑎45

𝑎55 

 
 

 

 
 

0
0
1
0
0 

 
 

 

𝑎13= 0.55, 𝑎23  = 1.0, 𝑎33  = 1.55, 𝑎43  = 1.9, 𝑎53  = 0.8 

For the fourth run 

 

 
 

0.6
1.0
1.8
2.5
1.2 

 
 

=

 

 
 

𝑎11

𝑎21
𝑎31
𝑎41

𝑎51

𝑎12

𝑎22
𝑎32
𝑎42

𝑎52

𝑎13

𝑎23
𝑎33
𝑎43

𝑎53

𝑎14

𝑎24
𝑎34
𝑎44

𝑎54

𝑎15

𝑎25
𝑎35
𝑎45

𝑎55 

 
 

 

 
 

0
0
0
1
0 

 
 

 

𝑎14= 0.6,  𝑎24  = 1.0,  𝑎34  = 1.8, 𝑎44  = 2.5,  𝑎54  = 1.2 

For the fifth run 

 

 
 

0.65
1.0
2.0
3.0
1.8  

 
 

=

 

 
 

𝑎11

𝑎21
𝑎31
𝑎41

𝑎51

𝑎12

𝑎22
𝑎32
𝑎42

𝑎52

𝑎13

𝑎23
𝑎33
𝑎43

𝑎53

𝑎14

𝑎24
𝑎34
𝑎44

𝑎54

𝑎15

𝑎25
𝑎35
𝑎45

𝑎55 

 
 

 

 
 

0
0
0
0
1 

 
 

 

𝑎15= 0.65,  𝑎25= 1.0,  𝑎35=2.0, 𝑎45  = 3.0,  𝑎55  = 1.8 

Substituting the values of the constants, we have [A] matrix 

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

 

The [A] matrix is further used to calculate the real proportion [Z] by applying eqn. [15] 

Therefore, for A12 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0.5
0.5
0
0
0  

 
 

 

Z1 = (0.45*0.5) + (0.5*0.5) = 0.475 

Z2 = (1.0*0.5) + (1.0*0.5) = 1.0 

Z3 = (1.25*0.5) + (1.35*0.5) = 1.3 

Z4 = (1.45*0.5) + (1.6*0.5) = 1.525 

Z5 = (0.2*0.5) + (0.4*0.5) = 0.3 
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For A13 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0.5
0

0.5
0
0  

 
 

 

Z1 = (0.45*0.5) + (0.55*0.5) = 0.5  

Z2 = (1.0*0.5) + (1.0*0.5) = 1.0  

Z3 = (1.25*0.5) + (1.55*0.5) = 1.4 

Z4 = (1.45*0.5) + (1.9*0.5) = 1.675 

Z5 = (0.2*0.5) + (0.8*0.5) = 0.5 

 

For A14 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0.5
0
0

0.5
0  

 
 

 

Z1 = (0.45*0.5) + (0.6*0.5) = 0.525  

Z2 = (1.0*0.5) + (1.0*0.5) =1.0  

Z3 = (1.25*0.5) + (1.8*0.5)= 1.525 

Z4 = (1.45*0.5) + (2.5*0.5) = 1.975 

Z5 = (0.2*0.5) + (1.2*0.5) = 0.7 

 

For A15 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0.5
0
0
0

0.5 

 
 

 

Z1 = (0.45*0.5) + (0.65*0.5) = 0.55  

Z2 = (1.0*0.5) + (1.0*0.5) = 1.0  

Z3 = (1.25*0.5) + (2.0*0.5) = 1.625 

Z4 = (1.45*0.5) + (3.0*0.5) = 2.225 

Z5 = (0.2*0.5) + (1.8*0.5) = 1.0 

 

For A23 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0
0.5
0.5
0
0  

 
 

 

Z1 = (0.5*0.5) + (0.55*0.5) = 0.525  

Z2 = (1.0*0.5) + (1.0*0.5) = 1.0 

Z3 = (1.35*0.5) + (1.55*0.5) = 1.575 

Z4 = (1.6*0.5) + (l. 9*0.5) = 2.05 

Z5 = (0.4*0.5) + (0.8*0.5) = 0.8 

 

For A24 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0
0.5
0

0.5
0  

 
 

 

Z1 =(0.5*0.5) + (0.6*0.5) = 0.55  

Z2 = (1.0*0.5) + (1.0*0.5) = 1.0  

Z3 = (1.35*0.5) + (1.8*0.5) = 1.575 

Z4 = (1.6*0.5) + (2.5*0.5) = 2.05  

Z5 = (0.4*0.5) + (1.2 *0.5) = 0.8 
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For A25 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0
0.5
0
0

0.5 

 
 

 

Z1 = (0.5*0.5) + (0.65*0.5) = 0.575  

Z2 = (1.0*0.5) + (1.0*0.5) = 1.0  

Z3 = (1.35*0.5) + (2.0*0.5) = 1.675  

Z4 = (1.6*0.5) + (3.0*0.5) = 2.3 

Z5 = (0.4*0.5) + (1.8*0.5) = 1.1 

 

For A34 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0
0

0.5
0.5
0  

 
 

 

Z1 = (0.55*0.5) + (0.6*0.5) = 0.575  

Z2 = (1.0*0.5) + (1.0*0.5) = 1.0 

Z3 = (1.55*0.5) + (1.8*0.5) = 1.675 

Z4 = (1.9*0.5) + (2.5*0.5) = 2.2 

Z5 = (0.8*0.5) + (1.2*0.5) = 1.0 

 

For A35 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0
0

0.5
0

0.5 

 
 

 

Z1 = (0.55*0.5) + (0.65*0.5) = 0.6 

Z2 = (1.0*0.5) + (1.0*0.5) = 1.0  

Z3 = (1.55*0.5) + (2.0*0.5) = 1.775 

Z4 = (1.9*0.5) + (3.0*0.5) = 2.45 

Z5 = (0.8*0.5) + (1.8*0.5) = 1.3 

 

For A45 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0
0
0

0.5
0.5 

 
 

 

Z1 = (0.6*0.5) + (0.65*0.5) = 0.625 

Z2 = (1.0*0.5) + (1.0*0.5) = 1.0  

Z3 = (1.8*0.5) + (2.0*0.5) = 1.95 

Z4 = (2.5*0.5) + (3.0*0.5) = 2.90  

Z5 = (1.2*0.5) + (1.8*0.5) = 1.55 

The values calculated are summarized in the matrix table shown below. 

 

Table 1. Matrix Table for Scheffe’s (5, 2) - Lattice Polynomial 

ACTUAL 

 

PSEUDO 

Z1 Z2 Z3 Z4 Z5 RESPONSE X1 X2 X3 X4 X5 

0.45 1 1.25 1.45 0.2 Y1 1 0 0 0 0 

0.5 1 1.35 1.6 0.4 Y2 0 1 0 0 0 

0.55 1 1.55 1.9 0.8 Y3 0 0 1 0 0 

0.6 1 1.8 2.5 1.2 Y4 0 0 0 1 0 

0.65 1 2 3 1.8 Y5 0 0 0 0 1 
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0.475 1 1.3 1.525 0.3 Y12 0.5 0.5 0 0 0 

0.5 1 1.4 1.675 0.5 Y13 0.5 0 0.5 0 0 

0.525 1 1.525 1.975 0.7 Y14 0.5 0 0 0.5 0 

0.55 1 1.625 2.225 1 Y15 0.5 0 0 0 0.5 

0.525 1 1.45 1.75 0.6 Y23 0 0.5 0.5 0 0 

0.55 1 1.575 2.05 0.8 Y24 0 0.5 0 0.5 0 

0.575 1 1.675 2.3 1.1 Y25 0 0.5 0 0 0.5 

0.575 1 1.675 2.2 1 Y34 0 0 0.5 0.5 0 

0.6 1 1.775 2.45 1.3 Y35 0 0 0.5 0 0.5 

0.625 1 1.9 2.75 1.5 Y45 0 0 0 0.5 0.5 

 

2.4.2 Mixture Proportion of Control Points Showing Actual and Pseudo Components 

The [A] matrix is further used to obtain the corresponding proportions for the control points by applying 

eqn. [15] with the pseudo-components set by the sum to one of the mixture components constraint. 

Control points for A1 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0.25
0.25
0.25
0.25

0  

 
 

 

Z1 = (0.45*0.25) + (0.5*0.25) + (0.55*0.25) + (0.6*0.25) = 0.525  

Z2 = (1.0*0.25) + (1.0*0.25) + (1.0*0.25) + (1.0*0.25) = 1.0 

Z3 = (1.25*0.25) + (1.35*0.25) + (1.55*0.25) + (1.8*0.25) = 1.4875 

Z4= (1.45*0.25) + (1.6*0.25) + (1.9*0.25) + (2.5*0.25) = 1.8625 

Z5 = (0.2*0.25) + (0.4*0.25) + (0.8*0.25) + (1.2*0.25) = 0.65 

 

Control points for A2 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0.25
0.25
0.25

0
0.25 

 
 

 

Z1 = (0.45*0.25) + (0.5*0.25) + (0.55*0.25) + (0.65*0.25) = 0.5375  

Z2 = (1.0*0.25) + (1.0*0.25) + (1.0*0.25) + (1.0*0.25) = 1.0 

Z3 = (1.25*0.25) + (1.35*0.25) + (1.55*0.25) + (2.0*0.25) = 1.5375 

Z4 = (1.45*0.25) + (1.6*0.25) + (1.9*0.25) + (3.0*0.25) = 1.9875 

Z5 = (0.2*0.25) + (0.4*0.25) + (0.8*0.25) + (1.8*0.25) = 0.8 

Control points for A3 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0.25
0.25

0
0.25
0.25 

 
 

 

Z1= (0.45*0.25) + (0.5*0.25) + (0.60*0.25) + (0.65*0.25) = 0.55  

Z2 = (1.0*0.25) + (1.0*0.25) + (1.0*0.25) + (1.0*0.25) = 1.0  

Z3 = (1.25*0.25) + (1.35*0.25) + (1.8*0.25) + (2.0*0.25) = 1.6 

Z4 = (1.45*0.25) + (1.6*0.25) + (2.5*0.25) + (3.0*0.25) = 2.1375 

Z5= (0.2*0.25) + (0.4*0.25) + (1.2*0.25) + (1.8*0.25) = 0.9 

 

Control points for A4 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0.25
0

0.25
0.25
0.25 

 
 

 

Z1 = (0.45*0.25) + (0.55*0.25) + (0.60*0.25) + (0.65*0.25) = 0.5625  
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Z2 = (1.0*0.25) + (1.0*0.25) + (1.0*0.25) + (1.0*0.25) = 1.0 

Z3 = (1.25*0.25) + (1.55*0.25) + (1.8*0.25) + (2.0*0.25) = 1.65 

Z4 = (1.45*0.25) + (1.9*0.25) + (2.5*0.25) + (3.0*0.25) = 2.2125 

Z5 = (0.2*0.25) + (0.8*0.25) + (1.2*0.25) + (1.8*0.25) = 1.0 

 

Control points for A5 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0
0.25
0.25
0.25
0.25 

 
 

 

Z1 = (0.50*0.25) + (0.55*0.25) + (0.60*0.25) + (0.65*0.25) = 0.575  

Z2 = (1.0*0.25) + (1.0*0.25) + (1.0*0.25) + (1.0*0.25) = 1.0 

Z3 = (1.35*0.25) + (1.55*0.25) + (1.8*0.25) + (2.0*0.25) = 1.675 

Z4 = (1.6*0.25) + (1.9*0.25) + (2.5*0.25) + (3.0*0.25) = 2.25 

Z5 = (0.4*0.25) + (0.8*0.25) + (1.2*0.25) + (1.8*0.25) = 1.05 

 

Control points for A12 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0.2
0.2
0.2
0.2
0.2 

 
 

 

Z1 = (0.45*0.2) + (0.5*0.2) + (0.55*0.2) + (0.6*0.2) + (0.65*0.2) = 0.55  

Z2 = (1.0*0.2) + (1.0*0.2) + (1.0*0.2) + (1.0*0.2) + (1.0*0.2) = 1.0 

Z3 = (1.25*0.2) +(1.35*0.2) + (1.55*0.2) + (1.8*0.2) + (2.0*0.2) = 1.59 

Z4 = (1.45*0.2) + (1.6*0.2) + (1.9*0.2) + (2.5*0.2) + (3.0*0.2) = 2.09 

Z5 = (0.2*0.2) + (0.4*0.2) + (0.8*0.2) + (1.2*0.2) + (1.8*0.2) = 0.88 

 

Control points for A13 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0.3
0.3
0.3
0.1
0  

 
 

 

Z1= (0.45*0.3) + (0.5*0.3) + (0.55*0.3) + (0.6*0.1) = 0.51  

Z2 = (1.0*0.3) + (1.0*0.3) + (1.0*0.3) + (1.0*0.1) = 1.0  

Z3 - (1.25*0.3) + (1.35*0.3) + (1.55*0.3) + (1.8*0.1) = 1.425 

Z4 = (1.45*0.3) + (1.6*0.3) + (1.9*0.3) + (2.5*0.1) = 1.735 

Z5 = (0.2*0.3) + (0.4*0.3) + (0.8*0.3) + (1.2*0.1) = 0.54 

 

Control points for A14 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0.3
0.3
0.3
0

0.1 

 
 

 

Z1= (0.45*0.3) + (0.5*0.3) + (0.55*0.3) + (0.65*0.1) = 0.515  

Z2 = (1.0*0.3) + (1.0*0.3) + (1.0*0.3) + (1.0*0.1) = 1.0 

Z3 = (1.2*0.3) + (1.4*0.3) + (1.5*0.3) + (1.9*0.1) = 1.42 

Z4 = (1.5*0.3) + (1.7*0.3) + (1.8*0.3) + (3.0*0.1) = 1.80 

Z5 = (0.3*0.3) + (0.5*0.3) + (0.7*0.3) + (2.0*0.1) = 0.65 

 

Control points for A15 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0.3
0.3
0

0.3
0.1 
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Z1 = (0.45*0.3) + (0.5*0.3) + (0.6*0.3) + (0.65*0.1) = 0.53  

Z2 = (1.0*0.3) + (1.0*0.3) + (1.0*0.3) + (1.0*0.1) = 1.0 

Z3 = (1.2*0.3) + (1.4*0.3) + (2.0*0.3) + (1.9*0.1) = 1.57 

Z4 = (1.5*0.3) + (1.7*0.3) + (2.8*0.3) + (3.0*0.1) = 2.1 

Z5 = (0.3*0.3) + (0.5*0.3) + (1.1*0.3) + (2.0*0.1) = 0.77 

 

Control points for A23 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0.3
0

0.3
0.3
0.1 

 
 

 

Z1 = (0.45*0.3) + (0.55*0.3) + (0.6*0.3) + (0.65*0.1) = 0.545  

Z2 = (1.0*0.3) + (1.0*0.3) + (1.0*0.3) + (1.0*0.1) = 1.0 

Z3 = (1.25*0.3) + (1.55*0.3) + (1.8*0.3) + (2.0*0.1) = 1.58 

Z4 = (1.45*0.3) + (1.9*0.3) + (2.5*0.3) + (3.0*0.1) = 2.055 

Z5 = (0.2*0.3) + (0.8*0.3) + (1.2*0.3) + (1.8*0.1) = 0.84 

 

Control points for A24 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0
0.3
0.3
0.3
0.1 

 
 

 

Z1 = (0.5*0.3) + (0.55*0.3) + (0.6*0.3) + (0.65*0.1) = 0.560  

Z2 = (1.0*0.3) + (1.0*0.3) + (1.0*0.3) + (1.0*0.1) = 1.0 

Z3 = (1.35*0.3) + (1.55*0.3) + (1.8*0.3) + (2.0*0.1) = 1.66 

Z4 = (1.6*0.3) + (1.9*0.3) + (2.5*0.3) + (3.0*0.1) =2.19 

Z5 = (0.4*0.3) + (0.8*0.3) + (1.2*0.3) + (1.8*0.1) = 0.89 

 

Control points for A25 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0.1
0

0.3
0.3
0.3 

 
 

 

Z1 = (0.45*0.1) + (0.55*0.3) + (0.6*0.3) + (0.65*0.3) = 0.585  

Z2 = (1.0*0.1) + (1.0*0.3) + (1.0*0.3) + (1.0*0.3) = 1.0  

Z3 = (1.25*0.1) + (1.55*0.3) + (1.8*0.3) + (2.0*0.3) = 1.73 

Z4 = (1.45*0.1) + (1.9*0.3) + (2.5*0.3) + (3.0*0.3) = 2.365 

Z5 = (0.2*0.1) + (0.8*0.3) + (1.2*0.3) + (1.8*0.3) =1.16 

 

Control points for A34 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0.1
0.3
0

0.3
0.3 

 
 

 

Z1 = (0.45*0.1) + (0.5*0.3) + (0.6*0.3) + (0.65*0.3) = 0.57  

Z2 = (1.0*0.1) + (1.0*0.3) + (1.0*0.3) + (1.0*0.3) = 1.0 

Z3 = (1.25*0.1) + (1.35*0.3) + (1.8*0.3) + (2.0*0.3) = 1.67 

Z4 = (1.45*0.1) + (1.6*0.3) + (2.5*0.3) + (3.0*0.3) = 2.275 

Z5 = (0.2*0.1) + (0.4*0.3) + (1.2*0.3) + (1.8*0.3) = 1.04 
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Control points for A35 

 

 
 

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0.1
0.3
0.3
0

0.3 

 
 

 

Z1 = (0.45*0.1) + (0.5*0.3) + (0.55*0.3) + (0.65*0.3) = 0.555  

Z2 = (1.0*0.1) + (1.0*0.3) + (1.0*0.3) + (1.0*0.3) = 1.0 

Z3 - (1.25*0.1) + (1.35*0.3) + (1.55*0.3) + (2.0*0.3) = 1.595 

Z4 = (1.45*0.1) + (1.6*0.3) + (1.9*0.3) + (3.0*0.3) = 2.095 

Z5 = (0.2*0.1) + (0.4*0.3) + (0.8*0.3) + (1.8*0.3) = 0.92 

 

Control points for A45 

 

 
 

Z1

Z2

Z3

Z4

Z5 

 
 

=

 

 
 

0.45
1.0

1.25
1.45
0.2

0.5
1.0

1.35
1.6
0.4

0.55
1.0

1.55
1.9
0.8

0.60
1.0
1.8
2.5
1.2

0.65
1.0
2.0
3.0
1.8  

 
 

∗  

 

 
 

0.1
0.3
0.3
0.3
0  

 
 

 

Z1 = (0.45*0.1) + (0.5*0.3) + (0.55*0:3) + (0.6*0.3) = 0.54  

Z2 = (1.0*0.1) + (1.0*0.3) + (1.0*0.3) + (1.0*0.3) = 1.0  

Z3= (1.2*0.1) + (1.4*0.3) + (1.5*0.3) + (2.0*0.3) = 1.59  

Z4 = (1.5*0.1) + (1.7*0.3) + (1.8*0.3) + (2.8*0.3) = 2.04  

Z5 = (0.3*0.1) + (0.5*0.3) + (0.7*0.3) + (1.1*0.3)= 0.72 

 

The calculated results for the control points are summarized in the table below. 

Table 2. Mixture Proportion of Control Points Showing Actual and Pseudo Components 

ACTUAL 

 

PSEUDO 

Z1 Z2 Z3 Z4 Z5 RESPONSE X1 X2 X3 X4 X5 

0.525 1 1.4875 1.8625 0.65 C1 0.25 0.25 0.25 0.25 0 

0.5375 1 1.5375 1.9875 0.8 C2 0.25 0.25 0.25 0 0.25 

0.55 1 1.6 2.1375 0.9 C3 0.25 0.25 0 0.25 0.25 

0.5625 1 1.65 2.2125 1 C4 0.25 0 0.25 0.25 0.25 

0.575 1 1.675 2.25 1.05 C5 0 0.25 0.25 0.25 0.25 

0.55 1 1.59 2.09 0.88 C12 0.2 0.2 0.2 0.2 0.2 

0.51 1 1.425 1.735 0.54 C13 0.3 0.3 0.3 0.1 0 

0.515 1 1.445 1.785 0.6 C14 0.3 0.3 0.3 0 0.1 

0.53 1 1.52 1.965 0.72 C15 0.3 0.3 0 0.3 0.1 

0.545 1 1.58 2.055 0.84 C23 0.3 0 0.3 0.3 0.1 

0.56 1 1.61 2.1 0.9 C24 0 0.3 0.3 0.3 0.1 

0.585 1 1.73 2.365 1.16 C25 0.1 0 0.3 0.3 0.3 

0.57 1 1.67 2.275 1.04 C34 0.1 0.3 0 0.3 0.3 

0.555 1 1.595 2.095 0.92 C35 0.1 0.3 0.3 0 0.3 

0.54 1 1.535 1.945 0.74 C45 0.1 0.3 0.3 0.3 0 

These mixture proportions formulated would be utilized to mix a five component concrete and cured for 28 days 

after which their responses would be obtained which is used to generate the mathematical model. 

 

III. MATERIALS AND METHODS 
 

3.1 Materials 

 The materials for the experiments are a mixture of cement, water, fine and coarse aggregate and palm 

nut fibre forming a five component mixture. The cement is Dangote cement, a brand of Ordinary Portland 

Cement. The fine aggregate, whose size ranges from 0.05 - 4.5mm was procured from the local river. Crushed 

granite of 12.5mm size downgraded to 4.75mm obtained from a local stone market was used in the experimental 

investigation.The palm nut fibre was obtained from Oboro in Ikwuano L.G.A, Abia state. 
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3.2 Method  
 The specimens for the compressive strength were concrete cubes. They were cast in steel mould 

measuring 150mm*150mm*150mm. The mould and its base were damped together during concrete casting to 

prevent leakage of mortar. Thin engine oil was applied to the inner surface of the moulds to make for easy 

removal of the cubes. Batching of all the constituent material was done by weight using a weighing balance of 

50kg capacity based on the adapted mix ratios and water cement ratios. A total number of 30 mix ratios were to 

be used to produce 90 prototype concrete cube. Fifteen (15) out of the 30 mix ratios were as control mix ratios 

to produce 45 cubes for the conformation of the adequacy of the mixture design for compressive strength of 

palm nut fibre reinforced concrete. Curing commenced 24hours after moulding. The specimens were removed 

from the moulds and were placed in clean water for curing. After 28days of curing the specimens were taken out 

of the curing tank and compressive strength determined. Three concrete cubes were cast for each mixture and 

cured at 28 days in which the average compressive strength was determined after crushing [26-27]. 

The compressive strength was then calculated using the formula below:  

Compressive strength = 
 
 2mmarea sectional-cross

 Nload failure average
  = 

P

A
   (16) 

 

IV. RESULTS AND DISCUSSION 
4.1 Result of Chemical Analysis of Ordinary Portland cement 

 
Fig 2:chemical analysis result of ordinary Portland cement. 
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4.2 Physical properties of aggregates. 

Table 3:Physical properties of aggregates. 

Physical and Mechanical 

Properties Crushed Stone Aggregate palm nut fibre fine aggregates 

Maximum size (mm) 12.5 25 4.75 

Water absorption (%)  0.22 21.8 - 

Specific gravity  2.68 1.24 2.62 

Fineness Modulus 6.82 6.57 3.72 

 

4.2.1. Particle Size Distribution of Fine and Coarse Aggregate 

 
Fig 3: Grain Size Distribution of Studied Materials 

 

4.3 Compressive Strength (Response, Yi)  
The results of the compressive strength of the palm nut fibre reinforced concrete (PFRC)was gotten in the 

laboratory after 28 days curing. The laboratory results is shown in table 4 and table 5 for the control points. 

 

Table 4.The Results of the Compressive Strength (Response, Yi) Based on a 28-Days Strength 

Response 

Symbol Replicate 

Average 

Weight 

(Kg) 

Volume 

(m3) 

Average 

Bulk 

Density 

(Kg/m3) 

Crushing 

Load (N) 

Cross 

Sectional 

Area 

(m2) 

Compressive 

Strength 

(N/mm2) 

Average 

Compressive 

Strength 

(N/mm2) 

Y1 A 8.20 0.003375 2430.62 608000 22500 27.02 30.39 

Y1 B       745000   33.11   

Y1 C       698000   31.02   

Y2 A 7.98 0.003375 2363.46 678000 22500 30.13 28.61 

Y2 B       615000   27.33   

Y2 C       638000   28.36   

Y3 A 7.83 0.003375 2320.99 589000 22500 26.18 24.87 
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Y3 B       564000   25.07   

Y3 C       526000   23.38   

Y4 A 7.59 0.003375 2247.90 429000 22500 19.07 17.25 

Y4 B       387400   17.22   

Y4 C       348000   15.47   

Y5 A 7.63 0.003375 2261.73 418000 22500 18.58 18.44 

Y5 B       420000   18.67   

Y5 C       407000   18.09   

Y12 A 8.12 0.003375 2406.91 697000 22500 30.98 29.84 

Y12 B       626000   27.82   

Y12 C       691000   30.71   

Y13 A 8.03 0.003375 2379.26 634000 22500 28.18 27.41 

Y13 B       597000   26.53   

Y13 C       619000   27.51   

Y14 A 7.87 0.003375 2331.85 577000 22500 25.64 25.66 

Y14 B       591000   26.27   

Y14 C       564000   25.07   

Y15 A 8.09 0.003375 2396.05 539000 22500 23.96 23.78 

Y15 B       548000   24.36   

Y15 C       518000   23.02   

Y23 A 8.03 0.003375 2379.26 728000 22500 32.36 31.53 

Y23 B       719000   31.96   

Y23 C       681000   30.27   

Y24 A 7.52 0.003375 2229.14 549000 22500 24.40 24.93 

Y24 B       593000   26.36   

Y24 C       541000   24.04   

Y25 A 7.71 0.003375 2283.46 454000 22500 20.18 19.61 

Y25 B       403000   17.91   

Y25 C       467000   20.76   

Y34 A 7.97 0.003375 2362.47 569000 22500 25.29 25.67 

Y34 B       585000   26.00   

Y34 C       579000   25.73   

Y35 A 8.07 0.003375 2391.11 487000 22500 21.64 20.92 

Y35 B       448000   19.91   

Y35 C       477000   21.20   

Y45 A 7.64 0.003375 2262.72 425000 22500 18.89 18.30 

Y45 B       402000   17.87   

Y45 C       408000   18.13   
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Table 5.The 28th Day Compressive Strength Values and their Corresponding Density for the Control 

Points. 

Response 

Symbol Replicate 

Average 

Weight 

(Kg) 

Volume 

(m3) 

Average 

Bulk 

Density 

Kg/m3 

Crushing 

Load (N) 

Cross 

Sectional 

Area (m2) 

Compressive 

Strength 

(N/mm2) 

Average 

Compressive 

Strength 

(N/mm2) 

C1 A 7.96 0.003375 2357.53 527000 22500 23.42 22.73 

C1 B       513000   22.80   

C1 C       494000   21.96   

C2 A 8.12 0.003375 2406.91 501000 22500 22.27 23.30 

C2 B       583000   25.91   

C2 C       489000   21.73   

C3 A 7.78 0.003375 2304.20 423000 22500 18.80 20.98 

C3 B       507000   22.53   

C3 C       486000   21.60   

C4 A 8.00 0.003375 2369.38 649000 22500 28.84 27.59 

C4 B       621000   27.60   

C4 C       592000   26.31   

C5 A 8.06 0.003375 2387.16 501000 22500 22.27 22.80 

C5 B       527000   23.42   

C5 C       511000   22.71   

C12 A 7.94 0.003375 2353.58 606000 22500 26.93 26.22 

C12 B       594000   26.40   

C12 C       570000   25.33   

C13 A 8.07 0.003375 2390.12 651000 22500 28.93 27.88 

C13 B       604000   26.84   

C13 C       627000   27.87   

C14 A 8.12 0.003375 2405.93 642000 22500 28.53 27.70 

C14 B       627000   27.87   

C14 C       601000   26.71   

C15 A 7.91 0.003375 2342.72 477000 22500 21.20 23.42 

C15 B       586000   26.04   

C15 C       518000   23.02   

C23 A 7.96 0.003375 2358.52 581000 22500 25.82 26.21 

C23 B       579000   25.73   

C23 C       609000   27.07   

C24 A 7.98 0.003375 2365.43 419000 22500 18.62 18.90 

C24 B       473000   21.02   

C24 C       384000   17.07   

C25 A 7.85 0.003375 2324.94 409000 22500 18.18 20.58 

C25 B       454000   20.18   

C25 C       526000   23.38   

C34 A 7.91 0.003375 2344.69 491000 22500 21.82 20.65 

C34 B       487000   21.64   

C34 C       416000   18.49   

C35 A 8.05 0.003375 2385.19 519000 22500 23.07 24.77 

C35 B       554000   24.62   
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C35 C       599000   26.62   

C45 A 7.84 0.003375 2323.95 489000 22500 21.73 19.76 

C45 B       443000   19.69   

C45 C       402000   17.87   

 

4.4 Regression Equation for Compressive Strength 

From eqn. [14], the coefficients of the Scheffe’s second degree polynomial were determined as follows;  

Table 6. The Coefficients of the Scheffe’s Second Degree Polynomial for the compressive Strength. 
β1 β2 β3 β4 β5 β12 β13 β14 β15 β23 β24 β25 β34 β35 β45 

30.39 28.61 24.87 17.25 18.44 1.36 
-
0.89 7.37 

-
2.55 19.14 8.02 

-
15.64 18.45 -2.96 1.80 

 

Substituting the values of these coefficients into Eqn. [13] yields 

Y  = 30.39X1+ 28.61X2 + 24.87X3 + 17.25X4 + 18.44X5 + 1.36X1X2 – 0.89X1X3 + 7.37X1X4 – 2.55X1X5 + 

19.14X2X3 + 8.02X2X4 - 15.64X2X5 + 18.45X3X4 - 2.96X3X5 + 1.80X4X5 (17) 

Eqn. [17] is the improved model for the optimization of the compressive strength of palm nut fibre. 

4.5 Replication Variance  

Mean responses, Y and the variances of replicates 𝑆𝑖2
 in Table 6 were obtained from Eqns. Below 

 

Y =
 Yi

n
i=1

n
;           (18) 

Si
2
 =  

1

n−1
   Yi

2 −  
1

n  Yi 
2          (19) 

 

Where 1≤ i ≤ n. The eqn. is expanded as follows; 

Si
2
 =  

1

n−1
    YI − Y 2n

i=1          (20) 

Where Yi = responses; Y = mean of the responses for each control point; n = number of parallel observations at 

every point; n – 1 = degree of freedom; Si
2
 = variance at each design point. 

For all the design points, number of degrees of freedom [28-30], 

 

Ve=   N − 2           (21) 

= 30 − 2 = 28 

 

Where N is the number of points 

Sy
2
 = 69.61/28 = 2.485901 

Where Si
2
 is the variance at each point 

Sy = 1.576674 

 

Table 7.Experimental Test Result and the Replication Variance 
Response 

Symbol Replicate 

Response 

Yi(N/mm2)  𝐲𝐢  Y  𝐲𝐢𝟐 Si2 

Y1 A 27.02 91.16 30.39 2788.92 9.57 

Y1 B 33.11         

Y1 C 31.02         

Y2 A 30.13 85.82 28.61 2459.17 2.01 

Y2 B 27.33         

Y2 C 28.36         

Y3 A 26.18 74.62 24.87 1860.13 1.99 

Y3 B 25.07         

Y3 C 23.38         

Y4 A 19.07 51.75 17.25 899.21 3.24 

Y4 B 17.22         

Y4 C 15.47         
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Y5 A 18.58 55.33 18.44 1020.79 0.10 

Y5 B 18.67         

Y5 C 18.09         

Y12 A 30.98 89.51 29.84 2676.87 3.06 

Y12 B 27.82         

Y12 C 30.71         

Y13 A 28.18 82.22 27.41 2254.87 0.68 

Y13 B 26.53         

Y13 C 27.51         

Y14 A 25.64 76.98 25.66 1975.91 0.36 

Y14 B 26.27         

Y14 C 25.07         

Y15 A 23.96 71.33 23.78 1697.08 0.47 

Y15 B 24.36         

Y15 C 23.02         

Y23 A 32.36 94.58 31.53 2984.11 1.23 

Y23 B 31.96         

Y23 C 30.27         

Y24 A 24.40 74.80 24.93 1868.11 1.55 

Y24 B 26.36         

Y24 C 24.04         

Y25 A 20.18 58.84 19.61 1158.74 2.26 

Y25 B 17.91         

Y25 C 20.76         

Y34 A 25.29 77.02 25.67 1977.73 0.13 

Y34 B 26.00         

Y34 C 25.73         

Y35 A 21.64 62.76 20.92 1314.37 0.81 

Y35 B 19.91         

Y35 C 21.20         

Y45 A 18.89 54.89 18.30 1004.83 0.28 

Y45 B 17.87         

Y45 C 18.13         

C1 A 23.42 68.18 22.73 1550.49 0.54 

C1 B 22.80         

C1 C 21.96         

C2 A 22.27 69.91 23.30 1639.53 5.17 

C2 B 25.91         

C2 C 21.73         

C3 A 18.80 62.93 20.98 1327.75 3.77 

C3 B 22.53         

C3 C 21.60         

C4 A 28.84 82.76 27.59 2286.04 1.60 

C4 B 27.60         
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Table 8. Experimental Test Results and Scheffe’s Model Test Results 
symbols experimental test results scheffe model test results 

Y1 30.39 30.39 

Y2 28.61 28.61 

Y3 24.87 24.87 

Y4 17.25 17.25 

Y5 18.44 18.44 

Y12 29.84 29.84 

Y13 27.41 27.41 

Y14 25.66 25.66 

Y15 23.78 23.78 

Y23 31.53 31.53 

Y24 24.93 24.93 

Y25 19.61 19.61 

Y34 25.67 25.67 

C4 C 26.31         

C5 A 22.27 68.40 22.80 1560.20 0.34 

C5 B 23.42         

C5 C 22.71         

C12 A 26.93 78.67 26.22 2064.14 0.66 

C12 B 26.40         

C12 C 25.33         

C13 A 28.93 83.64 27.88 2334.31 1.09 

C13 B 26.84         

C13 C 27.87         

C14 A 28.53 83.11 27.70 2304.19 0.85 

C14 B 27.87         

C14 C 26.71         

C15 A 21.20 70.27 23.42 1657.78 5.99 

C15 B 26.04         

C15 C 23.02         

C23 A 25.82 78.62 26.21 2061.60 0.56 

C23 B 25.73         

C23 C 27.07         

C24 A 18.62 56.71 18.90 1079.99 3.97 

C24 B 21.02         

C24 C 17.07         

C25 A 18.18 61.73 20.58 1284.09 6.88 

C25 B 20.18         

C25 C 23.38         

C34 A 21.82 61.96 20.65 1286.53 3.52 

C34 B 21.64         

C34 C 18.49         

C35 A 23.07 74.31 24.77 1847.07 3.18 

C35 B 24.62         

C35 C 26.62         

C45 A 21.73 59.29 19.76 1179.21 3.74 

C45 B 19.69         

C45 C 17.87         
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Y35 20.92 20.92 

Y45 18.30 18.30 

C1 22.73 25.07 

C2 23.30 26.04 

C3 20.98 22.10 

C4 27.59 24.29 

C5 22.80 20.89 

C12 26.22 23.69 

C13 27.88 26.74 

C14 27.70 27.30 

C15 23.42 23.21 

C23 26.21 25.22 

C24 18.90 21.04 

C25 20.58 22.57 

C34 20.65 19.95 

C35 24.77 25.20 

C45 19.76 23.05 

 

V. Validation and Test of Adequacy ofthe Model 
 The test of adequacy of the model was done using statistical tool for determining differences among 

means using hypothesis. The student’s t-test and ANOVA method was the statistical tool used; the adequacy of 

the model was tested against the experimental results of the control points. The predicted values (Y-predicted) 

for the test control points were obtained by substituting the corresponding values of the pseudo-components X1, 

X2, X3, X4 and X5 into the improved model equation i.e. Eqn. [15]. These values were compared with the 

experimental results (Y-observed). 

 The test for adequacy of the model was done using student’s t-test and ANOVA at 95% confidence 

level on the compressive strength at the control points (that is, C1, C2, C3, C4, C5, C12, C13, C14, C15, C23, 

C24, C25, C34, C35 and C45). In this test, two hypotheses were set as follows: 

 

5.1 Null Hypothesis 

There is no significant difference between the laboratory tests and model predicted strength results. 

 

5.2 Alternative Hypothesis 

There is a significant difference between the laboratory test and model predicted strength results. 

 

5.3 Student’s t-Test  

 A two-tail test (inequality) is used to compare the two groups and if t Stat > t Critical two-tail, we reject 

the null hypothesis. From the result presented in Tables 9, t stat = -0.36331and t critical two-tail = 2.144787so t 

critical > t stat. Therefore, we accept the null hypothesis. 

 

Table 9.t-Test for the Compressive strength 
compressive 

symbols lab model lab-model (lab-model)2 

C1 22.73 25.07 -2.34 5.49 

C2 23.30 26.04 -2.74 7.51 

C3 20.98 22.10 -1.12 1.25 

C4 27.59 24.29 3.30 10.88 

C5 22.80 20.89 1.91 3.67 

C12 26.22 23.69 2.53 6.41 

C13 27.88 26.74 1.15 1.31 

C14 27.70 27.30 0.40 0.16 

C15 23.42 23.21 0.21 0.04 

C23 26.21 25.22 0.99 0.97 

C24 18.90 21.04 -2.14 4.56 

C25 20.58 22.57 -1.99 3.95 

C34 20.65 19.95 0.70 0.49 

C35 24.77 25.20 -0.42 0.18 

C45 19.76 23.05 -3.29 10.80 

Total -2.84 57.69 

 

tstat = 
 (𝐥𝐚𝐛−𝐦𝐨𝐝𝐞𝐥)

 
(15∗   𝐥𝐚𝐛−𝐦𝐨𝐝𝐞𝐥 𝟐 −  (𝐥𝐚𝐛−𝐦𝐨𝐝𝐞𝐥 )^2 

(15−1)

  = 
(−2.84)

 
 15∗57.69 −(−2.842) 

(15−1)

=  -0.36331 

α = 0.05 and 0.025 for to tail (t-distribution table). 
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tcritical = 2.144787  

tstat<tcritical  

 

5.4 Analysis of Variance  

 If F > F crit, we reject the null hypothesis of the analysis of variance.From the result presented in Table 

11, F = 0.038285 and F crit = 4.195972 so F crit> F Therefore, we do not reject null hypothesis.Therefore, the 

difference between the experiment result and the model result was not significant. Hence, the model is adequate 

for use in predicting the probable flexural strength when the mix ratio is known and vice-versa. 

 

Table 10.ANOVA for the Compressive strength 

compressive 

symbols lab model lab^2 model^2 

C1 22.73 25.07 516.47 628.43 

C2 23.30 26.04 543.06 678.31 

C3 20.98 22.10 440.07 488.25 

C4 27.59 24.29 760.94 589.86 

C5 22.80 20.89 519.84 436.19 

C12 26.22 23.69 687.60 561.19 

C13 27.88 26.74 777.38 714.78 

C14 27.70 27.30 767.50 745.27 

C15 23.42 23.21 548.60 538.82 

C23 26.21 25.22 686.83 636.12 

C24 18.90 21.04 357.35 442.68 

C25 20.58 22.57 423.44 509.22 

C34 20.65 19.95 426.50 397.96 

C35 24.77 25.20 613.57 634.80 

C45 19.76 23.05 390.57 531.28 

total 353.50 356.34 8459.73 8533.16 

 

N= total scores = 30 

K = 2 

Dfb =K-1 =1 

Dfw = N-K = 28 

SSb = 
( (𝐥𝐚𝐛))2

15
+ 

( (𝐦𝐨𝐝𝐞𝐥))2

15
−  

(( (𝐥𝐚𝐛))+( (𝐦𝐨𝐝𝐞𝐥)))2

30
 

=  
(353.50))2

15
 + 

(356.34))2

15
−  

((353.50)+(356.34))2

30
 

 = 0.27 

SSw=   (𝐥𝐚𝐛
2
 +   (𝐦𝐨𝐝𝐞𝐥

2
 –  

( (𝐥𝐚𝐛))2

15
+ 

( (𝐦𝐨𝐝𝐞𝐥))2

15
 

= 8459.73 + 8533.16−
(353.50))2

15
 + 

(356.34))2

15
 

= 197.06 

MSb = 
SS b

df b
 = 

0.27

1
  = 0.27 

MSw = 
SS w

df w
 = 

197.06

28
  = 7.04 

F = 
MS b

MS w
 = 

0.27

7.04= 0.038285 

Fcritical= 4.195972 (F-distribution) [dfbtw =1   dfwth = 28        ] 
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Table 11: Anova 

Summary 

      
Groups Count Sum Average Variance 

  
Lab 15 353.4963 23.56642 9.220254 

  
Model 15 356.3394 23.75596 4.855368 

  ANOVA 

Source of 

Variation SS df MS F P-value F crit 

Between Groups 0.269443 1 0.269443 0.038285 0.846285 4.195972 

Within Groups 197.0587 28 7.037811 

   
Total 197.3281 29         

 

5.5 Discussion of Results 
 Using Scheffe’s simplex model the values of the compressive strength were obtained. The model gave 

highest compressive strength of 31.53Nmm
2
 corresponding to mix ratio of 0.525:1.0:1.45:1.75:0.6 for water, 

cement, fine and coarse aggregate and palm nut fibre respectively. This further showed that the improved value 

of compressive strength was achieved by the addition of about 11.3% by weight of the palm nut fibre as a fifth 

component to the concrete mix with a water-cement ratio of 0.525. The lowest strength was found to be 

17.25Nmm
2
 corresponding to mix ratio of 0.6:1.0:2.0:2.8:1.1.This further showed that the minimum value of 

compressive strength was achieved by the addition of about 14.67% by weight of the palm nut fibre as a fifth 

component to the concrete mix with a water-cement ratio of 0.65.The fibre inclusion, in general, 

significantlyimproved the compressive strength and ductility of matrices. The bond of the natural fibres in 

composites is very satisfactory; the fibre inclusion greatly enhances the impact strength of composites [31-32]. 

Using the model, the compressive strength of all points in the simplex can be derived.Fibers are used in 

concrete to control cracking due to plastic shrinkage and to drying shrinkage. They also reduce the permeability 

of concrete and thus reduce bleeding of water. Some types of fibers produce greater impact, abrasion and 

shatter–resistance in concrete [27-28]. 

 

VI. CONCLUDING NOTES 
 Scheffe’s second degree polynomial was used to formulate a model for predicting the compressive strength 

of Palm nut fibre concrete. This model could predict the compressive strength of the Palm nut fibre concrete 

cubes if the mix ratios are known and vice versa.  

 The adequacy of the model was tested using student’s t-test and Fisher’s test (ANOVA); the result of the 

test shows a good correlation between the model and control results.The strengths predicted by the models 

are in good agreement with the corresponding experimentally observed results.  

 Since the fibers were added on volume basis, aspect ratio did not influence the densities of the mixes used. 

Therefore, the slump values were 10–12 mm and no difficulties were faced during casting of specimens and 

compaction. Both the slump and density decreased with increase in the percentage of fibers. The fibers play 

a role in influencing the workability and density of fresh and hardened concrete. 

 The optimum attainable compressive strength (response) predicted by the model at the 28th day within the 

factor space was 31.53Nmm
2
 with a mix proportion corresponding to mix ratio 0.525:1.0:1.45:1.75:0.6 for 

water, cement, fine and coarse aggregate and palm nut fibre respectively. The minimum strength was found 

to be 17.25Nmm
2
 corresponding to mix ratio of 0.6:1.0:1.8:2.5:1.2. 

 There is a saving in cost of when some percentage of palm nut fibre are used and very important in the area 

of waste management and Concrete made with palm nut fibre are lighter than the normal concrete. 

 

NOTATIONS 

q =number of components 

k = degree of dimensional space 

Xi = proportion of i
th

 components of mixtures 

m = degree of the scheffe polynomial 

X1 = fraction of water cement ratio 

X2 = fraction of ordinary Portland cement 

X3 = fraction of fine aggregate 

X4= fraction of coarse aggregate 

X5 = fraction of palm nut fibre 

n = degree of polynomial regression 

Z = actual components 
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X = pseudo components 

Y1, Y2, Y3, Y4, Y5, Y12, Y13, Y14, Y15, Y23, Y24, Y25, Y34, Y35, Y45 = responses from treatment mixture proportions 

C1, C2, C3, C4, C5, C12, C13, C14, C15, C23, C24, C25, C34, C35, C45 = responses from control mixture proportions 

β1, β2,β3,β4, β5, β12, β13,β 14, β 15, β23,β24, β25,β34, β35,β45, = model coefficients 

Y = optimized compressive strength of palm nut fibre concrete 

 

MATLAB PROGRAM FOR THE COMPRESSIVE STRENGHT OF PALM NUT FIBRE 

symsX1X2X3X4X5 

Z1=[0.45 1 1.2 1.5 0.3]; 

Z2=[0.5 1 1.4 1.7 0.5]; 

Z3=[0.55 1 1.5 1.8 0.7]; 

Z4=[0.6 1 2 2.8 1.1]; 

Z5=[0.65 1 1.9 3 2]; 

A=[Z1' Z2' Z3' Z4' Z5']; 

disp('matrix A ='); 

disp(A) 

%PSEUDO COMPONENTS 

X12=[0.5 0.5 0 0 0]; 

X13=[0.5 0 0.5 0 0]; 

X14=[0.5 0 0 0.5 0]; 

X15=[0.5 0 0 0 0.5]; 

X23=[0 0.5 0.5 0 0]; 

X24=[0 0.5 0 0.5 0]; 

X25=[0 0.5 0 0 0.5]; 

X34=[0 0 0.5 0.5 0]; 

X35=[0 0 0.5 0 0.5]; 

X45=[0 0 0 0.5 0.5]; 

%PSEUDO COMPONENTS CONTROL 

C1=[0.25 0.25 0.25 0.25 0]; 

C2=[0.25 0.25 0.25 0 0.25]; 

C3=[0.25 0.25 0 0.25 0.25]; 

C4=[0.25 0 0.25 0.25 0.25]; 

C5=[0 0.25 0.25 0.25 0.25]; 

C12=[0.2 0.2 0.2 0.2 0.2]; 

C13=[0.3 0.3 0.3 0.1 0]; 

C14=[0.3 0.3 0.3 0 0.1]; 

C15=[0.3 0.3 0 0.3 0.1]; 

C23=[0.3 0 0.3 0.3 0.1]; 

C24=[0 0.3 0.3 0.3 0.1]; 

C25=[0.1 0 0.3 0.3 0.3]; 

C34=[0.1 0.3 0 0.3 0.3]; 

C35=[0.1 0.3 0.3 0 0.3]; 

C45=[0.1 0.3 0.3 0.3 0]; 

A12=A*X12'; 

A13=A*X13'; 

A14=A*X14'; 

A15=A*X15'; 

A23=A*X23'; 

A24=A*X24'; 

A25=A*X25'; 

A34=A*X34'; 

A35=A*X35'; 

A45=A*X45'; 

CT1=A*C1'; 

CT2=A*C2'; 

CT3=A*C3'; 

CT4=A*C4'; 

CT5=A*C5'; 

CT12=A*C12'; 
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CT13=A*C13'; 

CT14=A*C14'; 

CT15=A*C15'; 

CT23=A*C23'; 

CT24=A*C24'; 

CT25=A*C25'; 

CT34=A*C34'; 

CT35=A*C35'; 

CT45=A*C45'; 

 

table=[Z1; Z2; Z3;Z4; Z5; A12';A13';A14';A15';A23';A24';A25';A34';A35';A45']; 

disp('5,2 scheffe ratio') 

disp(table) 

 

control=[CT1'; CT2'; CT3';CT4'; CT5'; CT12';CT13';CT14';CT15';CT23';CT24';CT25';CT34';CT35';CT45']; 

disp('control scheffe ratio') 

disp(control) 

 

% RESPONSE (COMPRESSIVE STRENGTH) 

Y1=30.39; 

Y2=28.61; 

Y3=24.87; 

Y4=17.25; 

Y5=18.44; 

Y12=29.84; 

Y13=27.41; 

Y14=25.66; 

Y15=23.78; 

Y23=31.53; 

Y24=24.93; 

Y25=19.61; 

Y34=25.67; 

Y35=20.92; 

Y45=18.30; 

 

%CONTROL RESPONSE 

ct1=22.73; 

ct2=23.30; 

ct3=20.98; 

ct4=27.59; 

ct5=22.80; 

ct12=26.22; 

ct13=27.88; 

ct14=27.70; 

ct15=23.42; 

ct23=26.21; 

ct24=18.90; 

ct25=20.58; 

ct34=20.65; 

ct35=24.77; 

ct45=19.76; 

 

% MODEL RELATIONSHIP 

B1=Y1; 

B2=Y2; 

B3=Y3; 

B4=Y4; 

B5=Y5; 
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B12=4*Y12-2*Y1-2*Y2; 

B13=4*Y13-2*Y1-2*Y3; 

B14=4*Y14-2*Y1-2*Y4; 

B15=4*Y15-2*Y1-2*Y5; 

B23=4*Y23-2*Y2-2*Y3; 

B24=4*Y24-2*Y2-2*Y4; 

B25=4*Y25-2*Y2-2*Y5; 

B34=4*Y34-2*Y3-2*Y4; 

B35=4*Y35-2*Y3-2*Y5; 

B45=4*Y45-2*Y4-2*Y5; 

coefficient1=double([B1 B2 B3 B4 B5 B12 B13 B14 B15 B23 B24 B25 B34 B35 B45]'); 

y=(B1*X1)+(B2*X2)+(B3*X3)+(B4*X4)+(B5*X5)+(B12*X1*X2)+(B13*X1*X3)+(B14*X1*X4)+(B15*X1*

X5)+(B23*X2*X3)+(B24*X2*X4)+(B25*X2*X5)+(B34*X3*X4)+(B35*X3*X5)+(B45*X4*X5); 

disp('y =') 

disp (y) 

disp('coefficient') 

disp(coefficient1) 

M1=ct1; 

M2=ct2; 

M3=ct3; 

M4=ct4; 

M5=ct5; 

M12=4*ct12-2*ct1-2*ct2; 

M13=4*ct13-2*ct1-2*ct3; 

M14=4*ct14-2*ct1-2*ct4; 

M15=4*ct15-2*ct1-2*ct5; 

M23=4*ct23-2*ct2-2*ct3; 

M24=4*ct24-2*ct2-2*ct4; 

M25=4*ct25-2*ct2-2*ct5; 

M34=4*ct34-2*ct3-2*ct4; 

M35=4*ct35-2*ct3-2*ct5; 

M45=4*ct45-2*ct4-2*ct5; 

 

coefficient2=double([M1 M2 M3 M4 M5 M12 M13 M14 M15 M23 M24 M25 M34 M35 M45]'); 

m=(M1*X1)+(M2*X2)+(M3*X3)+(M4*X4)+(M5*X5)+(M12*X1*X2)+(M13*X1*X3)+(M14*X1*X4)+(M15

*X1*X5)+(M23*X2*X3)+(M24*X2*X4)+(M25*X2*X5)+(M34*X3*X4)+(M35*X3*X5)+(M45*X4*X5); 

disp('control model =') 

disp (m) 

disp('coefficient') 

disp(coefficient2) 

y1=subs(y,[X1 X2 X3 X4 X5],[1 0 0 0 0]); 

y2=subs(y,[X1 X2 X3 X4 X5],[0 1 0 0 0]); 

y3=subs(y,[X1 X2 X3 X4 X5],[0 0 1 0 0]); 

y4=subs(y,[X1 X2 X3 X4 X5],[0 0 0 1 0]); 

y5=subs(y,[X1 X2 X3 X4 X5],[0 0 0 0 1]); 

y12=subs(y,[X1 X2 X3 X4 X5],X12); 

y13=subs(y,[X1 X2 X3 X4 X5],X13); 

y14=subs(y,[X1 X2 X3 X4 X5],X14); 

y15=subs(y,[X1 X2 X3 X4 X5],X15); 

y23=subs(y,[X1 X2 X3 X4 X5],X23); 

y24=subs(y,[X1 X2 X3 X4 X5],X24); 

y25=subs(y,[X1 X2 X3 X4 X5],X25); 

y34=subs(y,[X1 X2 X3 X4 X5],X34); 

y35=subs(y,[X1 X2 X3 X4 X5],X35); 

y45=subs(y,[X1 X2 X3 X4 X5],X45); 

 

%control equation substitution 

m1=subs(m,[X1 X2 X3 X4 X5],C1); 

m2=subs(m,[X1 X2 X3 X4 X5],C2); 



American Journal of Engineering Research (AJER) 2019 
 

 

w w w . a j e r . o r g  

w w w . a j e r . o r g  

 

Page 223 

m3=subs(m,[X1 X2 X3 X4 X5],C3); 

m4=subs(m,[X1 X2 X3 X4 X5],C4); 

m5=subs(m,[X1 X2 X3 X4 X5],C5); 

m12=subs(m,[X1 X2 X3 X4 X5],C12); 

m13=subs(m,[X1 X2 X3 X4 X5],C13); 

m14=subs(m,[X1 X2 X3 X4 X5],C14); 

m15=subs(m,[X1 X2 X3 X4 X5],C15); 

m23=subs(m,[X1 X2 X3 X4 X5],C23); 

m24=subs(m,[X1 X2 X3 X4 X5],C24); 

m25=subs(m,[X1 X2 X3 X4 X5],C25); 

m34=subs(m,[X1 X2 X3 X4 X5],C34); 

m35=subs(m,[X1 X2 X3 X4 X5],C35); 

m45=subs(m,[X1 X2 X3 X4 X5],C45); 

 

table2=double([y1 y2 y3 y4 y5 y12 y13 y14 y15 y23 y24 y25 y34 y35 y45]'); 

disp('model response') 

disp(table2) 

 

table3=double([m1 m2 m3 m4 m5 m12 m13 m14 m15 m23 m24 m25 m34 m35 m45]'); 

disp('model control response') 

disp(table3) 

 

%trial test run 

Test=[0.1 0.2 0.4 0.1 0.2]; 

double(subs(y,[X1 X2 X3 X4 X5],Test)) 

 

Trial test ans = 

25.7420 
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