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ABSTRACT: Explaining what a tensor represents is not an easy task. However, in a very simple way, a tensor 

can be defined as a set of entities that satisfy some basic rules, something similar to the vectors. The vectors 

satisfy the rules of the vector space, while the tensors obey the rules of a tensor space. The vector space is 

contained in the tensor space. A tensor is a generalization of the concept of a vector. By the way numbers, 

vectors and matrices are examples of tensors, and the difference between them is that each one has a certain 

order. Number is an "order 0 tensor", vector is an "order 1 tensor", and arrays are "order 2 tensors" and so on. 

The modern formulation of physics is based on tensor calculus, for these mathematical entities better describe 

the physical quantities in question, just as a vector better describes a displacement than a scalar number would 

describe. In fact, a tensor serves, mathematically, to simplify physical information. 
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The word tensor
 (1) 

was introduced in 1846 by William Rowan Hamilton. It was used in its present 

meaning by WOLDEMAR 
(2)

 in 1899. The tensor calculation was developed around 1890 by Gregory Ricci-

Curbastro under the title of Absolute Differential Calculus. In the 20th century the subject became known as 

tensor analysis and gained wider acceptance with the introduction of Einstein's theory of general relativity over 

1915. Tensors are also used in other fields as, for example, the mechanics of continuity. In order to better clarify 

the mathematical definition of tensor, the definition of NEARING 
(2)

 can be used, where the tensors are related 

to functional. In general, a function is something that associates a scalar with a scalar. On many occasions a 

functional is associated with the mapping of a set of functions in a set of scalars. Still using the concepts of 

NEARING, a functional is a function that maps vectors in scalars. Even in many applications, these functions 

can be seen as vectors.      

An analogy can also be made between the functions of a vector and a tensor. Tensors can also be 

defined as structures used to generalize the notion of scalars, vectors and matrices. Like such entities, a tensor is 

a form of representation associated with a set of operations such as sum and product. The order of a tensor is the 

dimensionality of the matrix necessary to represent it. The tensor can be represented by an array of nine 

elements, sixteen elements, and so on. A tensor of order n in a space with three dimensions has 3
n
 components.  

SECOND ORDER TENSOR 

In analogy to a vector that requires three components to be specified, a tensor of order 2 requires nine 

components: 

 

                                τij =  

τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

                                                  (1)        

                                       

SOARES 
(4)

 reports that the tensors used in the General Theory of Relativity (RGT) are tensors of order 

0, 1 and 2, and space is 4-dimensional space-time, three spatial coordinates, and temporal coordinate. Thus, the 

second-order tensors of the RGT have, in principle, 16 components, and real physical problems impose 

constraints of symmetry that reduce to 10 the really necessary components. The first order tensors are the 

vectors of the RGT which have four components. In order to illustrate this
 (3)

, let us consider a cubic element of 
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a given material, which may be a fluid, for example. Each face of this hypothetical cube can be specified by the 

direction that is perpendicular to it and pointing out of the cube. Suppose that on each face of this cube there is 

an acting force imposed by the remainder of the material, with components in the x, y, and z directions on each 

face of the cube. The quotient of this force by the area of the face on which it is applied is defined as tension. 

For an infinitesimal cubic element there is an associated tension, which will be equal for each parallel 

face. This tension in question has two directions, that of the face and that of the force component on that face. 

Thus xy would mean the value of the stress on the face perpendicular to the x-axis, in the direction parallel to 

the y-axis. The complete tensor would still have the components xx, xz, yy, yx, yz, zx, zy, zz.  In a more 

compact way it is said that the tensor of the tensions is a matrix of dimension (3x3) where all the tensions are 

associated to an infinitesimal element in the volume element below: 

 
Figure 1 - Infinitesimal element in the volume element in the material 

         

Each one of the six faces has a direction. By considering, for example, a face normal to the y direction 

moreover force acting on any face can act in the x, y and z directions. The force per unit face area acting in the x 

direction on that face is the stress yx (first face, second stress). The forces per unit face area acting in the y and z 

directions on that face are the stresses yy and yz. Here yy is a normal stress (acts normal, or perpendicular to 

the face) and yx and yz are shear stresses (act parallel to the face). Shear stresses similarly reverse on the 

opposite face are the stresses yy and yz.  Then the tensor  will be represented by 9 components.  

                                         τ =  

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

                                                    (2a) 

 

                                   

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 =   

σx τxy τxz

τyx σy τyz

τzx τzy σz

                            (2b) 

Following an analogous reasoning it can be constructed tensors of order greater than two. Second order 

tensors can be represented by square matrices, third order matrices and so on. In relativity, in addition to the 

spatial components, the temporal component is also considered. An electric charge generates a field of 

electromagnetic tensors that results in interaction at each point of the electric field and the magnetic field. In 

general relativity theory
 (5)

, for example, we need to measure the curvature of space-time, whose components are 

(t, x, y, z), so we need to use a representation that must have four indices related to time, length, width and 

height. This would be done by a tensor of order 4, i.e. a number with four indices. 

            SOARES
 (4)

 reports that space-time curvature is given, mathematically, by Einstein's tensor Gµν 

                                          Gμν =  Rμν −
1

2
gμν  R ,                                                              (3) 

where the indexes μ and ν assuming the values  0, 1, 2 and 3.  

            The tensor Rµν is called the Ricci tensor, formed from the Riemann curvature tensor, which is a tensor of 

order 4, being the most general to describe the curvature of any space of n dimensions. The tensor gµν is the 

tensor of the metric of space-time and plays the role of the field in Einstein's equations. According to SOARES, 

the matter and energy of the Einstein equations are represented by the energy-momentum tensor Tµν. Then the 

Einstein field complete equations assume the following compact form 

 

                                          Gμν = −k Tμν  ,                                                                              (4) 

where k = 8πG/c
4
 is Einstein's gravitational constant, G is the universal gravitational constant, and c is the 

velocity of light in the vacuum. 

x

y

z
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In Newtonian language gravity is a force and in Einstein language it is itself the curvature of space-

time. So the distribution of energy and matter generates the curvature. In relation to matter and energy of 

Einstein's equations, they are associated to the energy-momentum tensor that describes the energetic activity in 

space. The energy-momentum tensor quantitatively supplies the densities and flows of energy and momentum 

generated by the sources present in space and which will determine the geometry of space-time. The 

components of the energy-momentum tensor are as follows: matter and energy density, energy fluxes, moment 

component densities, and component fluxes which are shear stresses. 

The energy-momentum tensor Tµν, in relativity, is a symmetric tensor that describes the flow of the μ 

component of the momentum pµ across a hyper-surface. This tensor is useful because it can be written for any 

physical object containing energy, whether it is described by a system of particles or fields. According to 

BEZERRA DE MELLO
 (6)

 the tensor energy-momentum is given by 

 Tμν (x) = limx ′→x ∂μ ′ ∂ν G x, x′ +   ξ −
1

4
 gμν  

1

c2

∂2

∂t2 − ∇2 − ξ∇μ∇ν − ξRμν   ϕ
2(x)   (5) 

The energy-momentum tensor describes the distribution and flow of energy and momentum due to the 

presence and movement of matter and radiation in a space-time region. In a simplified way, the energy-

momentum tensor for electromagnetic fields is given by 

                                             Tμν =
1

μ0
 Fμ

σFνσ −
1

4
gμν Fρσ Fρσ                                            (6) 

 

In the relativistic dynamics
 (7)

 of the continuous means, for a uniform system the expected value of the energy-

momentum tensor assumes the following form 

                                           Tμν  =  ε + p uμuν + p gμν  ,                                                       (7) 

where uµ represents the vector velocity that describes the movement, gµν symbolizes the fundamental metric 

tensor, ε denotes the energy density and p represents the pressure. 

            The energy-momentum tensor can be written by a 4x4 matrix given by 

 

                                             Tμν =  

T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33

   ,                                               (8) 

where T00 represents the volumetric energy density; T10, T20, T30 symbolize the momentum densities; T01, T02, 

T03 denote energy flows; T21, T31, T32 represent moment flows; T12, T13, T23 symbolize terms of viscosity; T11, 

T22, T33 denote terms associated to pressure. 

The matrix formula of the electromagnetic tensor is given by 

                                        Fμν =

 

 
 

0 −Ex −Ey −Ez

Ex 0 −c Bz c By

Ey c Bz 0 −c Bx

Ez −c By cBx 0
 

 
 

  ,                                       (9) 

 where Ex, Ey , Ez  represent the components of electric field vector;  Bx , By , Bz  symbolize the components of 

magnetic field vector and c is the speed of light. 

 

I. FINAL CONSIDERATIONS 
This article is an attempt to report the first notions about tensors. To cite an illustrative case, we can say 

that the mathematical description of physical laws, to be valid, must be independent of the coordinate system 

employed: mathematical equations that express the laws of nature must be invariant in their form under changes 

of coordinates. It is exactly the fulfillment of this requirement that leads physicists to the study of tensor 

calculation, of capital importance in the General Theory of Relativity and very useful in several other branches 

of physics. Moreover tensors are important because they provide a concise mathematical structure for 

formulating and solving physics problems in areas such as elasticity, fluid mechanics, electromagnetism, general 

relativity, and so forth. Tensors are extremely useful tools, particularly when describing phenomena in higher 

dimensions. Other important considerations from the point of view of concepts and applications can be found in 

SOKOLNIKOFF
 (8)

. 
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