American Journal of Engineering Research (AJER)2019American Journal of Engineering Research (AJER)e-ISSN: 2320-0847 p-ISSN : 2320-0936Volume-8, Issue-5, pp-273-280www.ajer.orgResearch PaperOpen Access

# Color Coordinates and Uncertainty for Luminous Flux Secondary and Working Standard Lamps

Manal A. Haridy<sup>1,\*</sup>

<sup>1</sup> Photometry and Radiometry Division, National Institute of Standards (NIS), Giza, Egypt. \* Corresponding author: Manal A. Haridy

**ABSTRACT:** Nowadays, the world is concern in estimating the uncertainty in measurements than before. Any color measurement is not complete without estimating the accompanying uncertainty. In this work, the color coordinates values of CIE 1931 (x,y) chromaticity coordinates, CIE 1960 (u, v) uniform color space (UCS) and

CIE 1979 (u, v) uniform color space (UCS) are determined from their spectral power distributions for all NIS OSRAM total luminous flux secondary and working standard lamps. Theses lamps are classified in different groups depending on their correlated color temperatures (CCT). These lamps are very important for the routine work in photometry laboratory at National Institute of standards (NIS). A set up based on NIS Spectroradiometer ocean optics HR 2000 with uncertainty 4.7% and the photometric bench has been used for measuring the spectral power distribution of the lamps. The method of Guide to Expression of Uncertainty in Measurements (ISO) and the method of J. L Gardner in color measurements are applied to estimate the uncertainties in color of CIE 1931 (x,y) chromaticity coordinates, CIE 1960 (u, v) uniform color space (UCS)

and CIE 1979 (u, v) uniform color space (UCS) for all NIS OSRAM total luminous flux secondary and working standard lamps. These uncertainty values are useful and very important for determining the uncertainty in color quantities such as correlated color temperature (CCT).

**KEYWORDS:** Spectral Power Distribution (SPD), Tristimulus Response Functions, Chromaticity Coordinates, Correlated Color Temperature (CCT), Secondary and Working Standard lamps, Uncertainty.

Date of Submission: 07-05-2019

Date of acceptance: 24-05-2019

## I. INTRODUCTION

Any Metrological field required accurate assessment of uncertainties by following principles descried in the ISO Guide to the Expression of Uncertainty in Measurement [1]. This Guide has been used in the national metrology institutes to provide traceable measurements to the calibration laboratories. The estimation of uncertainty in color measurements are difficult and very important because any measurement of color is not complete without an estimation of accompanied uncertainty. The methods of ISO Guide to the Expression of Uncertainty in Measurement [1] and the method of J. L. Gardner in color measurements [2-4] are applied to evaluate the uncertainties in chromaticity coordinates and uniform colour space for some of NIS luminous flux

secondary and working standard lamps. The  $\bar{x}(\lambda)$ ,  $\bar{y}(\lambda)$ ,  $\bar{z}(\lambda)$  colour matching functions are tabulated [5] over the spectral range from 400-780 nm and used for all calculations presented in this paper as shown in Figure 1.



The Guide to the Expression of Uncertainty in Measurement (GUM) gives the Law of Propagation of Uncertainty.

$$u_c^2(y) = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{\partial f}{\partial x_i} \frac{\partial f}{x_j} u(x_i, x_j)$$
(1)

which applies for a measurement model of the form

$$Y = f(X_1, X_2, X_3, \dots, X_i, \dots)$$
(2)

where an estimate  $x_i$  of quantity  $X_i$  has an associated uncertainty  $u(x_i)$ , the squared combined standard uncertainty (the combined variance) is the sum of two terms in equation (3). The first term is the sum of the squares of the standard uncertainties  $u(x_i)$  (the sum of the variances) associated with each individual effect multiplied by the relevant sensitivity coefficient (the partial derivative) [1, 6]. By applying the law of propagation of uncertainty [7, 8] as the following equation:

$$u^{2} = \sum_{\text{variable}} \left(\frac{\partial f}{\partial \text{ variable}}\right)^{2} \times u^{2} (\text{variale})$$
(3)

#### **1.1 Color Coordinates**

If spectral of irradiance E ( $\lambda$ ) are made at the corresponding wavelengths, the tristimulus response are:

$$X = \sum_{i} \bar{E_i x_i}, \quad Y = \sum_{i} \bar{E_i y_i}, \text{ and } \quad Z = \sum_{i} \bar{E_i z_i}$$

Where  $x_i$ ,  $y_i$  and  $z_i$  are tabulated values of the tristimulus response functions.

 $E_i$  is the (relative ) spectral irradiance at wavelength iThen CIE 1931 (x,y) chromaticity coordinates are defined as [2 - 4]

$$x = \sum E_i x_i / \sum E_i t_i \tag{4}$$

$$y = \sum E_i \bar{y}_i / \sum E_i \bar{t}_i$$
(5)

and

$$t_i = x_i + y_i + z_i \tag{6}$$

The transforms of (x, y) CIE 1960 (u, v) uniform color space (UCS) are defined as [2 - 4]

www.ajer.org

The (u, v) transforms of (x, y) can be rewritten as

$$u = 4X/(X + 15Y + 3Z)$$
(7)

and

$$v = 6Y/(X + 15Y + 3Z)$$
 (8)

The transforms of (x, y) CIE 1979 (u, v) uniform color space (UCS) are a simple rescaling of the superseded

(u, v) as u = u and v = 3v/2 [2 - 4]: Then

$$u = 4X / (X + 15Y + 3Z) \tag{9}$$

and

$$v = 18Y / 2(X + 15Y + 3Z) \tag{10}$$

### 1.2 Uncertainties of color coordinates

1

From the propagation law of uncertainty [1], the square of the standard uncertainty in x and y is given by [2 - 4] $\sqrt{1/2}$ 

$$u_{c}(x) = \alpha \left( \sum E_{i}^{2} \bar{x}_{i}^{2} - 2x \sum E_{i}^{2} \bar{x}_{i} \bar{t}_{i} + x^{2} \sum E_{i}^{2} \bar{t}_{i}^{2} \right) / \sum E_{i} \bar{t}_{i} \quad (11)$$
$$u_{c}(y) = \alpha \left( \sum E_{i}^{2} \bar{y}_{i}^{2} - 2y \sum E_{i}^{2} \bar{y}_{i} \bar{t}_{i} + y^{2} \sum E_{i}^{2} \bar{t}_{i}^{2} \right) / \sum E_{i} \bar{t}_{i} \quad (12)$$

Г

The correlation coefficients for the tristimulus responses is given by the following equation:

2

$$r_{xy} = \sum E_i^2 \bar{x}_i \bar{y}_i / \sqrt{\sum E_i^2 x_i^2} \sum E_i^2 \bar{y}_i^2$$
(13)

From the propagation law of uncertainty [1], the square of the standard uncertainty in u and v is given by [2 - 4]

$$u_{c}(u) = \{(u-4)^{2} \sum E_{i}^{2} \overline{x}_{i}^{2} + u^{2}(225 \sum E_{i}^{2} \overline{y}_{i}^{2}) + 9 \sum E_{i}^{2} \overline{z}_{i}^{2} + 30u(u-4) \sum E_{i}^{2} \overline{x}_{i} \overline{y}_{i} + 6u(u-4) \sum E_{i}^{2} \overline{x}_{i} \overline{z}_{i} + 90u^{2} \sum E_{i}^{2} \overline{y}_{i} \overline{z}_{i})\}^{1/2} / \sum E_{i} \overline{x}_{i} + \sum 15E_{i} \overline{y}_{i} + 3\sum E_{i} \overline{z}_{i}$$
(14)

And

$$u_{c}(v) = \{9(5v-2)^{2} \sum E_{i}^{2} \overline{y}_{i}^{2} + v^{2} (\sum E_{i}^{2} \overline{x}_{i}^{2} + 9\sum E_{i}^{2} \overline{z}_{i}^{2}) + 6v(5v-2) \sum E_{i}^{2} \overline{x}_{i} \overline{y}_{i} + 6v^{2} \sum E_{i}^{2} \overline{x}_{i} \overline{z}_{i} + 18v(5v-2) \sum E_{i}^{2} \overline{y}_{i} \overline{z}_{i})\}^{1/2} / \sum E_{i} \overline{x}_{i} + \sum 15E_{i} \overline{y}_{i} + 3\sum E_{i} \overline{z}_{i}$$
(15)

www.ajer.org

### **II. MEASUREMENTS AND EXPERIMENTS**

The spectral power distribution of NIS luminous flux secondary and working standard lamps measured using the photometric bench and spectroradiometer ocean optics HR 2000 at NIS with uncertainty 4.7% (9). Light to be measured is guided into entrance port of spectroradiometer through an optical fiber and the spectrum is output through the USB port to a PC for a data acquisition as shown in Figure 2 [10]. The spectroradiometric measurements of light sources are performed based on CIE 63-1984 method recommended by International Electrotechnical Commission (IEC) [11]. The employed spectroradiometer is periodically calibrated using a standard source of irradiance based on standard method [12]. Measurements were performed in a conditioned dark room and maintaining the temperature at  $(25 \pm 2)^{\circ}C$ .



Figure. 2. Set up of measuring the spectral power distribution of NIS total luminous flux secondary and working standard lamps.

The electrical control parameters of the NIS OSRAM total luminous flux secondary and working standard lamps are tabulated in the tables from table 1 to table 8. The lamps calibrated at different correlated color temperature ranged from 2790 kelvin to 2351 to use in routine calibration work in our photometric laboratory [13, 14].

| Table 1. The Electrical Control R | esults for Seconda | ary Standard I | Lamps with CCT=2750 |
|-----------------------------------|--------------------|----------------|---------------------|
| NIC Secondow Standard Lamos       | SET Current        | Voltage        | Color temperature   |

| NIS Secondary Standard Lamps | SET Current<br>(amperes) | Voltage<br>(Volts) | Color temperature<br>(Kelvin) |  |
|------------------------------|--------------------------|--------------------|-------------------------------|--|
| NIS-E21                      | 1.7869                   | 102.1              | 2750                          |  |
| NIS-E22                      | 1.7991                   | 101.6              | 2750                          |  |

Table 2. The Electrical Control Results for Secondary Standard Lamps with CCT=2400

| NIS Secondary Standard Lamps | SET Current<br>(amperes) | Voltage<br>(Volts) | Color temperature<br>(Kelvin) |
|------------------------------|--------------------------|--------------------|-------------------------------|
| NIS-E31                      | 0.20482                  | 91.9               | 2400                          |
| NIS-E32                      | 0.20315                  | 92.0               | 2400                          |
| NIS-E33                      | 0.20382                  | 92.4               | 2400                          |

**Table 3.** The Electrical Control Results for working standard Lamps with CCT=2351

| NIS Working Standard Lamps | SET Current<br>(amperes) | Voltage<br>(Volts) | Color temperature<br>(Kelvin) |  |  |
|----------------------------|--------------------------|--------------------|-------------------------------|--|--|
| NIS-F1                     | 0.20345                  | 90.7               | 2351                          |  |  |
| NIS-F2                     | 0.20362                  | 90.3               | 2351                          |  |  |
| NIS-F3                     | 0.20484                  | 91.0               | 2351                          |  |  |
| NIS-F4                     | 0.20435                  | 91.0               | 2351                          |  |  |
| NIS-F5                     | 0.20319                  | 90.4               | 2351                          |  |  |

| NIS Working Standard Lamps | SET Current<br>(amperes) | Voltage<br>(Volts) | Color temperature<br>(Kelvin) |  |
|----------------------------|--------------------------|--------------------|-------------------------------|--|
| NIS-F7                     | 0.37883                  | 108.7              | 2693                          |  |
| NIS-F9                     | 0.38033                  | 109.5              | 2693                          |  |

**Table 4.** The Electrical Control Results for working standard Lamps with CCT=2693

 Table 5. The Electrical Control Results for working standard Lamps with CCT=2761

| NIS Working Standard Lamps | SET Current<br>(amperes) | Voltage<br>(Volts) | Color temperature<br>(Kelvin) |  |
|----------------------------|--------------------------|--------------------|-------------------------------|--|
| NIS-F11                    | 0.57724                  | 108.5              | 2761                          |  |
| NIS-F13                    | 0.57850                  | 108.2              | 2761                          |  |
| NIS-F14                    | 0.58203                  | 109.4              | 2761                          |  |

Table 6. The Electrical Control Results for working standard Lamps with CCT=2737

| NIS Working Standard Lamps | SET Current<br>(amperes) | Voltage<br>(Volts) | Color temperature<br>(Kelvin) |  |  |
|----------------------------|--------------------------|--------------------|-------------------------------|--|--|
| NIS-F16                    | 0.70383                  | 109.2              | 2737                          |  |  |
| NIS-F17                    | 0.70389                  | 106.9              | 2737                          |  |  |
| NIS-F18                    | 0.71908                  | 109.0              | 2737                          |  |  |
| NIS-F20                    | 0.71005                  | 109.0              | 2737                          |  |  |

Table 7. The Electrical Control Results for working standard Lamps with CCT=2788

| NIS Working Standard Lamps | SET Current<br>(amperes) | Voltage<br>(Volts) | Color temperature<br>(Kelvin) |  |
|----------------------------|--------------------------|--------------------|-------------------------------|--|
| NIS-F23                    | 0.90384                  | 105.5              | 2788                          |  |
| NIS-F24                    | 0.90491                  | 106.6              | 2788                          |  |
| NIS-F25                    | 0.90735                  | 106.7              | 2788                          |  |

**Table 8.** The Electrical Control Results for working standard Lamps with CCT=2790

| NIS Working Standard Lamps | SET Current<br>(amperes) | Voltage<br>(Volts) | Color temperature<br>(Kelvin) |
|----------------------------|--------------------------|--------------------|-------------------------------|
| NIS-F26                    | 1.7911                   | 101.8              | 2790                          |
| NIS-F27                    | 1.7853                   | 101.4              | 2790                          |
| NIS-F29                    | 1.7820                   | 101.1              | 2790                          |
| NIS-F30                    | 1.7923                   | 100.3              | 2790                          |

### **III. RESULTS AND DISCUSSIONS**

The results of measuring the spectral power distribution of some of NIS luminous flux secondary and working standard lamps in photometry and radiometry division at National Institute of standards (NIS) shown in Figure 3. It shows the spectral power distribution (SPDs) diagrams for the lamps and their radiant power emitted by the source at each wavelength over the visible region (400 to 780 nm). It is found that the lamps have its own characteristics and they emit their spectrum in the visible region with different spectral distributions.





### 3.1 The values of color coordinates

The values of CIE 1931 (x,y) chromaticity coordinates, CIE 1960 (u, v) uniform color space (UCS) and

CIE 1979 (u,v) uniform color space (UCS) for NIS OSRAM total luminous flux secondary and working standard lamps are tabulated in the tables from table 9 to table 16. The lamps are classified and calibrated depending on their correlated color temperature which are ranged from 2790 kelvin to 2351.

| Table. 9         The color coordinates values for secondary standard lamps with CCT=2750 |       |       |       |       |       |       |  |
|------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|--|
| Secondary standard lamps                                                                 | х     | у     | u     | v     | u'    | v'    |  |
| E21                                                                                      | 0.465 | 0.416 | 0.264 | 0.353 | 0.264 | 0.530 |  |
| E22                                                                                      | 0.448 | 0.397 | 0.261 | 0.347 | 0.261 | 0.520 |  |
| E24                                                                                      | 0.464 | 0.414 | 0.264 | 0.353 | 0.264 | 0.529 |  |

| Tal | le. 10 The | color c | coordinates | values f | for secondar | y standard | lamps | with | CCT= | 2400 |
|-----|------------|---------|-------------|----------|--------------|------------|-------|------|------|------|
|     |            |         |             |          |              |            |       |      |      |      |

| Secondary standard lamps | Х     | У     | u     | v     | u'    | v'    |
|--------------------------|-------|-------|-------|-------|-------|-------|
| E31                      | 0.614 | 0.385 | 0.384 | 0.361 | 0.384 | 0.542 |
| E32                      | 0.605 | 0.394 | 0.372 | 0.363 | 0.372 | 0.544 |
| E33                      | 0.467 | 0.389 | 0.278 | 0.347 | 0.278 | 0.520 |

Table. 11 The color coordinates values for working standard lamps with CCT=2351

| Working standard lamps | Х     | у     | u     | v     | u'    | v'    |
|------------------------|-------|-------|-------|-------|-------|-------|
| F1                     | 0.426 | 0.358 | 0.265 | 0.333 | 0.265 | 0.500 |
| F2                     | 0.454 | 0.379 | 0.273 | 0.342 | 0.273 | 0.514 |
| F3                     | 0.421 | 0.346 | 0.267 | 0.329 | 0.267 | 0.493 |
| F4                     | 0.604 | 0.395 | 0.370 | 0.363 | 0.370 | 0.544 |
| F5                     | 0.428 | 0.342 | 0.274 | 0.328 | 0.274 | 0.492 |

Table. 12 The color coordinates values for working standard lamps with CCT=2693

| Working standard lamps | Х     | у     | u     | v     | u'    | v'    |
|------------------------|-------|-------|-------|-------|-------|-------|
| F7                     | 0.445 | 0.384 | 0.265 | 0.343 | 0.265 | 0.515 |
| F9                     | 0.452 | 0.395 | 0.265 | 0.347 | 0.265 | 0.520 |

Table. 13 The color coordinates values for working standard lamps with CCT=2761

| Working standard lamps | Х     | у     | u     | v     | u'    | v'    |
|------------------------|-------|-------|-------|-------|-------|-------|
| F11                    | 0.452 | 0.400 | 0.262 | 0.348 | 0.262 | 0.522 |
| F13                    | 0.443 | 0.389 | 0.261 | 0.344 | 0.261 | 0.516 |
| F14                    | 0.494 | 0.443 | 0.270 | 0.363 | 0.270 | 0.544 |

| <b>Table. 14</b> The color coordinates values for working standard lambs with $CCT=2$ |
|---------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------|

| Working standard lamps | Х     | у     | u     | v     | u'    | v'    |
|------------------------|-------|-------|-------|-------|-------|-------|
| F16                    | 0.495 | 0.441 | 0.271 | 0.362 | 0.271 | 0.544 |
| F17                    | 0.449 | 0.392 | 0.263 | 0.346 | 0.263 | 0.518 |
| F18                    | 0.450 | 0.396 | 0.263 | 0.347 | 0.263 | 0.520 |
| F20                    | 0.451 | 0.398 | 0.263 | 0.348 | 0.263 | 0.521 |
| F22                    | 0.452 | 0.400 | 0.262 | 0.348 | 0.262 | 0.522 |

 Table. 15 The color coordinates values for working standard Lamps with CCT=2788

| Working standard lamps | <b>ting standard lamps</b> x y u |       | v     | u'    | v'    |       |
|------------------------|----------------------------------|-------|-------|-------|-------|-------|
| F23                    | 0.449                            | 0.397 | 0.261 | 0.347 | 0.261 | 0.521 |
| F24                    | 0.447                            | 0.395 | 0.261 | 0.346 | 0.261 | 0.519 |
| F25                    | 0.447                            | 0.395 | 0.261 | 0.346 | 0.261 | 0.519 |

#### Table. 16 The color coordinates values for working standard Lamps with CCT= 2790

| Working standard lamps | rking standard lamps x |       | u     | v     | u'    | v'    |
|------------------------|------------------------|-------|-------|-------|-------|-------|
| F26                    | 0.445                  | 0.397 | 0.259 | 0.346 | 0.259 | 0.520 |
| F27                    | 0.447                  | 0.397 | 0.261 | 0.347 | 0.261 | 0.520 |
| F29                    | 0.449                  | 0.398 | 0.261 | 0.347 | 0.261 | 0.521 |
| F30                    | 0.460                  | 0.412 | 0.262 | 0.352 | 0.262 | 0.521 |

## IV. THE UNCERTAINTY VALUES OF COLOR COORDINATES

The uncertainty values of CIE 1931 (x,y) chromaticity coordinates, CIE 1960 (u, v) uniform color

space (UCS) and CIE 1979 (u, v) uniform color space (UCS) for NIS OSRAM total luminous flux secondary and working standard lamps are tabulated in the tables from table 17 to table 24 depending on their correlated color temperature.

| Secondary standard lamps | uc(x)   | uc(y)   | uc(u)   | uc(v)   | uc(u')  | uc(v')  |
|--------------------------|---------|---------|---------|---------|---------|---------|
| E21                      | 0.05039 | 0.01681 | 0.00458 | 0.00602 | 0.00458 | 0.00687 |
| E22                      | 0.04707 | 0.01571 | 0.00519 | 0.00691 | 0.00519 | 0.00778 |
| E24                      | 0.05024 | 0.01674 | 0.00435 | 0.00570 | 0.00435 | 0.00653 |

Table. 18 The uncertainty of color coordinates values for secondary standard lamps with CCT=2400

| Secondary standard lamps | uc(x)   | uc(y)   | uc(u)   | uc(v)   | uc(u')  | uc(v')  |
|--------------------------|---------|---------|---------|---------|---------|---------|
| E31                      | 0.03815 | 0.01430 | 0.04829 | 0.02043 | 0.04829 | 0.07243 |
| E32                      | 0.03858 | 0.01461 | 0.04233 | 0.01949 | 0.04233 | 0.06349 |
| E33                      | 0.03062 | 0.01337 | 0.01369 | 0.01363 | 0.01369 | 0.02054 |

Table. 19 The uncertainty of color coordinates values for working standard lamps with CCT=2351

| Working standard lamps | uc(x)   | uc(y)   | uc(u)   | uc(v)   | uc(u')  | uc(v')  |
|------------------------|---------|---------|---------|---------|---------|---------|
| F1                     | 0.03091 | 0.01214 | 0.01001 | 0.01169 | 0.01001 | 0.01501 |
| F2                     | 0.03002 | 0.01291 | 0.01261 | 0.06328 | 0.01261 | 0.01891 |
| F3                     | 0.03188 | 0.01165 | 0.01022 | 0.01132 | 0.01022 | 0.01533 |
| F4                     | 0.03758 | 0.01453 | 0.04264 | 0.01982 | 0.04264 | 0.06396 |
| F5                     | 0.03189 | 0.01143 | 0.01214 | 0.01189 | 0.01214 | 0.01821 |

| <b>Table. 20</b> The uncertainty of | f color | coordinates | values for | or working | standard lamp | os with | CCT= | :2693 |
|-------------------------------------|---------|-------------|------------|------------|---------------|---------|------|-------|
|-------------------------------------|---------|-------------|------------|------------|---------------|---------|------|-------|

| Working standard lamps | uc(x)   | uc(y)   | uc(u)   | uc(v)   | uc(u')  | uc(v')  |
|------------------------|---------|---------|---------|---------|---------|---------|
| F7                     | 0.04406 | 0.01484 | 0.00743 | 0.00896 | 0.00743 | 0.01115 |
| F9                     | 0.04277 | 0.01523 | 0.00764 | 0.00948 | 0.00764 | 0.01146 |

| Table. 21 The uncertaint | y of color coordinates | values for working sta | andard lamps with CCT=2761 |
|--------------------------|------------------------|------------------------|----------------------------|
|                          |                        | 0                      | 1                          |

| Working standard | uc(x)   | uc(y)   | uc(u)   | uc(v)   | uc(u')  | uc(v')  |
|------------------|---------|---------|---------|---------|---------|---------|
| lamps            |         |         |         |         |         |         |
| F11              | 0.04730 | 0.01587 | 0.00660 | 0.00867 | 0.00660 | 0.00989 |
| F13              | 0.04577 | 0.01520 | 0.00663 | 0.00862 | 0.00663 | 0.00994 |
| F14              | 0.05097 | 0.01798 | 0.00786 | 0.00988 | 0.00786 | 0.01179 |

| <b>Table.22</b> The uncertainty | v of color | coordinates | values for | or working | standard L | amps with | CCT=2737 |
|---------------------------------|------------|-------------|------------|------------|------------|-----------|----------|
| Tubleta The aneertaint          | 01 00101   | coorainates | raiaeb it  | or working | Standard D | amps min  | 001 1/0/ |

| Working standard lamps | uc(x)   | uc(y)   | uc(u)   | uc(v)   | uc(u')  | uc(v')  |
|------------------------|---------|---------|---------|---------|---------|---------|
| F16                    | 0.04997 | 0.01782 | 0.00820 | 0.01007 | 0.00820 | 0.01230 |
| F17                    | 0.04540 | 0.01534 | 0.00703 | 0.00885 | 0.00703 | 0.01054 |
| F18                    | 0.04566 | 0.01553 | 0.00691 | 0.00887 | 0.00691 | 0.01037 |
| F20                    | 0.04569 | 0.01565 | 0.00691 | 0.00887 | 0.00691 | 0.01037 |
| F22                    | 0.04700 | 0.01584 | 0.00666 | 0.00871 | 0.00666 | 0.00999 |

| <b>Table. 23</b> 1 | The uncertainty | of color co | pordinates v | values for | working | standard Lam | os with ( | CCT=2788 |
|--------------------|-----------------|-------------|--------------|------------|---------|--------------|-----------|----------|
|                    | /               |             |              |            |         |              |           |          |

| Working standard lamps | uc(x)   | uc(y)   | uc(u)   | uc(v)   | uc(u')  | uc(v')  |
|------------------------|---------|---------|---------|---------|---------|---------|
| F23                    | 0.04666 | 0.01566 | 0.00657 | 0.00866 | 0.00657 | 0.00985 |
| F24                    | 0.04741 | 0.01561 | 0.26127 | 0.34618 | 0.26127 | 0.39191 |
| F25                    | 0.04717 | 0.01577 | 0.00651 | 0.00860 | 0.00651 | 0.00976 |

#### Table .24 The uncertainty of color coordinates values for working standard Lamps with CCT=2790

| Working standard lamps | uc(x)   | uc(y)   | uc(u)   | uc(v)   | uc(u')  | uc(v')  |
|------------------------|---------|---------|---------|---------|---------|---------|
| F26                    | 0.04978 | 0.01588 | 0.00578 | 0.00804 | 0.00578 | 0.00866 |
| F27                    | 0.04791 | 0.01574 | 0.00628 | 0.00841 | 0.00628 | 0.00943 |
| F29                    | 0.04802 | 0.01581 | 0.00631 | 0.00843 | 0.00631 | 0.00947 |
| F30                    | 0.05094 | 0.01667 | 0.00625 | 0.00840 | 0.00625 | 0.00938 |



### V. CONCLUSIONS

In this work, the color coordinates values of CIE 1931 (x,y) chromaticity coordinates, CIE 1960 (u, v) uniform

color space (UCS) and CIE 1979 (u, v) uniform color space (UCS) are determined from their spectral power distributions for all NIS OSRAM total luminous flux secondary and working standard lamps. Theses lamps are classified in different groups depending on their correlated color temperatures (CCT). These lamps are very important for the routine work in photometry laboratory at National Institute of standards (NIS). A set up based on NIS Spectroradiometer ocean optics HR 2000 with uncertainty 4.7% and the photometric bench has been used for measuring the spectral power distribution of the lamps. The method of Guide to Expression of Uncertainty in Measurements (ISO) and the method of J. L Gardner in color measurements are applied to estimate the uncertainties in color of CIE 1931 (x,y) chromaticity coordinates, CIE 1960 (u, v) uniform color

space (UCS) and CIE 1979 (u, v) uniform color space (UCS) for all NIS OSRAM total luminous flux secondary and working standard lamps. These uncertainty values are useful and very important for determining the uncertainty in color quantities such as correlated color temperature (CCT).

#### REFERENCES

- [1]. Guide to the Expression of Uncertainty in Measurement, 1993, First Edition, International Organization for Standardization (ISO).
- [2]. Commission International de l'Eclairage, "Colorimetry", Second Ed. CIE 15.2-1986.
- [3]. J. L. Gardner,"Uncertainty Estimation in Colour Measurement", Metrologia, VOL. 25, 2000.
- [4]. J. L. Gardner, "Correlated colour temperature- uncertainty and estimation", Metrologia, VOL. 37, 2000.
- [5]. Colorimetry, 3rd ed., International Commission on Illumination, Vienna, CIE Publication 15 (2004).
- [6]. Guide to the Expression of Uncertainty in Measurement, 1995, First Edition, International Organization for Standardization (ISO).
- [7]. Emma R. Woolliams, "Determining the uncertainty associated with integrals of spectral quantities", Metrology for solid state lighting, EMRP-ENG05-1.3.1, Version 1.0, 2013.
- [8]. U. Krüger and G. Sauter. Comparison of methods for indicating the measurement uncertainty of integral parameters on the basis of spectral data by means of the measurement uncertainty of the fl' value. Proceedings of the 2nd CIE Expert Symposium on Measurement Uncertainty, CIE x029:2006, p.159-163.
- [9]. Manal A. Haridy, 2015b. Uncertainty estimation of spectral mismatch correction factor for incandescent lamps. Int. J. Curr. Res. Aca. Rev., 3(7): 262 273.
- [10]. Samaa M. El-faramawy, Sameh M. Reda, Alaa Eldin Ahmed Abd- Elmaged, Rem H. El-gebaly, A. Soltan Monem "Radiometric Technique to Assess the Qualification of Phototherapy Luminaire for Jaundice Treatment", Medical Science, Volume 5, Issue :, pp. 428-430,7, July 2015.
- [11]. International Electrotechnical Commission (IEC). Spectroradiometric measurement of light sources. Vienna: CIE Publication;1984.
- [12]. ASTM G138. Standard test method for calibration of a spectroradiometer using a standard source of irradiance. Pennsylvania: West Conshohocken; 2012
- [13]. Kertil, J. 1969. Report on photometric measurements and instruction notes for calibration of photometric standards, NIS, Cairo.
- [14]. Manal A. Haridy, "Improvement uncertainty of total luminous flux measurements by determining some correction factors". Int. J. Curr. Res. Aca. Rev., 3(6): 264 274, 2015.

Manal A. Haridy" Color Coordinates and Uncertainty for Luminous Flux Secondary and Working Standard Lamps " American Journal of Engineering Research (AJER), vol.8, no.05, 2019, pp.273-280

www.ajer.org