American Journal of Engineering Research (AJER) 2019 **American Journal of Engineering Research (AJER)** e-ISSN: 2320-0847 p-ISSN : 2320-0936 Volume-8, Issue-11, pp-62-74 www.ajer.org **Open Access Research Paper**

Comparative research into the load-bearing capacity of horizontal pressure vessels supported by saddles

*****Walther Stikvoort

Consultant Static Pressure Equipment & Structural Integrity Wagnerlaan 37, 9402 SH, Assen, The Netherlands (NL) * Corresponding Author: Walther Stikvoort

ABSTRACT: This article evaluates and compares permissible saddle reactions for horizontal pressure vessels resting on two symmetrically placed saddles. Successively allowable saddle loads have been determined for a pre-selected typical horizontal pressure vessel according to various recognized design codes. Control of the circumferential compressive membrane plus bending stress at the horn of the saddles is central in the consideration because it determines often the allowable support load. Limiting these stresses prevents so-called "bulging" of the cylindrical shell over the saddle ends. Significant differences were found by comparing the mutually results. Remarkable differences occur in particular between methods based on "Zick" compared to methods based on "limit loads". The primary aim of this article is to provide engineers involved in the design of pressure vessels with new insights into this matter in order to arrive at a sound and well - considered vessel support design while ensuring structural integrity requirements.

KEYWORDS: saddle reactions, horizontal pressure vessel, circumferential compressive membrane plus bending stress, bulging, "Zick" method, "limit load" method, support design, structural integrity.

Date of submission: 27-10-2019

Date of acceptance: 15-11-2019

I. INTRODUCTION

Horizontal pressure vessels are usually symmetrically supported with two saddle supports. More saddles would result in static indeterminacy and difficulty in predicting the load distribution in the event of foundation settlement. The methodology for calculating stresses in the vicinity of the support saddles was developed by L.P.Zick [1] in the early 1950s and is still widely used by designers of horizontal pressure vessels. Zick's analysis was based on the assumption that the supports are rigid and not connected to the vessel shell. In reality most vessels have flexible supports that are welded onto the vessel shell. This means that Zick's analysis is conservative for traditional saddle constructions. The L.P. Zick method has been adopted by many recognized design codes including Rules for Pressure Vessels (RfPV) [2], ASME Section VIII-Division 2[3] and PD 5500 [4]. The current practice is to use the semi-empirical method developed by Zick which is based on beam theory and various assumptions to simplify the problem. Due to these assumptions Zick's method may not yield accurate results but has proved to be sufficiently reliable in practice already for a considerably long period. However vigilance is required in order not to underestimate the load carrying capacity of the vessel, by realizing that the stresses are strongly localized in the area of the saddle horns, while the rest of the vessel is only moderately stressed. This article focuses on the circumferential stresses at the horn of the saddle and at the end of the wear plate since these are often the most important stresses. Moreover, in most cases those stresses determine the allowable support load. In addition to the method developed by L.P.Zick, a limit load analysis method was developed in a later period in the former DDR that was included in the so-called TGL standards [5]. This method is now in slightly modified form included in both AD 2000 [6] and EN 13445-3[7] and will also be addressed in this article.

II. OBSERVATIONS CONSERNING WEAR PLATES

When calculating the circumferential stresses at the horn of the saddle, it is important to recognize the influence of the wear plate that may be present between the cylindrical shell and the saddle. It is claimed that such a wear plate has a stress-reducing effect if it is of sufficient dimensions. However, it appears that the

various codes apply different criteria for this which make it difficult to obtain a reliable result. Clarity leaves something to be desired. In practice, different interpretations are attributed to the influence of a wear plate. In summary, the following conditions generally apply to both the saddles and the wear plates:

- Wear plate welded continuously around the cylindrical shell
- Width of the wear plate $\ge b + 1.56 \sqrt{R.t}$ [1][3] respectively w + 1.6 $\sqrt{R.t}$ [2] or b + 10t [4] with b = width of saddle, R = mean radius of cylindrical shell and t = shell thickness
- Circumferential span of wear plate ≥ θ + 10° [2] or θ + 12° [3] with θ = Subtended angle or saddle contact angle
- Thickness of wear plate, maximum 2 times shell thickness (depending on applicable code) Corners of wear plate rounded off with radius ≥ 3 times the wear plate thickness [2]
- Each support should extend at least 120° around and approximately $\sqrt{30 \times \text{vessel diameter}}$ [4] along the vessel in order to transmit the reaction gradually into the shell wall
- One vessel support is fixed while the other support has slotted holes in the base plate for axial movement when thermal strains occur
- Diameter to thickness ratios up to the order of 250 [4] (depending on applicable code)
- Material of wear plate preferably identical to shell material. In case that the wear plate material has a lower allowable stress, the wear plate thickness must be corrected with the allowable stress ratio of both materials. (depending on applicable code)

Factors Affecting Stress Distribution At Horn Of Saddles

Saddle horn area is the area in the vessel where wear plate just adjoins the vessel. In this area high stresses are produced compared to the other vessel area. The following elements affect the magnitude of these stresses:

- Saddle wrap (embracing) angle
- Saddle width
- Wear plate width (wear plate is synonymous with reinforcing plate and saddle plate)
- Distance of saddle from head
- Wear plate extension
- Wear plate thickness

Exemptions Regarding Wear Plates

The wear plate according to APPENDIX 2 does not satisfy the conditions of the relevant design code for a vessel with an outside diameter of 2000 mm and a shell thickness of 10 mm. Therefore the value zero must be entered for the wear plate thickness in the formulas for the determination of the circumferential compressive membrane plus bending stress at the horn of the saddle.

Extended Wear Plate Dimensions (For "Zick" Based Analysis)

The wear plate according to APPENDIX 2 may be taken into account when calculating the circumferential compressive membrane plus bending stress if it satisfy the following dimensions:

Width of the wear plate $\ge w + 1.56 \sqrt{R_m \cdot t} = 250 + 1.56 \sqrt{995 \times 10} = 405.6 \text{ mm} \Rightarrow \text{Take: } 410 \text{ mm}$ Subtended angle or saddle contact angle: $\theta + 12^\circ = 132^\circ$

Scope Of "Zick" Based Analysis

In determining the allowable saddle support reaction, it will be assumed that the allowable circumferential compressive membrane plus bending stress is achieved at the horn of the saddle while the vessel is under atmospheric pressure. The following cases will be calculated:

- $A/R \le 0.5$ w/o wear plate @ operating and test temperature
- $A/R \le 0.5$ with wear plate @ operating and test temperature
- $A/R \ge 1.0$ w/o wear plate @ operating and test temperature
- $A/R \ge 1.0$ with wear plate @ operating and test temperature

The above cases will be calculated according to the following design codes:

- RfPV- Sheet D 1105 § 3.2
- PD 5500 Clause G.3.3.2.6.2
- ASME BPVC Section VIII-Division 2; Clause 4.15.3.5

Formula Overview For Determining The Allowable Saddle Support Reaction

The table below shows the equations to determine the allowable saddle reactions that are derived from the relevant design codes.

Design Code	Equations for allowable saddle reactions
RfPV- Sheet D 1105 § 3.2	$F = \frac{1.5 f}{\left[\frac{1}{4(d+d_1)(b+1.6\sqrt{r.d})} + \frac{6 k_3.r.C_{\sigma}}{b_e \cdot (d^2 + d_1^2)}\right]}$
PD 5500 - Clause G.3.3.2.6.2	$W_1 = \frac{1.25 f}{\left[\frac{1}{4(t+t_1)(b_2+10t)} + \frac{6 k_6 \cdot r. C_{\sigma}}{b_e \cdot (t+t_1)^2}\right]}$
ASME BPVC Section VIII-Division 2; Clause 4.15.3.5	$Q = \frac{1.25 S}{\left[\frac{1}{4(t+t_r)\left(b+1.56\sqrt{R_m \cdot t}\right)} + \frac{6 k_6 \cdot R_m \cdot C_{\sigma}}{b_e \cdot (t+t_r)^2}\right]}$

Where:

 $F = W_1 = Q$ = saddle reaction (N)

 $r = R_m$ = the mean vessel radius (mm)

t = d = the wall thickness of the vessel (mm)

 $t_1 = d_1 =$ thickness of wear plate (mm)

 $b = b_2$ = the width of the saddle (mm)

 b_e = the smaller value of 4R and half the length between the tangent lines of the vessel (mm)

f = S = design strength (MPa) respectively f_{oper} @ operating condition and f_{test} @ hydrostatic test condition i.e.

f is respectively:
$$f_{oper} = R_{e;9m}/1.5$$
 (MPa) and $f_{test} = R_e/1.5$ (MPa

 $k_3 = k_6 = factor depending on saddle angle and the distance of saddle to the tangent line (see the table below) (-)$ $<math>C_{\sigma} = 1 - \frac{b - 300 \ mm}{A}$ with minimum 0.4 and maximum 1.0 (-)

A = distance from saddle support to adjacent end of cylindrical part (mm)

 R_e = yield strength @ test temperature (MPa)

 $R_{e:9m}$ = yield strength @ operating temperature (MPa)

Saddle angle θ	$k_3 = k_6$	$k_3 = k_6$
	$A/R \le 0.5$	A/R ≥1.0
120°	0.0132	0.0528
150°	0.0079	0.0316

NOTE: For 0.50 < A/R < 1.00 values for k_3 and k_6 should be obtained by linear interpolation of the values in this table.

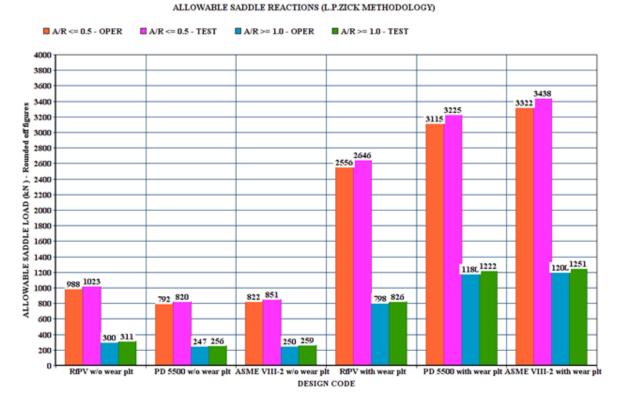
If the wear plate does not satisfy the conditions of the applicable design code, then the value 0 (zero) must be entered for t_1 or t_r in the formulas for F , W_1 and Q.

A notable difference has been observed in the equations with respect to F, W₁ and Q, namely that the term relating to the circumferential bending stress in particular: $\frac{F \cdot 6 k_3 \cdot r \cdot C_{\sigma}}{b_e \cdot (d^2 + d_1^2)} respectively \frac{W_1 \cdot 6 k_6 \cdot r \cdot C_{\sigma}}{b_e \cdot (t + t_1)^2} and \frac{Q \cdot 6 k_6 \cdot R_m \cdot C_{\sigma}}{b_e \cdot (t + t_r)^2}$ differ from each other in the term between brackets! Moreover a paragraph has been included in [8] concerning "circumferential bending". This includes specific conditions that relate to the shell - and wear plate thickness as well as the dimensions of the wear plate i.e. if A/R ≤ 0.5 (stiffened by the adjacent heads) and the wear plate extends R/10 above the horn of saddle then: $t_s = t_s + t_w$ and $ts^2 = t_s^2 + t_w^2$, where $t_s = d = t$ and $t_w = d_1 = t_r$. Note that if the saddle support is near the vessel end, then the shell remains circular and the full section is available to resist bending. If not, then only a partial section is available. The highest stress is often at the saddle horn, where the shell "bends" over the support and has little or no resistance to radial deformation. More information on this topic can be found in [9]. Unfortunately, a solid explanation for all these differences could not be found.

Numerical Elaborations "Zick" Based Analysis

Vessel and saddle data are included in APPENDIX 1.Typical saddle configuration is included in APPENDIX 2.

APPENDIX 2.	
CASE: $A/R \le 0.5$ w/o wear plate @ operating and test to	mperature
RfPV- Sheet D 1105 § 3.2	
Input data:	$F = \frac{1.5 \text{ f}}{1.5 \text{ f}}$
f = 170.67 MPa @ 50°C respectively:	$F = \frac{1.5 \text{ f}}{\left[\frac{1}{4(d+d_1)(b+1.6\sqrt{r.d})} + \frac{6 \text{ k}_3.\text{ r. } \text{C}_{\sigma}}{b_e \cdot (d^2 + d_1^2)}\right]}$
176.67MPa @ 20° C; k ₃ = 0.0132;	$^{1}4(d + d_{1})(b + 1.6\sqrt{r.d}) + b_{e} \cdot (d^{2} + d_{1}^{2})^{T}$
$r = 995 mm; C_{\sigma} = 1.0; d = 10 mm; d_1 = 0 mm;$	
$b = 250 \text{ mm}; b_e = 3980 \text{ mm}$	
$F_{operating} = 988302 \text{ N}$	$F_{\text{test}} = 988302 \text{ x } 176.67/170.67 = 1023046 \text{ N}$
CASE: $A/R \le 0.5$ with wear plate @ operating and test t	emperature
RfPV- Sheet D 1105 § 3.2	
Input data:	п.5 f
$f = 170.67 \text{ MPa} @ 50^{\circ}\text{C}$ respectively:	$F = \frac{1.5 \text{ f}}{\left[\frac{1}{4(d+d_1)(b+1.6\sqrt{r.d})} + \frac{6 \text{ k}_3.\text{ r. }C_{\sigma}}{b_e \cdot (d^2 + d_1^2)}\right]}$
176.67MPa @ 20° C; k ₃ = 0.0132; r = 995 mm;	$\left[\frac{1}{4(d+d_1)(b+1.6\sqrt{r.d})} + \frac{1}{b_e} \cdot (d^2 + d_1^2)\right]$
$C_{\sigma} = 1.0$; d = 10 mm; d ₁ = 13 mm; b = 250 mm;	
$b_{e} = 3980 \text{ mm}$	
$F_{operating} = 2556394 \text{ N}$	F _{test} = 2556394 x 176.67/170.67 = 2646266 N
CASE: $A/R \le 0.5$ w/o wear plate @ operating and test te	
PD 5500 - Clause G.3.3.2.6.2	
Input data:	1 25 f
$f = 170.67 \text{ MPa} @ 50^{\circ}\text{C}$ respectively:	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{1} \cdot (t+t_{1})^{2}}\right]}$
176.67MPa @ 20°C; $k_6 = 0.0132$; $r = 995$ mm;	$\left[\frac{1}{4(t+t_1)(h_2+10t)}+\frac{0.K_0.1.C_{\sigma}}{h_2\cdot(t+t_1)^2}\right]$
$C_{\sigma} = 1.0; t = 10 \text{ mm}; t_1 = 0 \text{ mm}; b_2 = 250 \text{ mm};$	
$b_e = 3980 \text{ mm}$	
	W 701915 - 17((7/170 (7 910(51 N
W _{operating} = 791815 N	W _{test} = 791815 x 176.67/170.67 = 819651 N
CASE: $A/R \le 0.5$ with wear plate @ operating and test t	emperature
PD 5500 - Clause G.3.3.2.6.2	
PD 5500 - Clause G.3.3.2.6.2 Input data:	
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively:	
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; $k_6 = 0.0132$;	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; $k_6 = 0.0132$; $r = 995$ mm; $C_{\sigma} = 1.0$; $t = 10$ mm; $t_1 = 13$ mm;	
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; $k_6 = 0.0132$; $r = 995$ mm; $C_{\sigma} = 1.0$; $t = 10$ mm; $t_1 = 13$ mm; $b_2 = 250$ mm; $b_e = 3980$ mm	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; $k_6 = 0.0132$; $r = 995$ mm; $C_{\sigma} = 1.0$; $t = 10$ mm; $t_1 = 13$ mm;	
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; $k_6 = 0.0132$; $r = 995$ mm; $C_{\sigma} = 1.0$; $t = 10$ mm; $t_1 = 13$ mm; $b_2 = 250$ mm; $b_e = 3980$ mm $W_{operating} = 3115098$ N CASE: A/R ≤ 0.5 w/o wear plate @ operating and test te	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 3115098 \text{ x } 176.67/170.67 = 3224611 \text{ N}$
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67 MPa @ 20°C; $k_6 = 0.0132$; $r = 995$ mm; $C_{\sigma} = 1.0$; $t = 10$ mm; $t_1 = 13$ mm; $b_2 = 250$ mm; $b_e = 3980$ mm $W_{operating} = 3115098$ N CASE: A/R ≤ 0.5 w/o wear plate @ operating and test test test of the section VIII-Division 2; Clause 4.15.3.5	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 3115098 \text{ x } 176.67/170.67 = 3224611 \text{ N}$
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; $k_6 = 0.0132$; $r = 995$ mm; $C_{\sigma} = 1.0$; $t = 10$ mm; $t_1 = 13$ mm; $b_2 = 250$ mm; $b_e = 3980$ mm $W_{operating} = 3115098$ N CASE: A/R ≤ 0.5 w/o wear plate @ operating and test te	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 3115098 \text{ x } 176.67/170.67 = 3224611 \text{ N}$ mperature 1.25 S
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67 MPa @ 20°C; $k_6 = 0.0132$; $r = 995$ mm; $C_{\sigma} = 1.0$; $t = 10$ mm; $t_1 = 13$ mm; $b_2 = 250$ mm; $b_e = 3980$ mm $W_{operating} = 3115098$ N CASE: A/R ≤ 0.5 w/o wear plate @ operating and test test test of the section VIII-Division 2; Clause 4.15.3.5	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 3115098 \text{ x } 176.67/170.67 = 3224611 \text{ N}$ mperature 1.25 S
$\begin{array}{l} \text{PD 5500 - Clause G.3.3.2.6.2} \\ \text{Input data:} \\ f = 170.67 \text{ MPa } @ 50^\circ \text{C} \text{ respectively:} \\ 176.67 \text{MPa } @ 20^\circ \text{C}; \text{k}_6 = 0.0132; \\ r = 995 \text{ mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_1 = 13 \text{ mm;} \\ \text{b}_2 = 250 \text{ mm; } \text{b}_e = 3980 \text{ mm} \\ \hline \textbf{W}_{operating} = \textbf{3115098 N} \\ \hline \textbf{CASE: A/R} \leq \textbf{0.5 w/o wear plate @ operating and test tee} \\ \text{ASME Section VIII-Division 2; Clause 4.15.3.5} \\ \text{Input data:} \end{array}$	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 3115098 \text{ x } 176.67/170.67 = 3224611 \text{ N}$
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67 MPa @ 20°C; $k_6 = 0.0132$; $r = 995$ mm; $C_{\sigma} = 1.0$; $t = 10$ mm; $t_1 = 13$ mm; $b_2 = 250$ mm; $b_e = 3980$ mm $W_{operating} = 3115098$ N CASE: A/R ≤ 0.5 w/o wear plate @ operating and test tee ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively:	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 3115098 \text{ x } 176.67/170.67 = 3224611 \text{ N}$ mperature 1.25 S
$\begin{array}{l} \text{PD 5500 - Clause G.3.3.2.6.2} \\ \text{Input data:} \\ f = 170.67 \text{ MPa } @ 50^\circ\text{C} \text{ respectively:} \\ 176.67 \text{MPa } @ 20^\circ\text{C}; k_6 = 0.0132; \\ r = 995 \text{ mm; } C_{\sigma} = 1.0; t = 10 \text{ mm; } t_1 = 13 \text{ mm;} \\ b_2 = 250 \text{ mm; } b_e = 3980 \text{ mm} \\ \hline \textbf{W}_{operating} = \textbf{3115098 N} \\ \hline \textbf{CASE: A/R} \leq \textbf{0.5 w/o wear plate @ operating and test tee} \\ \text{ASME Section VIII-Division 2; Clause 4.15.3.5} \\ \text{Input data:} \\ \textbf{S} = 170.67 \text{ MPa } @ 50^\circ\text{C} \text{ respectively:} \\ 176.67 \text{MPa } @ 20^\circ\text{C}; k_6 = 0.0132; \\ \textbf{R}_m = 995 \text{ mm; } \textbf{C}_{\sigma} = 1.0; t = 10 \text{ mm; } t_r = 0 \text{ mm;} \\ \end{array}$	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 3115098 \text{ x } 176.67/170.67 = 3224611 \text{ N}$ mperature 1.25 S
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67 MPa @ 20°C; $k_6 = 0.0132$; $r = 995$ mm; $C_{\sigma} = 1.0$; $t = 10$ mm; $t_1 = 13$ mm; $b_2 = 250$ mm; $b_e = 3980$ mm $W_{operating} = 3115098$ N CASE: A/R ≤ 0.5 w/o wear plate @ operating and test te ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively: 176.67 MPa @ 20°C; $k_6 = 0.0132$; $R_m = 995$ mm; $C_{\sigma} = 1.0$; $t = 10$ mm; $t_r = 0$ mm; $b = 250$ mm; $b_e = 3980$ mm	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6} \cdot r. \text{ C}_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 3115098 \text{ x } 176.67/170.67 = 3224611 \text{ N}$ mperature $Q = \frac{1.25 \text{ S}}{\left[\frac{1}{4(t+t_{r})(b+1.56\sqrt{R_{m}.t})} + \frac{6 \text{ k}_{6}.\text{ R}_{m}.\text{ C}_{\sigma}}{b_{e} \cdot (t+t_{r})^{2}}\right]}$
$\begin{array}{l} \text{PD 5500 - Clause G.3.3.2.6.2} \\ \text{Input data:} \\ f = 170.67 \text{ MPa } @ 50^\circ\text{C} \text{ respectively:} \\ 176.67 \text{MPa } @ 20^\circ\text{C}; k_6 = 0.0132; \\ r = 995 \text{ mm; } C_{\sigma} = 1.0; t = 10 \text{ mm; } t_1 = 13 \text{ mm;} \\ b_2 = 250 \text{ mm; } b_e = 3980 \text{ mm} \\ \hline \textbf{W}_{operating} = \textbf{3115098 N} \\ \hline \textbf{CASE: A/R} \leq \textbf{0.5 w/o wear plate @ operating and test tee} \\ \text{ASME Section VIII-Division 2; Clause 4.15.3.5} \\ \text{Input data:} \\ \textbf{S} = 170.67 \text{ MPa } @ 50^\circ\text{C} \text{ respectively:} \\ 176.67 \text{MPa } @ 20^\circ\text{C}; k_6 = 0.0132; \\ \textbf{R}_m = 995 \text{ mm; } \textbf{C}_{\sigma} = 1.0; t = 10 \text{ mm; } t_r = 0 \text{ mm;} \\ \end{array}$	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 3115098 \text{ x } 176.67/170.67 = 3224611 \text{ N}$ mperature 1.25 S
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67 MPa @ 20°C; $k_6 = 0.0132$; $r = 995$ mm; $C_{\sigma} = 1.0$; $t = 10$ mm; $t_1 = 13$ mm; $b_2 = 250$ mm; $b_e = 3980$ mm $W_{operating} = 3115098$ N CASE: A/R ≤ 0.5 w/o wear plate @ operating and test te ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively: 176.67 MPa @ 20°C; $k_6 = 0.0132$; $R_m = 995$ mm; $C_{\sigma} = 1.0$; $t = 10$ mm; $t_r = 0$ mm; $b = 250$ mm; $b_e = 3980$ mm	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 3115098 \text{ x } 176.67/170.67 = 3224611 \text{ N}$ mperature $Q = \frac{1.25 \text{ S}}{\left[\frac{1}{4(t+t_{r})(b+1.56\sqrt{R_{m}.t})} + \frac{6 \text{ k}_{6}.\text{ R}_{m}.\text{ C}_{\sigma}}{b_{e} \cdot (t+t_{r})^{2}}\right]}$ $Q_{\text{test}} = 821680 \text{ x } 176.67/170.67 = 850567 \text{ N}$
PD 5500 - Clause G.3.3.2.6.2 Input data: $f = 170.67 \text{ MPa} @ 50^{\circ}\text{C}$ respectively: $176.67\text{ MPa} @ 20^{\circ}\text{C}; k_6 = 0.0132;$ $r = 995 \text{ mm}; C_{\sigma} = 1.0; t = 10 \text{ mm}; t_1 = 13 \text{ mm};$ $b_2 = 250 \text{ mm}; b_e = 3980 \text{ mm}$ $W_{operating} = 3115098 \text{ N}$ CASE: A/R $\leq 0.5 \text{ w/o wear plate} @ operating and test test test estimates the section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 \text{ MPa} @ 50^{\circ}\text{C} respectively:176.67\text{ MPa} @ 20^{\circ}\text{C}; k_6 = 0.0132;R_m = 995 \text{ mm}; C_{\sigma} = 1.0; t = 10 \text{ mm}; t_r = 0 \text{ mm};b = 250 \text{ mm}; b_e = 3980 \text{ mm}Q_{operating} = 821680 \text{ N}$	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 3115098 \text{ x } 176.67/170.67 = 3224611 \text{ N}$ mperature $Q = \frac{1.25 \text{ S}}{\left[\frac{1}{4(t+t_{r})(b+1.56\sqrt{R_{m}.t})} + \frac{6 \text{ k}_{6}.\text{ R}_{m}.\text{ C}_{\sigma}}{b_{e} \cdot (t+t_{r})^{2}}\right]}$ $Q_{\text{test}} = 821680 \text{ x } 176.67/170.67 = 850567 \text{ N}$ mperature
$\begin{array}{l} \text{PD } 5500 \text{ - Clause G.3.3.2.6.2} \\ \text{Input data:} \\ \text{f} = 170.67 \text{ MPa } @ 50^{\circ}\text{C} \text{ respectively:} \\ 176.67 \text{MPa } @ 20^{\circ}\text{C}; \text{k}_{6} = 0.0132; \\ \text{r} = 995 \text{ mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_{1} = 13 \text{ mm;} \\ \text{b}_{2} = 250 \text{ mm; } \text{b}_{e} = 3980 \text{ mm} \\ \hline \textbf{W}_{operating} = \textbf{3115098 N} \\ \hline \textbf{CASE: A/R} \leq \textbf{0.5 w/o wear plate } @ \text{ operating and test tee} \\ \text{ASME Section VIII-Division 2; Clause } 4.15.3.5 \\ \text{Input data:} \\ \text{S} = 170.67 \text{ MPa } @ 50^{\circ}\text{C} \text{ respectively:} \\ 176.67 \text{MPa } @ 20^{\circ}\text{C}; \text{k}_{6} = 0.0132; \\ \text{R}_{m} = 995 \text{ mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_{r} = 0 \text{ mm;} \\ \text{b} = 250 \text{ mm; } \text{b}_{e} = 3980 \text{ mm} \\ \hline \textbf{Q}_{operating} = \textbf{821680 N} \\ \hline \textbf{CASE: A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{ASME: A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{ASE: A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{ASE: A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{ASE: A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{ASE: A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{ASE: A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{ASE: A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{ASE: A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{ASE: A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{ASE: A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{ASE: A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{ASE: A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{ASE: A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{ASE: A/R} \leq \textbf{0.5 with wear plate } @ \textbf{0} \\ \hline \textbf{ASE: A/R} \leq \textbf{0.5 with wear plate } @ \textbf{0} \\ \hline \textbf{ASE: A/R} \leq \textbf{0.5 with wear plate } @ \textbf{0} \\ \hline \textbf{ASE: A/R} \leq \textbf{0.5 with wear plate } @ \textbf{0} \\ \hline \textbf{ASE: A/R} \leq \textbf{0} $	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 3115098 \text{ x } 176.67/170.67 = 3224611 \text{ N}$ mperature $Q = \frac{1.25 \text{ S}}{\left[\frac{1}{4(t+t_{r})(b+1.56\sqrt{R_{m}.t})} + \frac{6 \text{ k}_{6}.\text{ R}_{m}.\text{ C}_{\sigma}}{b_{e} \cdot (t+t_{r})^{2}}\right]}$ $Q_{\text{test}} = 821680 \text{ x } 176.67/170.67 = 850567 \text{ N}$ mperature
$\begin{array}{l} \text{PD } 5500 \text{ - Clause } \text{G.3.3.2.6.2} \\ \text{Input data:} \\ \text{f} = 170.67 \text{ MPa } @ 50^\circ \text{C} \text{ respectively:} \\ 176.67 \text{MPa } @ 20^\circ \text{C}; \text{k}_6 = 0.0132; \\ \text{r} = 995 \text{ mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_1 = 13 \text{ mm;} \\ \text{b}_2 = 250 \text{ mm; } \text{b}_e = 3980 \text{ mm} \\ \hline \textbf{W}_{operating} = \textbf{3115098 N} \\ \hline \textbf{CASE: } \textbf{A/R} \leq \textbf{0.5 w/o wear plate } @ \text{ operating and test tee} \\ \text{ASME Section VIII-Division } 2; \text{ Clause } 4.15.3.5 \\ \text{Input data:} \\ \text{S} = 170.67 \text{ MPa } @ 50^\circ \text{C} \text{ respectively:} \\ 176.67 \text{MPa } @ 20^\circ \text{C}; \text{k}_6 = 0.0132; \\ \text{R}_m = 995 \text{ mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_r = 0 \text{ mm;} \\ \text{b} = 250 \text{ mm; } \text{b}_e = 3980 \text{ mm} \\ \hline \textbf{Q}_{operating} = \textbf{821680 N} \\ \hline \textbf{CASE: } \textbf{A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \text{ASME Section VIII-Division } 2; \text{ Clause } 4.15.3.5 \\ \hline \textbf{M}_{\text{CASE: } A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{ASME Section VIII-Division } 2; \text{ Clause } 4.15.3.5 \\ \hline \textbf{M}_{\text{CASE: } A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{ASME Section VIII-Division } 2; \text{ Clause } 4.15.3.5 \\ \hline \textbf{M}_{\text{CASE: } A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{ASME Section VIII-Division } 2; \text{ Clause } 4.15.3.5 \\ \hline \textbf{M}_{\text{CASE: } A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{M}_{\text{CASE: } A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{M}_{\text{CASE: } A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{M}_{\text{CASE: } A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{M}_{\text{CASE: } A/R \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{M}_{\text{CASE: } A/R \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \hline \textbf{M}_{\text{CASE: } A/R \leq \textbf{0.5 with wear plate } @ \textbf{0.15.3.5} \\ \hline \textbf{M}_{\text{CASE: } A/R \leq \textbf{0.5 with wear plate } @ \textbf{0.15.3.5} \\ \hline \textbf{M}_{\text{CASE: } A/R \leq \textbf{0.5 with wear plate } @ \textbf{0.15.3.5} \\ \hline \textbf{M}_{\text{CASE } A/R \leq \textbf{0.5 with wear plate } @ \textbf{0.15.3.5} \\ \hline \textbf{M}_{\text{CASE } A/R \leq 0.5 $	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 3115098 \text{ x } 176.67/170.67 = 3224611 \text{ N}$ mperature $Q = \frac{1.25 \text{ S}}{\left[\frac{1}{4(t+t_{r})(b+1.56\sqrt{R_{m}.t})} + \frac{6 \text{ k}_{6}.\text{ R}_{m}.\text{ C}_{\sigma}}{b_{e} \cdot (t+t_{r})^{2}}\right]}$ $Q_{\text{test}} = 821680 \text{ x } 176.67/170.67 = 850567 \text{ N}$ mperature
PD 5500 - Clause G.3.3.2.6.2 Input data: $f = 170.67 \text{ MPa} @ 50^{\circ}\text{C}$ respectively: $176.67\text{MPa} @ 20^{\circ}\text{C}; k_6 = 0.0132;$ $r = 995 \text{ mm}; C_{\sigma} = 1.0; t = 10 \text{ mm}; t_1 = 13 \text{ mm};$ $b_2 = 250 \text{ mm}; b_e = 3980 \text{ mm}$ $W_{operating} = 3115098 \text{ N}$ CASE: $A/R \le 0.5 \text{ w/o wear plate @ operating and test tee}$ ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: $S = 170.67 \text{ MPa} @ 50^{\circ}\text{C}$ respectively: $176.67\text{MPa} @ 20^{\circ}\text{C}; k_6 = 0.0132;$ $R_m = 995 \text{ mm}; C_{\sigma} = 1.0; t = 10 \text{ mm}; t_r = 0 \text{ mm};$ $b = 250 \text{ mm}; b_e = 3980 \text{ mm}$ $Q_{operating} = 821680 \text{ N}$ CASE: $A/R \le 0.5 \text{ with wear plate @ operating and test tee}$ ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: $S = 170.67 \text{ MPa} @ 50^{\circ}\text{C}$ respectively:	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 3115098 \text{ x } 176.67/170.67 = 3224611 \text{ N}$ mperature $Q = \frac{1.25 \text{ S}}{\left[\frac{1}{4(t+t_{r})(b+1.56\sqrt{R_{m}.t})} + \frac{6 \text{ k}_{6}.\text{ R}_{m}.\text{ C}_{\sigma}}{b_{e} \cdot (t+t_{r})^{2}}\right]}$ $Q_{\text{test}} = 821680 \text{ x } 176.67/170.67 = 850567 \text{ N}$ mperature
$\begin{array}{l} \text{PD } 5500 \text{ - Clause G.3.3.2.6.2} \\ \text{Input data:} \\ \text{f} = 170.67 \text{ MPa } @ 50^\circ\text{C} \text{ respectively:} \\ 176.67 \text{MPa } @ 20^\circ\text{C}; \text{k}_6 = 0.0132; \\ \text{r} = 995 \text{ mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_1 = 13 \text{ mm;} \\ \text{b}_2 = 250 \text{ mm; } \text{b}_e = 3980 \text{ mm} \\ \hline \textbf{W}_{operating} = \textbf{3115098 N} \\ \hline \textbf{CASE: A/R} \leq \textbf{0.5 w/o wear plate @ operating and test tee} \\ \text{ASME Section VIII-Division 2; Clause 4.15.3.5} \\ \text{Input data:} \\ \text{S} = 170.67 \text{ MPa } @ 50^\circ\text{C} \text{ respectively:} \\ 176.67 \text{MPa } @ 20^\circ\text{C}; \text{k}_6 = 0.0132; \\ \text{R}_m = 995 \text{ mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_r = 0 \text{ mm;} \\ \text{b} = 250 \text{ mm; } \text{b}_e = 3980 \text{ mm} \\ \hline \textbf{Q}_{operating} = \textbf{821680 N} \\ \hline \textbf{CASE: A/R} \leq \textbf{0.5 with wear plate @ operating and test tee} \\ \text{ASME Section VIII-Division 2; Clause 4.15.3.5} \\ \text{Input data:} \\ \text{S} = 170.67 \text{ MPa } @ 50^\circ\text{C} \text{ respectively:} \\ 176.67 \text{MPa } @ 20^\circ\text{C}; \text{k}_6 = 0.0132; \\ \hline \text{Input data:} \\ \text{S} = 170.67 \text{ MPa } @ 50^\circ\text{C} \text{ respectively:} \\ 176.67 \text{ MPa } @ 20^\circ\text{C}; \text{k}_6 = 0.0132; \\ \hline \text{MPA} = 20^\circ\text{C}; \text{k}_6 = 0.0132; \\ \hline \text{MPA} = 0.05 \text{ with wear plate } 0.05 with wear p$	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 3115098 \text{ x } 176.67/170.67 = 3224611 \text{ N}$ mperature $Q = \frac{1.25 \text{ S}}{\left[\frac{1}{4(t+t_{r})(b+1.56\sqrt{R_{m}.t})} + \frac{6 \text{ k}_{6}.\text{ R}_{m}.\text{ C}_{\sigma}}{b_{e} \cdot (t+t_{r})^{2}}\right]}$ $Q_{\text{test}} = 821680 \text{ x } 176.67/170.67 = 850567 \text{ N}$
$\begin{array}{l} \text{PD } 5500 \text{ - Clause } \text{G.3.3.2.6.2} \\ \text{Input data:} \\ \text{f} = 170.67 \text{ MPa } @ 50^\circ\text{C} \text{ respectively:} \\ 176.67 \text{MPa } @ 20^\circ\text{C}; \text{k}_6 = 0.0132; \\ \text{r} = 995 \text{ mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_1 = 13 \text{ mm;} \\ \text{b}_2 = 250 \text{ mm; } \text{b}_e = 3980 \text{ mm} \\ \hline \textbf{W}_{operating} = \textbf{3115098 N} \\ \hline \textbf{CASE: } \textbf{A/R} \leq \textbf{0.5 w/o wear plate } @ \text{ operating and test tee} \\ \text{ASME Section VIII-Division } 2; \text{ Clause } 4.15.3.5 \\ \text{Input data:} \\ \text{S} = 170.67 \text{ MPa } @ 50^\circ\text{C} \text{ respectively:} \\ 176.67 \text{MPa } @ 20^\circ\text{C}; \text{k}_6 = 0.0132; \\ \text{R}_m = 995 \text{ mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_r = 0 \text{ mm;} \\ \text{b} = 250 \text{ mm; } \text{b}_e = 3980 \text{ mm} \\ \hline \textbf{Q}_{operating} = \textbf{821680 N} \\ \hline \textbf{CASE: } \textbf{A/R} \leq \textbf{0.5 with wear plate } @ \text{ operating and test tee} \\ \text{ASME Section VIII-Division } 2; \text{ Clause } 4.15.3.5 \\ \text{Input data:} \\ \text{S} = 170.67 \text{ MPa } @ 50^\circ\text{C} \text{ respectively:} \\ 176.67 \text{MPa } @ 20^\circ\text{C}; \text{k}_6 = 0.0132; \\ \text{Rm = 995 mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_r = 13 \text{ mm;} \\ \hline \textbf{M} = 995 \text{ mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_r = 13 \text{ mm;} \\ \hline \textbf{M} = 995 \text{ mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_r = 13 \text{ mm;} \\ \hline \textbf{M} = 995 \text{ mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_r = 13 \text{ mm;} \\ \hline \textbf{M} = 995 \text{ mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_r = 13 \text{ mm;} \\ \hline \textbf{M} = 995 \text{ mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_r = 13 \text{ mm;} \\ \hline \textbf{M} = 995 \text{ mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_r = 13 \text{ mm;} \\ \hline \textbf{M} = 995 \text{ mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_r = 13 \text{ mm;} \\ \hline \textbf{M} = 10 \text{ mm; } \text{M} \\ \hline \textbf{M} = 10 \text{ mm; } \text{M} = 10 \text{ mm; } \text{M} = 10 \text{ mm; } \text{M} \\ \hline \textbf{M} = 10 \text{ mm; } \text{M} = 10 \text{ mm; } \text{M} \\ \hline \textbf{M} = 10 \text{ mm; } \text{M} \\ \hline \textbf{M} = 10 \text{ mm; } \text{M} \\ \hline \textbf{M} = 10 \text{ mm; } \text{M} \\ \hline \textbf{M} = 10 \text{ mm; } \text{M} \\ \hline \textbf{M} = 10 \text{ mm; } \text{M} \\ \hline \textbf{M} = 10 \text{ mm; } \text{M} \\ \hline \textbf{M} = 10 \text{ mm; } \text{M} \\ \hline \textbf{M} = 10 \text{ mm; } \text{M} \\ \hline \textbf{M} = 10 mm$	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 3115098 \text{ x } 176.67/170.67 = 3224611 \text{ N}$ mperature $Q = \frac{1.25 \text{ S}}{\left[\frac{1}{4(t+t_{r})(b+1.56\sqrt{R_{m}.t})} + \frac{6 \text{ k}_{6}.\text{ R}_{m}.\text{ C}_{\sigma}}{b_{e} \cdot (t+t_{r})^{2}}\right]}$ $Q_{\text{test}} = 821680 \text{ x } 176.67/170.67 = 850567 \text{ N}$ mperature
$\begin{array}{l} \text{PD } 5500 \text{ - Clause G.3.3.2.6.2} \\ \text{Input data:} \\ \text{f} = 170.67 \text{ MPa } @ 50^\circ\text{C} \text{ respectively:} \\ 176.67 \text{MPa } @ 20^\circ\text{C}; \text{k}_6 = 0.0132; \\ \text{r} = 995 \text{ mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_1 = 13 \text{ mm;} \\ \text{b}_2 = 250 \text{ mm; } \text{b}_e = 3980 \text{ mm} \\ \hline \textbf{W}_{operating} = \textbf{3115098 N} \\ \hline \textbf{CASE: A/R} \leq \textbf{0.5 w/o wear plate @ operating and test tee} \\ \text{ASME Section VIII-Division 2; Clause 4.15.3.5} \\ \text{Input data:} \\ \text{S} = 170.67 \text{ MPa } @ 50^\circ\text{C} \text{ respectively:} \\ 176.67 \text{MPa } @ 20^\circ\text{C}; \text{k}_6 = 0.0132; \\ \text{R}_m = 995 \text{ mm; } \text{C}_{\sigma} = 1.0; \text{t} = 10 \text{ mm; } \text{t}_r = 0 \text{ mm;} \\ \text{b} = 250 \text{ mm; } \text{b}_e = 3980 \text{ mm} \\ \hline \textbf{Q}_{operating} = \textbf{821680 N} \\ \hline \textbf{CASE: A/R} \leq \textbf{0.5 with wear plate @ operating and test tee} \\ \text{ASME Section VIII-Division 2; Clause 4.15.3.5} \\ \text{Input data:} \\ \text{S} = 170.67 \text{ MPa } @ 50^\circ\text{C} \text{ respectively:} \\ 176.67 \text{MPa } @ 20^\circ\text{C}; \text{k}_6 = 0.0132; \\ \hline \text{Input data:} \\ \text{S} = 170.67 \text{ MPa } @ 50^\circ\text{C} \text{ respectively:} \\ 176.67 \text{ MPa } @ 20^\circ\text{C}; \text{k}_6 = 0.0132; \\ \hline \text{MPA} = 20^\circ\text{C}; \text{k}_6 = 0.0132; \\ \hline \text{MPA} = 0.05 \text{ with wear plate } 0.05 with wear p$	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 3115098 \text{ x } 176.67/170.67 = 3224611 \text{ N}$ mperature $Q = \frac{1.25 \text{ S}}{\left[\frac{1}{4(t+t_{r})(b+1.56\sqrt{R_{m}.t})} + \frac{6 \text{ k}_{6}.\text{ R}_{m}.\text{ C}_{\sigma}}{b_{e} \cdot (t+t_{r})^{2}}\right]}$ $Q_{\text{test}} = 821680 \text{ x } 176.67/170.67 = 850567 \text{ N}$ mperature


www.ajer.org

Page 65

CASE: $A/R \ge 1.0$ w/o wear plate @ operating and test ter	nperature
RfPV- Sheet D 1105 § 3.2	
Input data:	15f
$f = 170.67 \text{ MPa} @ 50^{\circ}\text{C}$ respectively:	$F = \frac{1.51}{6 \text{ km} \text{ r } C}$
176.67 MPa @ 20° C; k ₃ = 0.0528;	$F = \frac{1.5 \text{ f}}{\left[\frac{1}{4(d+d_1)(b+1.6\sqrt{r.d})} + \frac{6 \text{ k}_3.\text{ r. } \text{C}_{\sigma}}{b_e \cdot (d^2 + d_1^2)}\right]}$
$r = 995 \text{ mm}; C_{\sigma} = 1.0; d = 10 \text{ mm};$	$+(u + u_1)(v + 1.0\sqrt{1.u})$
$d_1 = 0 \text{ mm}; b = 250 \text{ mm}; b_e = 3980 \text{ mm}$	
F _{operating} = 300111 N	F _{test} = 300111 x 176.67/170.67 = 310661 N
CASE: $A/R \ge 1.0$ with wear plate @ operating and test to	
RfPV- Sheet D 1105 § 3.2	
Input data:	15f
f = 170.67 MPa @ 50°C respectively:	$F = \frac{1}{6 k r C}$
176.67MPa @ 20°C; $k_3 = 0.0528;$	$F = \frac{1.5 \text{ f}}{\left[\frac{1}{4(d+d_1)(b+1.6\sqrt{r.d})} + \frac{6 \text{ k}_3.\text{ r. } \text{C}_{\sigma}}{b_e \cdot (d^2 + d_1^2)}\right]}$
$r = 995 \text{ mm}; C_{\sigma} = 1.0; d = 10 \text{ mm}; d_1 = 13 \text{ mm};$	$4(a + a_1)(b + 1.6\sqrt{r.a})$ $b_e(a + a_1)$
$b = 250 \text{ mm}; b_e = 3980 \text{ mm}$	
	$F_{\text{test}} = 797621 \text{ x } 176.67/170.67 = 825661 \text{ N}$
$F_{operating} = 797621 \text{ N}$	
CASE: $A/R \ge 1.0$ w/o wear plate @ operating and test terms $R \ge 1.0 \times 10^{-10}$	nperature
PD 5500 - Clause G.3.3.2.6.2	
Input data:	$W_1 = \frac{1.25 \text{ f}}{1.25 \text{ f}}$
f = 170.67 MPa @ 50°C respectively:	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{1} \cdot (t+t_{1})^{2}}\right]}$
176.67MPa @ 20° C; k ₆ = 0.0528;	$^{L}4(t+t_{1})(b_{2}+10t) + b_{e} \cdot (t+t_{1})^{2}$
$r = 995 mm; C_{\sigma} = 1.0; t = 10 mm; t_1 = 0 mm;$	
$b_2 = 250 \text{ mm}; b_e = 3980 \text{ mm}$	
$W_{operating} = 247082 N$	W _{test} = 247082 x 176.67/170.67 = 255768 N
CASE: $A/R \ge 1.0$ with wear plate @ operating and test to	mperature
PD 5500 - Clause G.3.3.2.6.2	
PD 5500 - Clause G.3.3.2.6.2 Input data:	
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively:	
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; $k_6 = 0.0528$;	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6} \cdot \text{r. } \text{C}_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; $k_6 = 0.0528$; $r = 995$ mm; $C_{\sigma} = 1.0$; $t = 10$ mm; $t_1 = 13$ mm;	
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; $k_6 = 0.0528$;	
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; $k_6 = 0.0528$; $r = 995$ mm; $C_{\sigma} = 1.0$; $t = 10$ mm; $t_1 = 13$ mm;	
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; $k_6 = 0.0528$; r = 995 mm; $C_{\sigma} = 1.0$; t = 10 mm; t ₁ =13 mm; $b_2 = 250$ mm; $b_e = 3980$ mm W _{operating} = 1180145 N CASE: A/R ≥ 1.0 w/o wear plate @ operating and test ten	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 1180145 \text{ x } 176.67/170.67 = 1221633 \text{ N}$
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; r = 995 mm; C _σ = 1.0; t = 10 mm; t ₁ =13 mm; b ₂ = 250 mm; b _e = 3980 mm $W_{operating} = 1180145 N$ CASE: A/R ≥ 1.0 w/o wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 1180145 \text{ x } 176.67/170.67 = 1221633 \text{ N}$
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; $k_6 = 0.0528$; r = 995 mm; $C_{\sigma} = 1.0$; t = 10 mm; t ₁ =13 mm; $b_2 = 250$ mm; $b_e = 3980$ mm W _{operating} = 1180145 N CASE: A/R ≥ 1.0 w/o wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data:	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 1180145 \text{ x } 176.67/170.67 = 1221633 \text{ N}$ perature 1.25 S
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; r = 995 mm; C _σ = 1.0; t = 10 mm; t ₁ =13 mm; b ₂ = 250 mm; b _e = 3980 mm $W_{operating} = 1180145$ N CASE: A/R ≥ 1.0 w/o wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively:	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 1180145 \text{ x } 176.67/170.67 = 1221633 \text{ N}$ perature 1.25 S
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; $k_6 = 0.0528$; r = 995 mm; $C_{\sigma} = 1.0$; t = 10 mm; t ₁ =13 mm; $b_2 = 250$ mm; $b_e = 3980$ mm W _{operating} = 1180145 N CASE: A/R ≥ 1.0 w/o wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data:	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 1180145 \text{ x } 176.67/170.67 = 1221633 \text{ N}$
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; r = 995 mm; C _σ = 1.0; t = 10 mm; t ₁ =13 mm; b ₂ = 250 mm; b _e = 3980 mm $W_{operating} = 1180145$ N CASE: A/R ≥ 1.0 w/o wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively:	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 1180145 \text{ x } 176.67/170.67 = 1221633 \text{ N}$ perature 1.25 S
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; r = 995 mm; C _σ = 1.0; t = 10 mm; t ₁ =13 mm; b ₂ = 250 mm; b _e = 3980 mm $W_{operating} = 1180145$ N CASE: A/R ≥ 1.0 w/o wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528;	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 1180145 \text{ x } 176.67/170.67 = 1221633 \text{ N}$ perature 1.25 S
PD 5500 - Clause G.3.3.2.6.2 Input data: $f = 170.67 \text{ MPa} @ 50^{\circ}\text{C}$ respectively: $176.67\text{MPa} @ 20^{\circ}\text{C}; k_6 = 0.0528;$ $r = 995 \text{ mm}; C_{\sigma} = 1.0; t = 10 \text{ mm}; t_1 = 13 \text{ mm};$ $b_2 = 250 \text{ mm}; b_e = 3980 \text{ mm}$ $W_{operating} = 1180145 \text{ N}$ CASE: A/R $\geq 1.0 \text{ w/o wear plate @ operating and test ten}$ ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: $S = 170.67 \text{ MPa} @ 50^{\circ}\text{C}$ respectively: $176.67\text{MPa} @ 20^{\circ}\text{C}; k_6 = 0.0528;$ $R_m = 995 \text{ mm}; C_{\sigma} = 1.0; t = 10 \text{ mm}; t_r = 0 \text{ mm};$	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 1180145 \text{ x } 176.67/170.67 = 1221633 \text{ N}$ perature 1.25 S
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; r = 995 mm; C _σ = 1.0; t = 10 mm; t ₁ =13 mm; b ₂ = 250 mm; b _e = 3980 mm $W_{operating} = 1180145 \text{ N}$ CASE: A/R ≥ 1.0 w/o wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; R _m = 995 mm; C _σ = 1.0; t = 10 mm; t _r = 0 mm; b = 250 mm; b _e = 3980 mm $Q_{operating} = 249916 \text{ N}$	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 1180145 \text{ x } 176.67/170.67 = 1221633 \text{ N}$ merature $Q = \frac{1.25 \text{ S}}{\left[\frac{1}{4(t+t_{r})(b+1.56\sqrt{R_{m}.t})} + \frac{6 \text{ k}_{6}.\text{ R}_{m}.\text{ C}_{\sigma}}{b_{e} \cdot (t+t_{r})^{2}}\right]}$ $Q_{\text{test}} = 249916 \text{ x } 176.67/170.67 = 258702 \text{ N}$
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; r = 995 mm; C _σ = 1.0; t = 10 mm; t ₁ =13 mm; b ₂ = 250 mm; b _e = 3980 mm $W_{operating} = 1180145 \text{ N}$ CASE: A/R ≥ 1.0 w/o wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; R _m = 995 mm; C _σ = 1.0; t = 10 mm; t _r = 0 mm; b = 250 mm; b _e = 3980 mm $Q_{operating} = 249916 \text{ N}$ CASE: A/R ≥ 1.0 with wear plate @ operating and test ten	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 1180145 \text{ x } 176.67/170.67 = 1221633 \text{ N}$ merature $Q = \frac{1.25 \text{ S}}{\left[\frac{1}{4(t+t_{r})(b+1.56\sqrt{R_{m}.t})} + \frac{6 \text{ k}_{6}.\text{ R}_{m}.C_{\sigma}}{b_{e} \cdot (t+t_{r})^{2}}\right]}$ $Q_{\text{test}} = 249916 \text{ x } 176.67/170.67 = 258702 \text{ N}$ mperature
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; r = 995 mm; C _σ = 1.0; t = 10 mm; t ₁ =13 mm; b ₂ = 250 mm; b _e = 3980 mm W _{operating} = 1180145 N CASE: A/R ≥ 1.0 w/o wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; R _m = 995 mm; C _σ = 1.0; t = 10 mm; t _r = 0 mm; b = 250 mm; b _e = 3980 mm Q _{operating} = 249916 N CASE: A/R ≥ 1.0 with wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 1180145 \text{ x } 176.67/170.67 = 1221633 \text{ N}$ merature $Q = \frac{1.25 \text{ S}}{\left[\frac{1}{4(t+t_{r})(b+1.56\sqrt{R_{m}.t})} + \frac{6 \text{ k}_{6}.\text{ R}_{m}.C_{\sigma}}{b_{e} \cdot (t+t_{r})^{2}}\right]}$ $Q_{\text{test}} = 249916 \text{ x } 176.67/170.67 = 258702 \text{ N}$ mperature
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; r = 995 mm; C _σ = 1.0; t = 10 mm; t ₁ =13 mm; b ₂ = 250 mm; b _e = 3980 mm W _{operating} = 1180145 N CASE: A/R ≥ 1.0 w/o wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; R _m = 995 mm; C _σ = 1.0; t = 10 mm; t _r = 0 mm; b = 250 mm; b _e = 3980 mm Q _{operating} = 249916 N CASE: A/R ≥ 1.0 with wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data:	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 1180145 \text{ x } 176.67/170.67 = 1221633 \text{ N}$ merature $Q = \frac{1.25 \text{ S}}{\left[\frac{1}{4(t+t_{r})(b+1.56\sqrt{R_{m}.t})} + \frac{6 \text{ k}_{6}.\text{ R}_{m}.C_{\sigma}}{b_{e} \cdot (t+t_{r})^{2}}\right]}$ $Q_{\text{test}} = 249916 \text{ x } 176.67/170.67 = 258702 \text{ N}$ mperature
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; r = 995 mm; C _σ = 1.0; t = 10 mm; t ₁ =13 mm; b ₂ = 250 mm; b _e = 3980 mm W _{operating} = 1180145 N CASE: A/R ≥ 1.0 w/o wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; R _m = 995 mm; C _σ = 1.0; t = 10 mm; t _r = 0 mm; b = 250 mm; b _e = 3980 mm Q _{operating} = 249916 N CASE: A/R ≥ 1.0 with wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively: 2000 mm; b _e = 3980 mm Q _{operating} = 249916 N CASE: A/R ≥ 1.0 with wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively:	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6} \cdot r. \text{ C}_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 1180145 \text{ x } 176.67/170.67 = 1221633 \text{ N}$ merature $Q = \frac{1.25 \text{ S}}{\left[\frac{1}{4(t+t_{r})(b+1.56\sqrt{R_{m}.t})} + \frac{6 \text{ k}_{6}.\text{ R}_{m}.\text{ C}_{\sigma}}{b_{e} \cdot (t+t_{r})^{2}}\right]}$ $Q_{\text{test}} = 249916 \text{ x } 176.67/170.67 = 258702 \text{ N}$ mperature
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; r = 995 mm; C _σ = 1.0; t = 10 mm; t ₁ =13 mm; b ₂ = 250 mm; b _e = 3980 mm $W_{operating} = 1180145 \text{ N}$ CASE: A/R ≥ 1.0 w/o wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; R _m = 995 mm; C _σ = 1.0; t = 10 mm; t _r = 0 mm; b = 250 mm; b _e = 3980 mm $Q_{operating} = 249916 \text{ N}$ CASE: A/R ≥ 1.0 with wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528;	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 1180145 \text{ x } 176.67/170.67 = 1221633 \text{ N}$ merature $Q = \frac{1.25 \text{ S}}{\left[\frac{1}{4(t+t_{r})(b+1.56\sqrt{R_{m}.t})} + \frac{6 \text{ k}_{6}.\text{ R}_{m}.\text{ C}_{\sigma}}{b_{e} \cdot (t+t_{r})^{2}}\right]}$ $Q_{\text{test}} = 249916 \text{ x } 176.67/170.67 = 258702 \text{ N}$
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; r = 995 mm; C _σ = 1.0; t = 10 mm; t ₁ =13 mm; b ₂ = 250 mm; b _e = 3980 mm W _{operating} = 1180145 N CASE: A/R ≥ 1.0 w/o wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; R _m = 995 mm; C _σ = 1.0; t = 10 mm; t _r = 0 mm; b = 250 mm; b _e = 3980 mm Q _{operating} = 249916 N CASE: A/R ≥ 1.0 with wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; R _m = 995 mm; C _σ = 1.0; t = 10 mm; t _r = 13 mm; b	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6} \cdot r. \text{ C}_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 1180145 \text{ x } 176.67/170.67 = 1221633 \text{ N}$ merature $Q = \frac{1.25 \text{ S}}{\left[\frac{1}{4(t+t_{r})(b+1.56\sqrt{R_{m}.t})} + \frac{6 \text{ k}_{6}.\text{ R}_{m}.\text{ C}_{\sigma}}{b_{e} \cdot (t+t_{r})^{2}}\right]}$ $Q_{\text{test}} = 249916 \text{ x } 176.67/170.67 = 258702 \text{ N}$ mperature
PD 5500 - Clause G.3.3.2.6.2 Input data: f = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; r = 995 mm; C _σ = 1.0; t = 10 mm; t ₁ =13 mm; b ₂ = 250 mm; b _e = 3980 mm $W_{operating} = 1180145 \text{ N}$ CASE: A/R ≥ 1.0 w/o wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528; R _m = 995 mm; C _σ = 1.0; t = 10 mm; t _r = 0 mm; b = 250 mm; b _e = 3980 mm $Q_{operating} = 249916 \text{ N}$ CASE: A/R ≥ 1.0 with wear plate @ operating and test ten ASME Section VIII-Division 2; Clause 4.15.3.5 Input data: S = 170.67 MPa @ 50°C respectively: 176.67MPa @ 20°C; k ₆ = 0.0528;	$W_{1} = \frac{1.25 \text{ f}}{\left[\frac{1}{4(t+t_{1})(b_{2}+10t)} + \frac{6 \text{ k}_{6}.\text{ r. }C_{\sigma}}{b_{e} \cdot (t+t_{1})^{2}}\right]}$ $W_{\text{test}} = 1180145 \text{ x } 176.67/170.67 = 1221633 \text{ N}$ merature $Q = \frac{1.25 \text{ S}}{\left[\frac{1}{4(t+t_{r})(b+1.56\sqrt{R_{m}.t})} + \frac{6 \text{ k}_{6}.\text{ R}_{m}.\text{ C}_{\sigma}}{b_{e} \cdot (t+t_{r})^{2}}\right]}$ $Q_{\text{test}} = 249916 \text{ x } 176.67/170.67 = 258702 \text{ N}$ mperature

2019

In the graph below the allowable saddle loads expressed in kN are summarized.

The elaborated cases above shows that there is a considerable difference between the two cases dealt with. In the case where the saddles are placed closer to the heads (A / R \leq 0.5), the allowable saddle load varies a factor of 2.64 to 3.3 than in the case where the saddles are more removed from the heads (A / R \geq 1.0). Thus the load-bearing capacity can be significantly increased by placing the saddles near the ends. Moreover with respect to the influence of a wear plate that meets the requirements of the relevant code, the numerical elaboration shows that this results in a factor 2.6 to 4.8 higher allowable saddle load.

Summary of saddle load capacities (lowest calculated values)

Allowable saddle load (N)	Saddle location
during operating / hydrostatic test	
791815 / 819651 (PD 5500)	$A/R \le 0.5$ i.e. near the ends w/o wear plate
2556394/2646266 (RfPV)	$A/R \le 0.5$ i.e. near the ends with wear plate
247082 / 255768 (PD 5500)	A/R > 1.0 i.e. remote from the ends w/o wear plate
797621 / 825661 (RfPV)	A/R > 1.0 i.e. remote from the ends with wear plate
Saddle reactions of selected base case horizontal pressure vessel	Weight divided by two
Saddle reaction during operation	93654 N
Saddle reaction during hydro test	157397 N
Situations	Usage factors pertaining to the considered condition
$A/R \le 0.5$ i.e. near the ends w/o wear plate	Operation: 791815 / 93654 = 8.45
	Hydro test: 819651 / 157397 = 5.2
$A/R \le 0.5$ i.e. near the ends with wear plate	Operation: 2556394 / 93654 = 27.3
*	Hydro test: 2646266 / 157397 = 16.8
$A/R \ge 1.0$ i.e. near the ends w/o wear plate	Operation: 247082 / 93654 = 2.64
· · ·	Hydro test: 255768 / 157397 = 1.62
$A/R \ge 1.0$ i.e. near the ends with wear plate	Operation: 797621 / 93654 = 8.52
	Hydro test: 825661 / 157397 = 5.25

Note: Saddle data are obtained from APPENDIX 2

Supplementary calculations according to ASME Section VIII - Division 1

ASME BPVC Section VIII - Division 1[10] refers in G-6 which relates to horizontal vessel supports to the publication by L.P. Zick "Stresses in Large Cylindrical Pressure Vessels on Two Saddle Supports" which corresponds to reference [1].

The following cases are further elaborated:

Case # 1: A/R \leq 0.5 ; wear plate width = 410 mm; wear plate thickness = 13 mm; wear plate contact angle = 132°
Case # 2: A/R \ge 1.0; wear plate width = 410 mm; wear plate thickness = 13 mm; wear plate contact angle = 132°
Case # 3: A/R \leq 0.5 ; wear plate width = 340 mm; wear plate thickness = 13 mm; wear plate contact angle = 132°
Case # 4: A/R \ge 1.0; wear plate width = 340 mm; wear plate thickness = 13 mm; wear plate contact angle = 132°

Formula overview

Allowable saddle support reaction Q for operating respectively hydrostatic test condition at saddle horns

$$Q = \frac{1.5 S_a (resp.) 0.9 S_y}{\left[\frac{1}{4(t+t_p)(b+1.56\sqrt{R_o.t})} + \frac{3 k_3}{2(t^2+t_p^2)}\right]}$$

Allowable saddle support reaction Q for operating respectively hydrostatic test condition at wear plate horns

$$Q = \frac{1.5 S_a (resp.) 0.9 S_y}{\left[\frac{1}{4 t (b + 1.56\sqrt{R_{c_1}t})} + \frac{3 k_3}{2(t^2)}\right]}$$

Where:

 S_a = Allowable stress at operating temperature = 117 MPa

 S_y = Yield strength at test temperature = 265 MPa

t = Shell thickness = 10 mm; t_p = wear plate thickness = 13 mm

 R_o = Outside radius of cylindrical shell = 1000 mm ; b = saddle width = 250 mm

 k_3 = Design factor depending on saddle angle and A/R ratio

Design factor	A/R ≤ 0.5	A/R ≥ 1.0
$k_3 @ \theta = 120^{\circ}$	0.0132	0.0525
$k_3 @ \theta = 132^{\circ}$	0.0109	0.0431

Summary of calculation results

Cases	Q - operating weight (w/o pressure) [N] Q - test weight (w/o pressure) [N]		Q – Ratios saddle horns / wear
	saddle horns / wear plate horns	saddle horns / wear plate horns	plate horns (-)
Case #1	2004500 / 779735	2724064 / 1059640	2.571
Case #2	549256 / 206695	746425 / 280893	2.657
Case #3	676102 / - (*)	918805 / - (*)	n.a
Case #4	206695 / - (*)	280993 / - (*)	n.a

Note that the "COMPRESS" Pressure Vessel Design Software has been used to obtain the above results.

(*) Insufficient wear plate dimensions

Computations Based On Limit Load Analysis

AD 2000 - Merkblatt S3/2 [6] and EN 13445-3 Clause 16.8 [7] are almost identical and both stem from the TGL standard [5]. However the main focus is on EN 13445-3 rather than on AD - Merkblatt S3/2 [6]. APPENDIX 3 shows a typical saddle support arrangement for a horizontal vessel.

Calculation of maximum allowable saddle load as per EN 13445- Part 3; Clause 16.8

The horn of the saddle is considered the most critical location for determining the permissible saddle support reaction, therefore the following formula applies:

$$F_{max,all.} = \frac{0.9 \sigma_{b,all.} \sqrt{D_i e_a} \cdot e_a}{K_7 K_9 K_{10}}$$

Where:

 $F_{max,all.}$ allowable support reaction force resulting from loading in circumferential direction at the horn of the saddle (N)

 $\sigma_{b,all}$, the bending limit stress of shell (MPa)

D_i inside diameter of cylindrical shell (mm)

 e_a wall thickness of cylindrical shell (mm)

 K_7, K_9, K_{10} coefficients (-)

The following load cases will be considered:

Parameters Case # 1		Case #2	Case # 3	Case #4
	with wear plate	with wear plate	with extended wear	with extended wear
	according Appendix 2	according Appendix 2	plate	plate
a ₁ (mm)	495	995	495	995
l ₁ (mm)	6970	5970	6970	5970
δ (°)	120	120	120	120
$\delta_2(^\circ)$	132	132	143	143
$b_2(mm)$	340	340	511	511
$e_2(mm)$	13	13	13	13

Formula overview

$\sigma_{b,all,} = K_{1.} K_{2.} f$ $K_{2} = 1.25$ for design conditions respectively 1.05 for test condition f = design strength for the considered condition	$K_4 = \frac{(1 - 2.718282^{-\beta} \cos \beta)}{\beta}$
$F_{max,all.} = \frac{0.9 \ \sigma_{b,all,} \sqrt{D_i e_a} \cdot e_a}{K_7 K_9 K_{10}}$	$K_7 = \frac{1.45 - 0.007505\delta}{\sin(0.5\delta)}$
$\gamma = 2.83 \left(\frac{a_1}{D_i}\right) \sqrt{\frac{e_a}{D_i}}; \beta = \frac{0.91b_1}{\sqrt{D_i \cdot e_a}}$	$K_9 = 1 - \frac{0.65}{1 + (6\gamma)^2} \sqrt{\frac{60}{\delta}}$
$K_{1} = \frac{1 - \upsilon_{2}^{2}}{\left(\frac{1}{3} + \upsilon_{1}\upsilon_{2}\right) + \sqrt{\left(\frac{1}{3} + \upsilon_{1}\upsilon_{2}\right)^{2} + (1 - \upsilon_{2}^{2})\upsilon_{1}^{2}}}$	$K_{10} = \frac{1}{1 + \left(\frac{b_1}{D_i}\delta\right) 0.010472 \sqrt[3]{\frac{D_i}{e_a}}}$
$\upsilon_1 = -0.53 \frac{K_4}{K_7 K_9 K_{10} \sin(0.5 \delta)} ; \upsilon_2 = \frac{P D_i}{2e_a} \frac{1}{K_2 \cdot f}$	$K_{11} = \frac{5}{(0.10472.\delta \sqrt[3]{\frac{D_i}{e_a}})}$
Nomenclature: See Appendix 1 & 3	

Detailed elaboration of the above formulas for the various cases falls outside the scope of this article and is therefore intentionally omitted. Hence, only the computation results are displayed in the next section . Results Of Computations Obtained With The Aid Of "VES" Software Package From P3 Engineering

		and the associated conditions

LOAD CASES (EN 13445-3; Clause 16.8)	CASE #1	CASE #2	CASE #3	CASE #4
Operating incl. pressure (N)	1005627	978152	1545752	1496701
Operating w/o pressure (N)	599286	584997	1091445	1059374
Hydrostatic test incl. pressure (N)	1324199	1287131	2004718	1940286
Hydrostatic test w/o pressure (N)	744426	726676	1355780	1315942

LOAD CASES (AD 2000 ; Merkblatt S 3/2)	CASE #1	CASE #2	CASE #3	CASE #4
Operating incl. pressure (N)	1271970	1233413	1858083	1796316
Operating w/o pressure (N)	759773	739961	1242866	1213535
Hydrostatic test incl. pressure (N)	1674168	1622011	2409559	2328379
Hydrostatic test w/o pressure (N)	943781	919170	1543873	1507438

The table below shows the allowable saddle loads that are ranked according to A / R ratio, with and without effective wear plate and design code.

(CASE: A/R ≤ 0.5	5 w/o wear	plate @	operating a	and test ter	nperature

W_{operating} = 3115098 N

CASE: $A/R \le 0.5$ with wear plate @	operating and test temperature
RfPV	
$F_{\text{operating}} = 2556394 \text{ N}$	F _{test} = 2556394 x 176.67/170.67 = 2646266 N
CASE: $A/R \le 0.5$ with wear plate @	operating and test temperature
PD 5500	
$W_{operating} = 3115098 \text{ N}$	$W_{\text{test}} = 3115098 \text{ x} 176.67/170.67 = 3224611 \text{ N}$

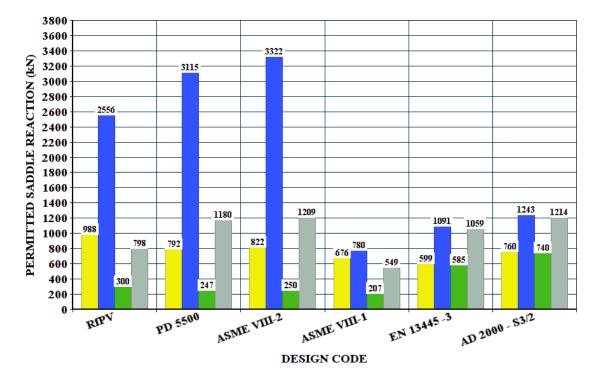
(CASE: $A/R \le 0.5$ with wear plate @ operating	and test temperature
	RfPV	

() operating 011000011	Wiest CILCOVOIR FORONT COLLIGITIEST							
CASE: $A/R \le 0.5$ with wear plate @ operating a	and test temperature							
ASME Section VIII - 2								
Q _{operating} = 3321606 N	Q _{test} = 3321606 x 176.67/170.67 = 3438379 N							
Qoperating - 3321000 N	$Q_{\text{test}} = 3521000 \text{ x } 170.07/170.07 = 5450575 \text{ N}$							
CASE: $A/R \ge 1.0$ w/o wear plate @ operating a	CASE: $A/R \ge 1.0$ w/o wear plate @ operating and test temperature							
RfPV								
F _{operating} = 300111 N	$F_{test} = 300111 \text{ x } 176.67/170.67 = 310661 \text{ N}$							
CASE: $A/R \ge 1.0$ w/o wear plate @ operating a	nd test temperature							
PD 5500								
$W_{operating} = 247082 N$	W _{test} =247082x 176.67/170.67 = 255768 N							
CASE: $A/R \ge 1.0$ w/o wear plate @ operating and test temperature								
ASME Section VIII - 2								
Q _{operating} = 249916 N	Q _{test} = 249916 x 176.67/170.67 = 258702 N							
CASE: $A/R \ge 1.0$ with wear plate @ operating a	and test temperature							
RfPV								
$F_{operating} = 797621 N$	$F_{test} = 797621 \text{ x } 176.67/170.67 = 825661 \text{ N}$							
CASE: $A/R \ge 1.0$ with wear plate @ operating a second	and test temperature							
PD 5500								
W _{operating} = 1180145 N	W _{test} = 1180145 x 176.67/170.67 =1221633 N							
CASE: $A/R \ge 1.0$ with wear plate @ operating	and test temperature							
ASME Section VIII - 2	•							
$Q_{operating} = 1208611 \text{ N}$	Q _{test} = 1208611 x 176.67/170.67 = 1251101 N							

 $W_{test} = 3115098 \text{ x}$

The allowable saddle support reactions for four different cases calculated according to the indicated design code are presented in the table below.

Overview of allowable saddle support reactions (N) @ operating vs. test temperature


DESIGN CODE	CASE	CASE	CASE	CASE	Mutual ratios of the
	YELLOW	BLUE	GREEN	GREY	different cases
RfPV (NL)	988302	2556394	300111	797621	0.213:0.551:0.065:0.172
	1023046	2646266	310661	825661	
PD 5500 (UK)	791815	3115098	247082	1180145	0.148:0.584:0.046:0.221
	819651	3224611	255768	1221633	
ASME VIII-2 (USA)	821680	3321606	249916	1208611	0.147:0.593:0.045:0.216
	850567	3438379	258702	1251101	
ASME VIII-1 (USA)	676102	779735	206695	549256	0.306:0.353:0.093:0.248
	918805	1059640	280993	746425	
EN 13445 (EU)	599286	1091445	584997	1059374	0.180:0.327:0.175:0.318
	744426	1355780	726676	1315942	
AD 2000 - S3/2 (D)	759773	1242866	73996	1213535	0.192:0.314:0.187:0.307
	943781	1543873	919170	1507438	

KEY CASES:

YELLOW : $A/R \le 0.5$ w/o wear plate @ operating and test temperature or insufficient wear plate dimensions BLUE : A/R \leq 0.5 with wear plate @ operating and test temperature

GREEN : $A/R \ge 1.0$ w/o wear plate @ operating and test temperature or insufficient wear plate dimensions

GREY : $A/R \ge 1.0$ with wear plate @ operating and test temperature

GRAPHICAL REPRESENTATION OF PERMITTED SADDLE REACTIONS DURING OPERATION

Although the graph above relates to the situation during operation (saddle support reaction is half the weight during operation), it can be assumed that the mutual relationships during the hydrostatic test temperature correspond to those during the operation.

Mutual Ratios of Permitted Saddle Reactions During	g Operation	
--	-------------	--

CASE	RfPV	PD 5500	ASME VIII - 2	ASME VIII - 1	EN 13445	AD 2000 – S 3/2
	(NL)	(UK)	(USA)	(USA)	(EU)	(D)
YELLOW	0.213	0.171	0.177	0.146	0.129	0.164
BLUE	0.211	0.257	0.274	0.064	0.091	0.103
GREEN	0.129	0.106	0.107	0.089	0.251	0.318
GREY	0.133	0.196	0.201	0.092	0.176	0.202
Lowest Highest						

III. DISCUSSION

In practice, saddle supports are usually provided with a wear plate (see APPENDIX 2) that is continuous-ly welded to the cylindrical shell. In order to be able to take into account the stress-reducing effect of such a plate, the plate must meet certain dimensional requirements. When applying standardized saddle supports it often appears in practice that the dimensions do not meet the specified code requirements and their thickness is therefore generally left out of consideration. Of course, in practice, if there is a need for this, the wear plate can be given such dimensions that it can be taken into account in the saddle calculations. It also appears that in the various design codes there are different views on the interpretation of incorporating the wear plate into the calculations. This can give rise to significant differences in occurring stresses in the vicinity of the saddles. Particular in EN 13445-3 and AD 2000-Merkblatt S 3 / 2, there is potential for confusion because of the assumption that a wear plate (reinforcing plate) and also a so-called saddle plate are present, although AD 2000 – S 3/2 states that the procedure is also valid without reinforcing plate. It would be desirable for the relevant code committee to pay attention to this crucial aspect, which should lead to an adjustment of the relevant design code, which will aim to remove any ambiguity. The information presented will assist in the evaluation of the load acting on the saddle support, based on the assumption that the circumferential compressive membrane plus bending stress at the horn of the saddle is the most limiting factor.

IV. CONCLUSIONS

The key findings of this research are as follows:

★ The allowable saddle loads (blue bars) calculated according to RfPV, PD 5500 or ASME VIII-2 which method initially has been developed by L.P. Zick and where the saddles are placed close to the heads (A / R ≤ 0.5) are substantially higher than calculated according to the limit load-based method as included in EN 13445-3 and AD 2000 S3/2. The prerequisite for this is however that the saddles are provided with a

continuously welded wear plate to the cylindrical shell with sufficient dimensions according to the applicable code. The factor between the extremes is between 2.06 and 4.26. The case calculated according to ASME VIII-1 is an exception to this which is mainly caused by a considerably lower (approx. 31%) allowable stress.

- ✤ For the situation with the saddles in the vicinity of the heads (A/R ≤ 0.5) without a wear plate or a wear plate of insufficient dimensions (yellow bars), the mutual differences in permissible support reactions are less extreme. If we conveniently ignore the case calculated according to ASME VIII-1, then there is a factor of 1.65 between the values calculated according to the L.P. Zick method and those according to the limit-load method.
- In the case of saddles not placed close to the heads, i.e. A/R ≥ 1.0 without wear plate or insufficient wear plate dimensions (green bars), it is noticeable that the calculated allowable saddle load according to the L.P. Zick method is considerably lower than that according to the limit-load method. The difference amounts a factor of 2.47 to 3.58.
- In the case where A/R ≥ 1.0 and a wear plate of sufficient dimensions according to the applicable code (grey bars) is applied, it is noticeable that with the exception of the calculated value according to ASME VIII-1 the values according to PD 5500 and ASME VIII -2 almost corresponds to the calculated values according to EN 13445-3 and AD 2000 S3/2. The mutual difference here varies between approx. 2.8 to 11.4 %. The allowable saddle support loads calculated according to RfPV and ASME VIII-1 differ considerably from each other, i.e. about 30%. The differences with the other calculated values are even more significant. The maximum difference amounts a factor of 2.21.
- In general it can be observed that the differences in the calculated allowable saddle support reactions are quite substantial. In particular the differences between the ones on L.P. Zick based method and the limit-load based method (blue bars) are quite striking. Furthermore, we can conclude that a correct interpretation with regard to incorporating a wear plate in the calculation is crucial and that doubt about it must be removed. The relevant codes must provide more clarity on this.
- It is inexplicable that substantial differences exist in "saddle load capacity" for the case of saddles placed near the heads which are provided with a wear plate of sufficient dimensions between "Zick" based or "limit load" based analysis. Follow-up studies are desirable to provide clarity and insight into this matter. Numerical analyzes (FEA) offer the possibility to verify the methods.
- ★ It appears that AD 2000 and EN 13445 (Limit Load Method) does not distinguish between A/R ≤ 0.5 or $A/R \ge 1.0$, while this is clearly the case with the "Zick" methodology. In other words, saddles placed near the ends do not lead to a substantial increase in their load capacity in the case of AD 2000 and EN 13445.

ACKNOWLEDGMENTS

The author would like to thank Alfred van der Voet from P3 Engineering (the Netherlands) for making their software package VES available for performing a considerable number of code calculations. Moreover I want to thank Keith Kachelhofer from MacAljon Fabrication / MacAljon Engineering (USA) for his efforts with regard to performing a number of ASME Code calculations with the aid of COMPRESS Pressure Vessel Design Software.

REFERENCES

- Zick,L.P., 1951, "Stresses in Large Horizontal Cylindrical Pressure Vessels on Two Saddle Supports", Welding Journal Research Supplement, 30(9), pp. 435 - 445, and revision of January 1971.
- [2]. Rules for Pressure Vessels, Sheet D 1105 "Horizontal cylinder on two saddle supports", issue 02 2012, Sdu Publishers, The Hague, The Netherlands.
- [3]. ASME BPVC Section VIII-Division 2, 2017 Alternative Rules.
- [4]. PD 5500: 2018, "Specification for unfired fusion welded pressure vessels", BSI UK.
- [5]. TGL 32903/17, edition June 1982: "Behälter und Apparate. Festigkeitsberechnung, Schalen bei Belastung durch Tragelemente".
- [6]. AD 2000 Merkblatt S3/2; "Verification of load-carrying capacity for horizontal vessels on saddle supports", February 2014 edition.
- [7]. EN 13445 3, "Unfired pressure vessels Part 3": Design; Issue 5: 2018.
- [8]. Dennis R.Moss and Michael Basic, "Pressure Vessel Design Manual" Procedure 4-10; Fourth Edition, Elsevier Publications.
- [9]. Pressure Vessel Newsletter, Volume 2016, July Issue, pp 5 15 by CoDesign Engineering LLC; Ramesh Tiwari.
- [10]. ASME BPVC Section VIII-Division 1,2017 Rules for Construction of Pressure Vessels.

APPENDIX 1

Vessel and saddle data summary

Design conditions:

Quantity	Symbol	Value	Unit
Calculation temperature	$T=\vartheta_m$	50	°C
Internal pressure	Р	1.5	MPa
Hydrostatic test pressure	P _T	2.145	MPa
Internal fluid density operating	ρ	510	Kg/m ³
Internal fluid density hydrotest	ρ	1000	Kg/m ³
Weld joint efficiency	Z	1	-
Corrosion allowance	с	0	mm
Wall tolerance	-	0.0	mm

Materials:

Quantity	Symbol	Value	Unit	Remark
Nominal design stress of shell and wear plate	f = S	170.67	MPa	P265GH

Shell and Head dimensions:

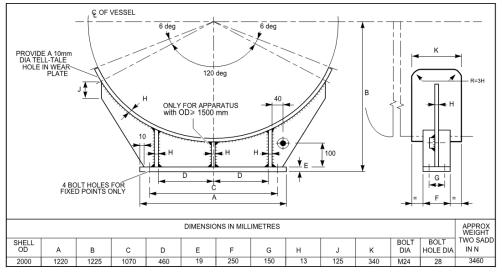
Quantity	Symbol	Value	Unit	OD head: 2000 mm; Depth: 503.65 mm
Outside diameter	De	2000	mm	Dimensions acc. DIN 28013 ; Type Korbbogen
Inside diameter	Di	1980	mm	Material: P265GH acc. EN 10028-2
Corrosion allowance	с	0	mm	Tensile strength: 410 MPa
Length of cylindrical part	$L=l_1$	7960	mm	Yield strength @20°C: 265 MPa respectively 256 MPa@ 50°C
Actual thickness	$e_n = t$	10	mm	Thickness korbbogen head: 10 mm AF
Analysis thickness	$e_a = t$	10	mm	Nominal design stress: 170.67 MPa @ 50°C and 176.67 @20°C

Saddle data:

Quantity	Symbol	Value	Unit
Included angle of saddle	$\delta = \theta$	120	degree (°)
Saddle width	$b_1 = b = w$	250	mm
Distance to adjacent head	$a_1 = A$	495 resp. 995	mm

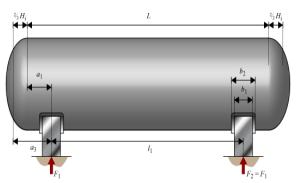
Wear plate design data:

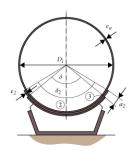
• 0	1	1		
Quantity	Symbol	Value	Unit	Equation
Width of wear plate	$b_2 = w_p$	340	mm	
Critical width wear plate	$K_{11}D_i + 1.5 b_1$	510.2	mm	<i>к</i> – ⁵
	$b_1 = w$			$K_{11} = \frac{1}{(0.10472.\delta \sqrt[3]{\frac{D_i}{e_a}})}$
Distance from saddle horn to reinforcing (wear) plate	a ₂	105 resp. 198	mm	
Included angle of wear plate	δ_2	132 resp. 143	(°)	
Thickness of wear plate	$e_2 = t_w$	13	mm	
Combined effective thickness	e _c	16.4	mm	$e_{c} = \sqrt{e_{a}^{2} + e_{2}^{2}}$
Material identical to shell material				


Note: The wear plate may only be considered as a reinforcement plate if it satisfy the required conditions

Weights of vessel and contents:

Quantity	Symbol	Value	Unit
Total weight of empty vessel	WE	53937 / 5500	N/kg
Weight of content during operating	W _{C,OP}	133370/13600	N / kg
Total weight of vessel during operating	W _{OP}	187307/19100	N / kg
Weight of content during Hydrotest	W _{C,T}	260857 / 26600	N/kg
Total weight of vessel during Hydrotest	W _{HT}	314793 / 32100	N/kg
Maximum vertical force at saddle	F=Q	157397 / 16050	N/kg


APPENDIX 2


Saddle configuration

APPENDIX 3 - Saddle support arrangement

(Source: The informative images below are derived from the VES user manual from P3 Engineering, Delft - The Netherlands)

- $a_1 \ \ \text{Distance from saddle support to adjacent end of cylindrical part}$
- a3 Length of equivalent cylindrical shell
- b1 Axial width of saddle support
- b2 Width of reinforcement plate
- l_1 Distance between two successive saddles
- L Length of cylindrical part (including cylindrical part of heads)
- H_i Internal head height

Saddle cross-section with reinforcement (wear) plate

- D_i Inner shell diameter
- e_n Nominal shell wall thickness
- a₂ Distance from horn of saddle support to end of reinforcement plate
- δ Included angle of saddle support (in degrees)
- δ_2 Included angle of reinforcement plate (in degrees)

Walther Stikvoort "Comparative research into the load-bearing capacity of horizontal pressure vessels supported by saddles" American Journal of Engineering Research (AJER), vol. 8, no. 11, 2019, pp 62-74