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 ABSTRACT  :. The widely used  “XX-SC,YY-CC” and “XX-SC,YY-SC” plates compressed on “X-X”  which 

have no direct recorded solutions are investigated ,among others, and the results found are accurately justified. 

For a solution, the relative-curvature/deflection ratio in the deformation must be a scalar. The X- and Y- 

curvatures when applied to the Mohr’s diagram lead to a first and second loading-curvature-circles in axial 

compression, “𝒳x” and “(𝒳x+𝒳y)/2” ; the least buckling load is sought . When “𝒳x/𝒳y < μ”, uniqueness of 

uni-axial X-compression is lost . A simpler solution of all rectangular plate buckling in axial compression is 

sought within little percentage discrepancy of  known literature values ;this was achieved .Some designers 

desire independent check of results; this present method will come in useful. 
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I. INTRODUCTION 
The buckling of axially compressed rectangular plates have been in examination for over eight decades; 

Bryan, 1891[1] demonstrated the relation 𝛔cr =k(Et
2
/b

2
)/(12(1-μ

2
)) as critically relevant for rectangular plates in 

axial compression .Studies in plates are readily justified by their extensive deployment in assembly of vessels-

ships, aircraft, cans, cylinders.  Detailed experimental support are widely available, Richard Pride and George 

Heimeri,1949[2], Nishino et-al, Lehigh Preserve,1966[3] . A striking aspect of the latter publication is that 

theoretical prediction of strength exceeded experiment by 30 to 50 percent in simply supported plates. In many 

instances the “ssss” plate is tested by compressing rectangular tubes whose sides behave as simply-supported 

rectangular plates,Schfer,2009[4]; also [2]. In most of this period reliable reference solutions for plates in which 

axially compressed opposite ends have different boundary conditions were hardly found; they are not passed 

down in contemporary texts and research papers. Perhaps, they are not unique but there is scant discussion. The 

graphs of many classical buckling solutions will be found “https//ocw.mit.edu/courses/2013,[5]” ,also in 

Pope[6] and David Rees[7] . 

 An immediate observation is that the one-axis compression buckling equation, Eq.1, is bi-axial on the 

reaction side but uni-axial on the load side; this is unlike the bending problem in which any transverse-load, „q‟, 

which replaces (Nx.∂
2
w/ ∂x

2
) is also bi-axial in X,Y.  This will pose solution problems in some cases. 

In alternate solutions [5,6], and in order to encourage lower-bound results and also to bring theory and 

experiments closer, the unloaded boundaries of plates in axial compression are ,sometimes, forced to remain 

straight and in that way bring into play Poisson‟s effect contributing additional axial trust in the unloaded Y-

direction . Additionally, elasto-plastic theory of plate buckling also leads to lower and safer values of the 

buckling load, at the cost of closed-form solutions, [2,8] . 

The present study adopts the relative-curvature/deflection resonance buckling criterion, Johnarry[9] 

where for a solution, the relative-curvature/deflection ratio must be a scalar .Buckling deflection functions must 

meet this requirement a-priori . The X- and Y- curvatures when applied to the Mohr‟s diagram leads to a first 

and second loading circles under axial compression , “𝒳x” and “(𝒳x+𝒳y)/2” ; the minimum buckling load is 

sought .                                                                                                                                               

Nomenclature 

a,b   rectangular plate dimensions in X,Y 

𝞭b     change in  width of plate …Poisson‟s effect 

http://www.ajer.org/
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s*    aspect ratio ,a/b 

E     Young‟s modulus of elasticity 

𝜌=  D𝞹2
/b

2
 

t       thickness of plate 

D     flexural rigidity of plate, (isotropic); D=Et
3
/12(1-μ)

2
. 

𝝁       poisson‟s ratio 

w    deflection symbol 

w,xx-r :     relative curvature in X-direction  

w,yy-r :  relative curvature in Y-direction  

w,xx-r/w  :   relative-curvature /deflection ratio ;must be a scalar for any solution  

XX-SC,YY-CC  ;   plate simply and clamped on  X-X; and clamped-clamped on Y-Y  

rcap .          capacity ratio  of axes as,   (∂
4
w/ ∂x

4
 )/( ∂

4
w/ ∂y

4
)  

H           = (∂
4
w/ ∂x

4
 +2∂

4
w/ ∂x

2
∂y

2
 + ∂

4
w/ ∂y

4
) = Hxx + Hxy + Hyy.    

𝒳        curvature 

𝛔        stress symbol 

  

II. APPLICABLE EQUATIONS 
 The existing uni-axial buckling equation, Eq.1, is firs t stated. Fig.1 shows plates, axes and typical boundary 

conditions in some cases; The uni-axial analysis equation, 

(∂
4
w/ ∂x

4
 +2∂

4
w/ ∂x

2
∂y

2
 + ∂

4
w/ ∂y

4
)    = (Nx /D)

2
w/∂x

2
             .….                                             (1) 

D{∂
4
w/ ∂x

4
 +2∂

4
w/ ∂x

2
∂y

2
 + ∂

4
w/ ∂y

4
 }   = [Nx ∂

2
w/ ∂x

2
  + Ny ∂

2
w/ ∂y

2
  ]                                    (2)  

 is generally axially unbalanced ; it is bi-axial on the reactive “LHS” and uni-axial on the load , “RHS” side . So 

the load  does not apply uniformly over the plate ; Eq.2 is a balanced “RHS” and should  be investigated first for 

limiting values of Eq.1. 

 

 
Fig.1   Various plates, boundary conditions and buckling-modes 

 

Also the shear loading equation, Eq.3 is balanced .    

                                                                                                    

   ∂
4
w/ ∂x

4
 +2∂

4
w/ ∂x

2
∂y

2
 + ∂

4
w/ ∂y

4
   =( Nxy/D)(2∂

2
w/∂x∂y)                                                          (3)                                                         

Eq.1 is summarized as  ,  

   Hxx  +  Hxy  +  Hyy  = H =  (Nx/D) ∂
2
w/ ∂x

2
.                                                                                   (4)                          

Everything is known and the solution is rapidly concluded. 

For  solutions , all differentials are given finite values; for example,                                                                    

     
𝛛𝟒𝐰/ 𝞉𝐱𝟒 

(𝟏)
  =   

  𝐰 𝛛𝟒𝐰/𝞉𝐱𝟒 𝛛𝐱𝛛𝐲

 𝐰𝛛𝐱𝛛𝐲
      = Hxx.                                                                     (5)  

           
 𝛛𝟒𝐰 / 𝞉𝐲𝟒 

(𝟏)
  =   

  𝐰 𝛛𝟒𝐰/𝞉𝐲𝟒 𝛛𝐱𝛛𝐲

 𝐰𝛛𝐱𝛛𝐲
    = Hyy.                                                                  (6) 

          
 𝟐𝛛𝟒𝐰 / 𝛛𝐱𝟐𝞉𝐲𝟐 

(𝟏)
  =   

  𝟐𝐰 𝛛𝟒𝐰/𝛛𝐱𝟐𝞉𝐲𝟐 𝛛𝐱𝛛𝐲

 𝐰𝛛𝐱𝛛𝐲
   = Hxy.                                                     (7)   

            
 𝛛𝟐𝐰 / 𝞉𝐱𝟐 

(𝟏)
  =   

  𝐰 𝛛𝟐𝐰/𝞉𝐱𝟐 𝛛𝐱𝛛𝐲

 𝐰𝛛𝐱𝛛𝐲
    = 𝒳x                                                                 (8) 

           
 𝛛𝟐𝐰 / 𝞉𝐲𝟐 

(𝟏)
  =   

  𝐰 𝛛𝟐𝐰/𝞉𝐲𝟐 𝛛𝐱𝛛𝐲

 𝐰𝛛𝐱𝛛𝐲
      = 𝒳y                                                               (9) 

          𝒳1,2 =( 𝒳x + 𝒳y)/2  ± √[{( 𝒳x - 𝒳y )
2
/2}

2
 +{(𝒳xy)/2}

2
]    ;principal curvatures;                  (10a) 

Or by reference to the Mohr‟s circle, 

𝒳1,2 =( 𝒳x + 𝒳y)/2  ± R   ; R= Mohr‟s circle radius.                                                                                  (10b) 

These integrals are the outcomes of criterion of buckling as relative-curvature/deflection resonance. A typical 

buckling resistance integral is , 
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 𝛛𝟒𝐰 / 𝞉𝐱𝟒 

(𝟏)
   = Cxd4 (w,xx-r/w)  =  Cxd4 (Rxcd)                                                                  (11) 

The ratio, “(w,xx-r /w)  = Rxcd.” must always be a scalar constant or else the function is inadmissible ; indeed this 

is the inbuilt buckling criteria .  Buckling deflection function ,w, must be chosen as to make the ratio, (w,xx-r/w), 

a scalar. The domain   compliant factor at resonance, Cxd4, is what is left to be found. Multiply both sides of 

Eq.11 and integrate to find it.                                                                                                                                     

   Cxd4.Rxcd  = [ 
 𝛛𝟒𝐰/𝞉𝐱𝟒 

𝟏
 ] = [ 

  𝐰 𝛛𝟒𝐰/𝞉𝐱𝟒 𝛛𝐱𝛛𝐲

 𝐰𝛛𝐱𝛛𝐲
 ]                                                                (12)                                                                                                                                                                                                

 

2.1 Buckling Potential Limits 

Three possibilities are identified relative to X- and Y-axes in emulation with the reactive potentials” ∂
4
w/ ∂x

4
 

;2∂
4
w/ ∂x

2
∂y

2
 ; ∂

4
w/ ∂y

4
)” . No curvature “𝒳i” is ever applied in practice but “𝒳x” and “𝒳y” act jointly . 

(i) 𝛔x 𝒳x. 

This is first in contention in uni-axial X-compression; this case easily solves Eq.1 . 

(ii) 𝛔y 𝒳y. 

   This is out of contention when no load is applied  in the Y-axis, whatever the value of “𝒳y.” 

(iii)  (𝛔x 𝒳av.) 

This “average loading-curvature” situation will always happen and also in contention. (i) and (iii) are identified 

in the Mohr‟s diagram ,Fig.2 

In effect, two curvature-loading circles (𝒳x , 𝒳av) are operative and the larger circle gives the required solution 

for “Nx”.   This process softens the stiff constraint that the wave numbers “,m ,n”, must be whole numbers.   

 

 
 

 3.1a; Square-plate: xx-ss, yy-cc ,X-thrust ;Fig.1a 

       - check  bi-axial solution ; “Nbiaxial”, for clue …Eq.1-10                     

   Deflection Function and Solution 

w= (Sin m𝞹x/a) (Cos n𝞹y/b   -1 )  ; m =1,2,3..;n=2,4,6… 

a/b=1 ;Hxx =114.76; Hxy=305.99;Hyy=612                                                                                                                                                                                                    

(Nbiaxial/D) = (114.76 + 305.99 + 612.0)/(11.627+15.5) =10 32.79/27.127  

=30.0766=3.856𝜌. ;cf,”3.85𝜌” in Maarefdoust and Kadkhodayan[8]  

This solution in “(Nbiaxial/D)”is exact; this is for comparison and also testing the deflection function “w”. 

Also the maximum uni-axial buckling load cannot be greater than “(2.0)(Nbiaxial)” so as to exhaust the capacity 

of the square plate which is constant as the “LHS” 

3.1b  Solve for “(Nx)” ,X-compression;   

(w,xx)  = (11.627); (w,yy) =15.5 ;  (w,xx)  <  (w,yy)  ; Check (w″,av)   

Average curvature loading-circle-curvature : (w″av)  =(𝒳av) =(11.637+15.5)/2 =13.56  

 (Nx /D)=(1032.79 )/(13.56) =7.716𝜌.                                                                                                   S3.1-b                                                                          

The difference from the literature-exact,7.7𝜌,[7] is  0.2-percent .  Table-2 gives more details  

        

3.2:  Square-plate; xx-cc,yy-ss ;X-thrust ,Fig.1b 

a/b=1 ;Hxx= 612, Hxy=305.99, Hyy=114.76; (w,xx) =15.5 ;  

(w,yy) =11.627 ; 𝒳1=13.127;rcap = Hxx/Hyy =5.3 

H=(612+305.99+114.76)=1032.75; 

(𝒳cr) = 𝒳x=15.5…Fig.2b;  ;confirm “ 𝒳y=11.67”                                 

(Nx/D)=1032.75/15.5=66.63=6.75𝜌. “Ref-[5]=6.75𝜌”      
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 3.3:  “CCCC” square plate,  uni-axial compression ;Fig.1c 

 a/b=1 ;Hxx=1168.8 ;Hxy=779.2; Hyy=1168.8 ; and (𝒳x)=(𝒳y)=29.61 =𝒳cr .                                       

(Nx /D)= 3116.8/29.61 =105.26 =10.66𝜌 

Taylor,G.I[10]=10.66𝜌; Maulbetsch, J. L.[11] =10.48𝜌;Ref.[5]=10.35𝜌 ; Levy, Samuel[12]=10.07𝜌.   The 

references show that small differences in results come with differences in the exactness of the deflection 

functions .   The “Ref.[5]=10.35𝜌” appears the most quoted solution. Table-1 gives more details. Polynomial 

deflection function will always yield upper-bound result,10.94𝜌,,Ada,E.I ,et al [13];this is about the best 

expected from such functions .Buckling cannot depart from Euler‟s discovery of “sine” function in 1756.                                                                                                                                                                                                                                       

 

3.4: square plate; xx-sc,yy-cc ,X-thrust;Fig.1d 

It is noted that the end boundary conditions are different on the compressed X-axis ;  this is not   

covered in published classical solutions ; exact strip functions for the case 

W-x=[ Sin ScX/a + AX/a]  ;Sc=4.5 , A=0.977 …these values solve the case of the bar exactly. 

W-y= [Cos n𝞹y/b -1]  ;n=2,4,6…                                                                                                                                           

W= [Sin ScX/a + AX/a][Cos n𝞹y/b  -1 ]                      ;n=2,4,6… 

a/b=1 ;Hxx= 365.37, Hxy=474.89, Hyy=790.1, 

Nbiaxial = (365.37+474.89+790.1)/(18.05+19.96) =1630.36/38.01 = 4.346𝜌  

𝒳x .= (18.05 )  ; 𝒳y .= (19.96 )  ;                                       

(𝒳av .)= (18.05 + 19.96) /2 =19.005  

(w″,av)   = (19.005) ; this is the relevant Mohr‟s failure -𝒳                                   

Nx  /D= 1630.36/(19.005) = 8.69𝜌  

There is no reference direct solution anywhere to compare with but the “CCCC” plate at (a/b=4/3) is equivalent 

and offering a result ≅ 8.6𝜌; from graph,[5] 

 

3.5:  Square plate; XX-SC,YY-SC ;X-thrust ;Fig.1e 

W=(Sin K.x/a +A.x/a)(Sin K.y/b  +A.y/b) ;K=4.5 ,A=0.977 

a/b=1 ;Hxx=379.87,Hxy=533.90,Hyy=379.87 ;H=1293.64 

(w,xx)= 18.76; (w,yy)=18.76 ;  OK                                       

Nbiaxial =  1293.64/(18.76+18.76) = 34.479𝜌 =3.493𝜌 

Nx /D= 1293.64/18.76 =68.957=6.987𝜌; Ref[5]=6.99𝜌; 

This plate was left out in the extensive literature solutions; [5,6,7] .However, a comparison will be found in XX-

SS,YY-SC plate at “a/b=0.67”, that is ,Nx≅7.0𝜌,[5] 

 

4.  Effects of Aspect-ratios , a/b = s*, on  strength                 

The full cycle  cosine/sine curve ,s1,s2,s3,s4,Fig 3, explains everything about buckling ; the clamped-clamped 

starts with an acceleration and simply-supported starts with a velocity .  

 “s1,s2,s3,s4” solves the “CCCC” at s*=1; 

“s2,s3” ≡”XX-SS,YY-CC” at s*=1  solves the “CCCC” at s*=2 

s1s3 ≡ “XX-SS,YY-CC” at s*=1 solves “CCCC” at s*=4/3 

In this way independent checks are easily found for some aspect ratio investigations. 

 

Infinitely Long Rectangular Plates 

Infinitely long plates may be accounted for by augmenting Eq.1 with shear waves as demonstrated in Fig.4ii to 

give Eq.13 ;for s*≤1 plate the augmentation is zero .”{..}/Nx” is considered as extra average X-curvature . 

 

 D(∂
4
w/ ∂x

4
+2∂

4
w/ ∂x

2
∂y

2
+∂

4
w/ ∂y

4
)=Nx𝞉

2
w/∂x

2
+(-𝝁NxCos45)Cos45(-𝝁𝒳y)2/𝞹(a-b)/a …….(13) 

                                              

4.1 : Constrained uni-axial X-Compression : 

           By Ref.[5] and Fig.4i, for “SSSS” ,Eq.14 evolves . 

           H=D𝞹4
[(m/a)

2
+(n/b)

2
)]

2
=(Nx)(𝒳x)+(μNx)(𝒳y)      ;  (μNx)=Ny.                                    (14) 

For long plates only the compression load-length ,b, can be kept constant and away from the local load zone  the 

Y-width ,b, can increase with the external-constraints removed ,Fig.4ii;  

 

4.2 Onset of a Long Plate Dimension 

The strength of a long plate is virtually invariant with aspect ratio; so there is only need to make a few 

calculations ,s*=1,a-long,and “0.5a-long” for graphing when s*>1 

          ∫∫w𝞉2
w/𝞉x

2
 =𝝁∫∫w𝞉2

w/𝞉y
2
.                                                                                   (15) 

From Eq.15,  find starting point of a long plate, “a-long”. 
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Fig.  3:  Aspects of “CCCC” plate modes 

   

Table-1; “CCCC” at s* =1 to 9  ;Nx=𝜌Kcr. 
s* m n Kcr                  (Ref.5) 𝒳x/𝒳y 

1 2 2 10.66#  (10.35)        1 

1.83       2 2 8.0#       (  8..1)              0.28 ≅0.3 

2 2 2 7.86       ( 7.85)         

2.38^^      2 2 7.80#    (  7.75) 0.3 

5.48            6 2 7.66        (7.4) 0.3 

9.13 10 2 7.34        (7.3) 0.3 

          

Nx ≅ “7.8𝜌”≅minimum at  s*≥2.4 for 𝒳x/𝒳y≥0.3; #plotpoint 

At “𝒳x/𝒳y” <μ, “𝒳x” is inseparable from residuals;^^,long-plate onset 

    

Table-2  ; “XX-SS,YY-CC” at  s* =1 to 14 ; Nx=𝜌Kcr. 
s*=a/b         m n    Kcr          ( Ref.5 ) 𝒳x/𝒳y 

0.5  1  2   8.0#    (  8.0)           >1 

0.0.65              1  2  7.3#     (  7.3)           >1 

0.82 1  2  7.74#  ( 7.74) >1 

1 1 2 7.71#   (7.7   ) 0.75 

1.58^^ 1 2 7.55#   ( 7.4  ) 0.3 

4.74 3 2 7.30     (7.1) 0.3 

14.2 9 2 7.02      (6.97) 0.3 

     

         Nx ≅ “7.55𝜌” ≅minimum at  s*≥1.6 for 𝒳x/𝒳y≥0.3 ;  

             At  “𝒳x/𝒳y” <μ ,“𝒳x” is inseparable from residuals;#plotpoint 

    ^^,long-plate onset    

 

4.4   The Simply-Supported Plate, “SSSS” 

 The huge irregularity in the variation of the strength of plates with aspect ratio, where the compression 

direction has simple supports at both ends,[5], cannot recommend the relevant curves to design.  

 The all-simply supported plate is solved by the deflection function “w= (Sin m𝞹x/a)(Sin n𝞹y/b)” with the 

solution Nx/D=𝞹2
a

2
/(m

2
)[(m/a)

2
+(n/b)

2
)]

2
.;”Timoshenko and Krieger, [14]”.  

At “s*”=1,2,3… ,Nx/D=4𝜌 ;problems arise if “s*” is not a whole number as  generally encountered in design . If 

s*=√2 is isolated for design and with no reference to any other ,Nx/D=4.5𝜌 for m,n=1 ;this result is held with 

suspect because a longer plate is now much stronger than a shorter one. Also the plate is long before “s*”=2 and 

so in the realm of frequently used dimension. 

 Controlled “National-Advisory-Committee-For-Aeronautics(NACA)”-laboratory test results presented 

by Pride and Heimeri,[2] showed that the strength of “a/b=2 plate” was consistently over 12-percent weaker 

than “a/b=1,plate” for the same slenderness; continuing, over 22-percent weaker for “a/b=5 plate”. It was also 

revealed in the same Report[2] and also by Nishino, et al[3]that the theoretical was 25 to 40-percent higher than 

experiment for “b/t” ranging from 50 to 70.   

 The use of the intermediate-loading-curvature,”𝒳av”, is a new input in this study and it predicts decline 

of strength with “s*” > 1 . Table-3 summarizes the “SSSS” plate by the present method.   

                                                                                                                                                                            

Table-3  ; “SSSS-plate ,s*=1 to 11 ; Nx=𝜌Kcr                  
s*=a/b         m n Kcr          (Ref.5) 𝒳x/𝒳y 

0.25         1 1 18.1#    (  18.1)        >1 

1               1 1 4#          ( 4    ) 1.00 

√2            1 1 3#          ( 4.5)         >0.3 

1.83^^    1 1 2.6#      (  >4 )       0.30                                                 

     5.48           3 1 2.50       (4)                 0.3 

10.95  6  1 2.45     (≅ 4) 0.3 
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“Nx≅2.57𝜌 ≅minimum at  s*≥1.83 for 𝒳x/𝒳y>μ; #plotpoint     

At  “𝒳x/𝒳y” <μ ,“𝒳x” is inseparable from residuals;^^long-plate onset   

 

Table-4  -.-“XX-SS,YY-SC” at  s* =1 to 5   ; Nx=𝜌Kcr. 
          

s*=a/b         

m  sc (new);Kcr  ( Ref-5)          𝒳x/𝒳y  

 1                   1 4.5  5.35#     ( 5.85)          >0.3 

 1.1 1 4.5 4.98# ( 6.3;so high ? )  

1.67^^ 1 4.5 4.32# (  5.6  ) 0.3 

5 3 4.5 4.25#  (5.5) 0.3 

 

Nx ≅ “4.32𝜌” ≅minimum at s*≥1.67 for 𝒳x/𝒳y≥0.3 ;  

At  “𝒳x/𝒳y” <μ ,“𝒳x” is inseparable from residuals;#plotpoint 

^^,long-plate onset  ;Reference variation too wild.  

 

4.5  : Square plate; XX-SS,YY-SC ; X-thrust 

a/b=1 ; Hxx=76.5; Hxy=186.6;Hyy=191.4;H=454 ;𝒳x=7.87 ; 𝒳y=9.46; 𝒳av =8.66                                               

(a) One solution is ; 

Nx/D=H/𝒳x =57.7=5.84𝜌. exactly as Ref.[5] . 

 Now  “𝒳x <𝒳y.” ;so this quoted result cannot be exact . “𝒳x” has to be greater than “𝒳y” for this to happen, 

Fig.2a. 

 

(b)By present method   : 

 Nx/D =H/𝒳av =5.31𝜌 ;this is a new and more exact result. A useful comparison is found in the 

result,5.756𝜌 at s*=1 of Adah,E.I., et-al[13] . More details are found in Table-4 .For strength versus aspect-ratio, 

the literature [5], variation is too wild to be acceptable ;for example N=5.83𝜌 at s*=1 and N=6.3𝜌 at s*=1.1 

,then down to N=5.5𝜌 at s*=1.45. The present solution in Table-4 gives a more acceptable variation. 

 

4.6    The “XX-SS,YY-SF”  plate :  Fig.1f    

This is a frequently met case in construction . The “YY” axis plate is independently unstable and so enjoys 

poisson‟s existence from “XX” . By Ref.[5] approximate solution is preferred ,              

                     Kcr  = 0.456 +(b/a)
2
. 

Further insight is offered from the “w-function” 

                          W= (Sin m𝞹x/a)(Sin 𝞹y/cb)  ;m=1;c=? 

Find “c” such that, 

               (𝒳y)domain= (μ𝒳x)domain    ;;  (μ=0.707μ =0.212 for a sine variation) . In this way the exact free-edge 

boundary condition is approximated . 

  (i) “a=b” ;c=2.17;Hx=60.083;Hxy=25.5;Hy=2.7;H=88.28;𝒳x=6.0875; 𝒳y=1.29; Nx=1.469𝜌 

(ii)“a=2b” ; c=4.34;Hx=3.755;Hxy=1.59,Hy=0.169;H=5.5;Nx=0.37𝜌 

 

5:  Wave numbers in buckling  

 Undue emphasis is not placed on wave numbers in buckling; vibration and buckling are inseparable 

and vibration is the preferred mode of resistance and failure .In the “SSSS” plate a wave number in “m=4” for 

s*=7.5 was tried as shown in  Table3 .In the situation, the fundamental and harmonics can act together. Until a 

plate becomes long the fundamental numbers are sufficient. In very long plates additional shear compression 

from harmonics can reduce strength slightly calling for slight adjustment in the present  method. 

 

 
Fig.4;i:X-sides constrained; ii: X-sides bow-out,away from load ;angle-A=45 
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III.CONCLUSIONS 
1. Many referral solutions of the uni-axial plate buckling are not listed when the ends of the compression axis 

have differing boundary conditions; these were successfully handled in this study. 

2.  The relative-curvature/deflection resonance buckling criterion was adopted and very accurate results found 

here are verified against those in the literature. Problems skipped in the literature are covered here. 

3. Two competing loading-curvatures are identified with reference to the Mohr‟s curvature loading-circles , 

“𝒳x” and “(𝒳x+𝒳y)/2” ;the one which leads to the  smaller buckling load is the  relevant . 

4. The new method predicts a result of “Nx/D=8.67𝞹2
” for a square-plate “XX-SC,YY-CC”, compressed on 

„XX‟ .There is no direct literature solution but the result is adjudged correct because it approximately 

matches that of “CCCC plate‟ at “a/b=4/3”, as it should.  

5. By  this study a  plate becomes long after the computable “𝒳x/𝒳y” ratio is less than the Poisson‟s ratio in 

uni-axial X-compression; there is then no longer unique uni-axial action .A “CCCC” plate is short up to 

s*=2.38 and 1.83 for “SSSS” . 

6.  Contrary to existing literature this study concludes that the “SSSS” plate reduces in strength after “a/b”>1 

,reducing from “4.0𝜌”in square- to “2.6𝜌” at “a/b”=1.83   

7. A more satisfactory solution of the “XX-SS,YY-SC” at “a=b” is found as “5.31𝜌” ,much less than the 

literature[5] value “5.85𝜌” ;the checking ability of the present method is in focus. The wild literature 

fluctuation with “s*” is attenuated by the present method.  

8. Beyond the length-description of a short plate, the strength reduction remains marginal , similar to typical 

strength versus slenderness relation in one-way buckling plates . 
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