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ABSTRACT:Motivated by the persistent need to know the status of a hurricane instant-by-instant (almost on 

real-time basis) as regard to its intensity profile, with a fair degree of accuracy, proposed in this study is a 

novel method towards forecasting hurricane wind speed/intensity using a fast convergent, artificial neural 

network (ANN). A compatible architecture is indicated for the test ANN with ad hoc suites of 

training/prediction. Relevantly prescribed design on training and prediction schedules relies on a dynamic 

learning-rate algorithm deduced in terms of eigenvalues of a Hessian matrix associated with the input-data 

changing temporally with the progression of the hurricane. The underlying exercise includes the use of a 

traditional multilayer ANN architecture with feed-forward and backpropagation techniques plus a newly 

proposed fast-convergence algorithm; and, the test ANN forecasts fairly accurateresults of predicted wind 

speeds. The proposed strategy is applied to the data of Hurricane Wilma (2005, USA), after the neural network 

has been trained with subsets of historical hurricane data. The predicted results are cross-verified with actual 

wind speeds availed from the weather-center. This neoteric approach (exemplified via its potential application) 

has not been hitherto explored to the best of authors’ knowledge. 

KEYWORDS –Artificial neural network, Backpropagation algorithm, Eigenvalues, Fast learning rate, 

Hurricane profile forecasting  
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I. INTRODUCTION 

The scope of this study is to forecast hurricane intensity via an artificial neural network (ANN)  that 

enables a quick convergence with accurate predictions. 

An ANN is a mathematical model evolved as a computational tool based on the image of the biological 

neural complex  as elaborated in [1] by Neelakanta and De Groff.   A supervised training is based on the 

Hessian matrix of the relevant input data.  In the present study such data consists of details supplied by the 

National Hurricane Center (NHC).  That is, training the ANN involves inputting a plurality of parameters about 

several historical hurricane tracks.  Hurricane Frances (2004, USA) ,  Hurricane Charley (2004,USA), Hurricane 

Jeanne (2004, USA) were used for training with the goal of predicting wind speeds of Hurricane Wilma 

(2004,USA).All of these hurricanes have a common connection in that theyalloccurred in near geographical 

regions [2,3,4,5].  The desired output is sought comparable to a supervisory teacher standard.   A weight set is 

then determined based on the interconnections between the neuronal layers. That is, the artificial neural network 

refers to a mathematical technique that maps from an input space to an output space.   The goal of supervised 

training is to update the weights iteratively to minimize the error which is the difference between the actual 

output vector of the network and the desired output vector.   
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Figure 1:  Test ANN architecture constructed with 9 input neuron units (NU), 1 hidden layer with 9 NUs, 

1 output unit, hyperbolic tangent sigmoid 

 

The test ANN simulation described here refers to a multilayered feedforward perceptron (MLFP) made 

of an input layer, a single  hidden layer and a single output (Figure 1).   The values addressed at the input units 

progress via interconnected inner and hidden layers and the summed output is squashed by a nonlinear sigmoid 

to assume a limited level; and, the sigmoid-compressed output is finally compared against a teacher value 

(representing the desired output objective).  The resulting error is sensed and applied to the interconnection 

weights by a backpropagation gradient algorithm. That is, , the sigmoid-compressed value indicates an output, O 

which is compared against a teacher/supervisory (reference) value, T (representing the desired output objective). 

The resulting error corresponding to (O − T) expressed in terms of an error function such as denoting the 

mean-squared value of (O − T) is then sensed and backpropagated. The backpropagation (BP) algorithm 

adopted facilitates typically a steepest-descent based gradient that modifies the weight vector values (either to 

increase or decrease), when the error function is applied to the interconnection weights, Wij.  

In Figure 1, the summed value (zi) at the output unit corresponds to r
th
 ensemble ofinputs {yi}, 

weighted across the input-layer (with i = 1, 2, 3, ..., I = 9 units) and the hidden-layer (with j = 1, 2, 3, ..., J = 9 

units). Its linearly-scaled value, K× zi (with K denoting a linear-scaling constant) is subsequently squashed by 

a hyperbolic tangent (sigmoidal) function, f(.), yielding an output, Oi = f(K× zi). Further, the coefficients of 

weighting of interconnections between input- and hidden-layers are specified by the set: {Wij}. The topology of 

the ANN, in addition includes supervised learning and backpropagation facilitated by a teacher value T i as 

illustrated. An error , which is a function of (Oi ,Ti) is deduced and its gradient is specified by: (± Wij): and, 

the entity,  × (± Wij) is then applied iteratively so as to modify the existing value of Wij until, the error () 

reduces to zero or a prescribed low, „stop‟ value. Here, denotes a learning coefficient that can be chosen to 

achieve a desirable (fast) convergence rate of the iteration imposed. 

In summary, sensing the output error and applying it on the interconnection weights of the test ANN 

(as shown in Figure 1) is done iteratively, until the error approaches zero (or to a specified stop-value). That is, 

to begin with the coefficients of interconnection (or, the weights) are prescribed with a random set of 

(uniformly-distributed) values, in the range (– 1 to + 1). Then, the interconnection weights are updated via 

backpropagation using several ensemble of input-sets, r = 1, 2, 3, ..., R. For each ensemble input, the ANN is 

rendered to a state of convergence via iterative backpropagation of the error. This procedure is called training or 

learning phase. When all the ensembles of the training (input) set are exhausted, the net is conformed to a final 

set of “trained/learned” interconnection weights specified by the matrix, [Wij]tr. That is, the net is now 

presumably “trained” and ready to take a fresh set of input data so as provide a (sub) optimal solution or an 

output comparable to the desired target depicting the objective value, set forth by the supervisory reference. In 

other words, subsequent to training phase, the test ANN with its trained interconnection weights (specified by 

the matrix, [Wij]tr) is ready to accept a set of new input values, for which the prediction output is sought. Hence, 

with a new input set, the test ANN can be run with the [Wij]tr values; and, using the same teacher value, Ti 

(adopted as a supervisory reference in the training phase), under the converged state, the test ANN yields an 

output (Oi) value depicting the output being predicted for the new input set addressed. This refers to the 

prediction phase of the test ANN.   

Oi 
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Typically backpropagation algorithm is considered as a powerful tool for training feedforward neural 

networks.  However, since it applies the steepest descent method to update the weights, it suffers from  slow 

convergence rate  and may yield suboptimal solutions only [6].   As such, in this work, an alternative procedure 

is suggested which increases the rate of convergence.  Applying this speed-up technique results in  the number 

of iterations required to train the net being much smaller [7].  The objective of this learning process is to adjust 

the weights of the network so as to minimize the average squared error,   For a net of input size L, the 

associated T being the teacher (desired) output, O  the network output,  y the network input,  the squared error 

(cost) function is given by [8]: 
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where [O]i= [f(K×zi)], (zi)  depicts the sum of the outputs from the hidden neuronal units and, K is a 

prescribed linear scaling-constant on the computed sum. Further, [f(K × zi)] implies a squashing transfer 

function imposed on the linearly-scaled sum, (K × zi)], so that the resulting output remains limited (typically 

between ± 1). Among various possibilities of choosing this squashing function, f(.), depicting a simple 

hyperbolic tangent (sigmoidal) function [1] is adopted in the present study.w denotes the weight of 

interconnection between the input and hidden layer.  Further, relevant to each iteration of backpropagated error, 

changing the value of w, the following relation holds good: 
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Equation (3) can be further rewritten: 
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The derivative of e is zero at the minimum yields the optimum weight as:  
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From equation (4) and applying the analysis to multidimensional case, the Hessian is specified as the 

average over all inputs of y
T
y,wherey

T
 is the transpose of y.  It signifies the shape of the cost surface.  The 

eigenvalues of H denote a measure of the steepness of the surface along the curvature directions.  A large 

eigenvalue would signify steep curvature and that a small learning rate is needed.  That is, the learning rate 

should be inversely proportional to the eigenvalue.  Since a single learning rate is required, it is chosen such that 

it will not cause divergence along the steep directions (pertinent to large eigenvalue directions).  Thus, a 

learning rate is chosen that is of the order of (1/max),   where max is the largest eigenvalue of the Hessian 

matrix.   

In summary, the supervised training proposed here for the test MLFP architecture is based on 

specifying a Hessian matrix of the relevant data applied on the input neurons interconnected to equal number of 

neurons of a hidden layer (I = J in Figure 1). That is, in Figure 1, there are I=9 input units y= {y1,y2,…yI},.  The 

Hessian matrix corresponds to y
T
y which is an I x I (9 x 9 in the present example) square matrix; and, this 

Hessian matrix can be put into a diagonal form [HD].  Because of the symmetry of the Hessian matrix, it has a 

unique, single eigenvalue, II in the diagonal form as shown below (all other eigenvalues are zero): 
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In the proposed backpropagation model, the learning-rate () applied on the test ANN, would 

correspond to the largest, single eigenvalue, II of the Hessian matrix as above so that, a fast convergence 

towards a desired extent of output prediction is feasible; as such, in the present study, this algorithmic suite is 

prescribed to the test ANN with the input data pertinent to each ensemble of the test hurricane profile being 

studied. The hurricane data considered refers to the details supplied by the NHC and gathered while tracking 

Hurricanes Frances, Charley, Jeanne, and  Wilma [2,3,4,5]. Thus, the efficacy of the study performed here using 

the proposed ANN-based method and the results predicted on hurricane forecasts are cross-verified against 

details of an actual hurricane-tracking and prediction records of a past hurricane (namely, Hurricane Wilma). 

In this paper, hurricane status of intensity profile is examined  by using the proposed neural network 

model.  This method includes the  novel approach of calculating the learning rate by finding the largest 

eigenvalue of the Hessian matrix.  It is shown that convergence towards accurate output prediction is realized 

quickly.   

 

II. ANN HURRICANE INTENSITY PREDICTION METHOD 

2.1  Description of the Data Set and Motivation for the ANN to Predict Hurricane Intensity 

As is well known, a hurricane is a tropical cyclone with a wide range of motional classifications with 

stratified levels of maximum sustained wind speed.Thus, hurricane refers to a product of the tropical ocean and 

atmosphere steered by easterly trade winds, temperate westerlies, intensely powered by heat from the sea, 

manifesting as winds of growing velocity and ferocious energy.  Adjunctly, as the winds grow the seas assume 

violent states; and, the sweeping wind may spawn into tornadoes and produce torrential rains and floods.   

Systematic studies on such hurricanes have led to classifying hurricane winds.  Known as Saffir-

Simpson Hurricane Intensity Scale [9] relevant details indicate the level of damage caused by the underlying 

category of hurricane.  On the lower side, the scale referred to as category 1 (74-95 mph) specifies the hurricane 

intensity that would cause some damage.  Likewise, the dangerous wind speeds are specified in the increasing 

scale of 2, 3, 4, and 5.  The category 5 refers to wind speeds of 156 mph or higher with associated plausible 

damages being catastrophic.  Thus, hurricane manifests as a certain category of status and proliferates across a 

vast geographical area covering the sea/ocean and the land. 

It is an indicated scientific interest and societal need to track continuously the hurricane status spatially 

and temporally.  Relevant prediction or forecast of hurricane movement and the associated status parameters, 

mainly the wind speed, is crucial so that proactive measures can be taken towards minimal damages and life-

saving. 

Given the data availed across the proliferating progression of a hurricane , the strategy of predicting the 

hurricane status conforms to a stochastic forecasting effort.  That is, the ex post details obtained in the yester-

hours can be judiciously adopted to formulate an ex ante forecast track on the hurricane progression. 

Hence, proposed here is a methodology to predict the hurricane status ex ante, with the past data 

availed ex post.  Relevant approach conforms to a novel artificial neural network (ANN) based technique.  The 

study pursued thereof emulates an ANN that has fast convergent capabilities.   

This ANN method overcomes certain shortcomings in the existing hurricane prediction systems.  

Currently, satellites are used to obtain the data needed to track a hurricane.  Data generated by the satellites is 

used to create physical models for forecasting purposes.  Statistically based techniques are used to generate the 

forecasts.  Several problems exist with this approach.  First, initial information provided by the remote sensors 

on the satellites is sparse, making the prediction process more formidable in the early stages of the hurricane‟s 

formation and movement.  Second, the measured parameters like wind speed and location have a great deal of 

uncertainty.  Third, forecasting has a subjective component making the requirement for skill and experience a 

necessity. Using the ANN method to predict wind speed is an improved method because it has an inherent 

capability to incorporate historical data in the prediction process.  
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2.2Prescription of the Teacher Value  

The data used to train the neural network comes from the information about historical hurricanes 

compiled from the National Hurricane Center [2,3,4,5].  The information which is inputted into the input layer 

of the neural network comprises historical information first obtained by air crafts  about the location of the 

center of the hurricane (latitude and longitude), the pressure in the center of the hurricane, the average wind 

speed of the hurricane, the corresponding sea surface temperature, the direction of movement of the hurricane 

(e.g., north, south, east, west) .   In signifying direction, for example, if the hurricane traveled only westerly, the 

West direction would be set to 1, other directions set to 0.    

 Historical data from hurricanes in the same nearby geographical regions compiled by the National 

Hurricane Center was used to train the ANN.  That is, for this research work the goal is to attempt to predict 

wind speeds of Hurricane Wilma (2005, Florida region, USA).  To accomplish this task, data from Hurricane 

Frances (2004, Florida region, USA), Hurricane Charley (2004, Florida region, USA),  Hurricane Jeanne (2004, 

Florida region, USA), and twenty beginning data points for Hurricane Wilma (Data #1 through Data #20) were 

inputted into the ANN in an effort to train it.   

Table 1 summarizes the initial data procured on Hurricane Wilma Measurements #1 to #20 (ex post data): 

 

Table 1:  Initial Data Procured on Hurricane Wilma 

Hurricane Parameters 

Data # Location Pressure (mb) Wind Speed (kt) Sea-Surface Temp (Deg. 

C) 

Direction 

 
Lat Long 

   
S N E W 

1 17.6 -78.5 1004 25 31 0 0 0 1 

2 17.6 -78.8 1004 25 31 1 0 0 1 

3 17.5 -79 1003 30 31 0 0 0 1 
4 17.5 -79.2 1003 30 31 0 0 0 1 

5 17.5 -79.4 1002 30 31 1 0 0 1 

6 17.4 -79.6 1001 30 31 1 0 0 0 
7 16.9 -79.6 1000 35 31 1 0 0 1 

8 16.3 -79.7 999 40 31 1 0 0 1 

9 16 -79.8 997 45 31 1 0 0 1 
10 15.8 -79.9 988 55 31 1 0 0 0 

11 15.7 -79.9 982 60 31 0 1 0 1 

12 16.2 -80.3 979 65 31 0 1 0 1 
13 16.6 -81.1 975 75 31 0 0 0 1 

14 16.6 -81.8 946 130 31 0 1 0 1 

15 17 -82.2 892 150 31 0 1 0 1 

16 17.3 -82.8 882 160 31 0 1 0 1 

17 17.4 -83.4 892 140 31 0 1 0 1 

18 17.9 -84 892 135 31 0 1 0 1 
19 18.1 -84.7 901 130 31 0 1 0 1 

20 18.3 -85.2 910 130 31 0 1 0 1 

 

The data was then normalized to the ranges of 0 to 1.  This was done having in mind the training 

procedure.  The latitude and the longitude were normalized by adding 180 degrees and then dividing by 360 

degrees.   The pressure was normalized by dividing by the standard atmospheric pressure.  The wind speed was 

normalized by dividing by the highest wind speed that hurricanes can theoretically achieve.  The sea surface 

temperature was normalized by dividing by the warmest gulf sea-surface temperature recorded.  Hurricane 

normalized parameters are shown in Table 2 for Measurements #1 to #20 (ex post data).   

 

Table 2:  Initial Normalized Data Procured on Hurricane Wilma 
Hurricane Parameters (Normalized) 

Data # Location 
y1, y2 

Pressure (mb) 
y3 

Wind Speed (kt) 
y4 

Sea-Surface 
Temp (Deg. C) 

y5 

Direction 
y6,y7,y8,y9 

 

Lat Long 

   

S N E W 

1 0.5489 0.2819 0.9909 0.1438 0.96875 0 0 0 1 
2 0.5489 0.2811 0.9909 0.1438 0.96875 1 0 0 1 

3 0.5486 0.2806 0.9899 0.1726 0.96875 0 0 0 1 

4 0.5486 0.2800 0.9899 0.1726 0.96875 0 0 0 1 
5 0.5486 0.2794 0.9889 0.1726 0.96875 1 0 0 1 

6 0.5483 0.2789 0.988 0.1726 0.96875 1 0 0 0 

7 0.5470 0.2789 0.987 0.2014 0.96875 1 0 0 1 
8 0.5453 0.2786 0.986 0.2302 0.96875 1 0 0 1 

9 0.5444 0.2783 0.984 0.2589 0.96875 1 0 0 1 

10 0.5439 0.2781 0.9751 0.3165 0.96875 1 0 0 0 
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11 0.5436 0.2781 0.9692 0.3452 0.96875 0 1 0 1 

12 0.5450 0.2769 0.9662 0.374 0.96875 0 1 0 1 

13 0.5461 0.2747 0.9623 0.4315 0.96875 0 0 0 1 
14 0.5461 0.2728 0.9337 0.7481 0.96875 0 1 0 1 

15 0.5472 0.2717 0.8804 0.8631 0.96875 0 1 0 1 

16 0.5481 0.2700 0.8705 0.9206 0.96875 0 1 0 1 
17 0.5483 0.2683 0.8804 0.8055 0.96875 0 1 0 1 

18 0.5497 0.2667 0.8804 0.7768 0.96875 0 1 0 1 

19 0.5503 0.2647 0.8893 0.748 0.96875 0 1 0 1 
20 0.5508 0.2633 0.8981 0.748 0.96875 0 1 0 1 

 

The test ANN architecture shown in Figure 1 needs a teacher value (Ti) in both training as well as in 

prediction phase. It is prescribed as follows: It is surmised in this study that the teacher value can be taken 

commensurate with the dynamics of the hurricane parameters. For example, considering the wind-speed of the 

hurricane, it represents an emphasized hurricane parameter that changes almost instant-by-instant epochs. 

Therefore, given the set of nine normalized hurricane-decisive parameters available for training the test ANN 

(latitude y1, longitude y2, pressure at center y3, wind speed y4, sea-surface temperature y5, directions y6, y7, y8, y9 

pertinent to each ensemble), the teacher value can be taken as equal to the wind-speed in the next epoch (for 

example, six hours later). This parameter constitutes the fourth item of the nine inputs and it depicts a salient 

representative reference of the hurricane profile at any epochal instant. (The same procedure of adopting the 

wind-speed parameter as the teacher value is pursued in the prediction phase also). Thus, in the proposed test 

ANN, the teacher value would change dynamically with respect to each ensemble considered. 

 

2.3Prescription of the Learning Coefficient and Adjustment of the Weights  

As described earlier, in order to implement the backpropagation of the output error, the test ANN needs 

a learning-rate coefficient , which can be incorporated into the constant, (of equation 2). Proposed here 

thereof is to consider an optimal learning-rate so as to realize a fast convergence of the net. That is, while 

envisaging the backpropagated error applied to update the interconnection weights, as per the schedule, w(new) 

= w(old) ± × (d/dw), the prescribed learning-rate should enable the weight coefficients {wij} to assume 

values such that, the output error,  converges rapidly to zero (or a prescribed very small, “stop” value). 

Relevant learning rateis deduced as outlined earlier and summarized below: 

  In the present study, the above algorithmic suite is prescribed to the test ANN; and, considering the 

input data pertinent to each ensemble of the test hurricane profile being studied with reference to NHC data on 

the Hurricane Wilma [5] and, constructing a corresponding transpose [y1, y2, ..., y9]
T
, a [9 × 9] Hessian matrix [H] 

is specified as follows: [HD] = [y1, y2, ..., y9]
T
. [y1, y2, ..., y9]. Since each input data set consists of nine (normalized) 

hurricane parameters (as listed in Table 2), corresponding [HD] refers to a symmetric square [(I = 9) × (I = 9)] 

matrix yielding one non-vanishing eigenvalue as a diagonal element. That is, for each ensemble data set there is 

one non-vanishing eigenvalue that remains as listed in Table 3 for the input data of Hurricane Wilma.   

 

Table 3:  Computed Hessian eigenvalues, 99 for the ensemble data sets {r = 1, 2, 3, ..., 20} 
r 1 2 3 4 5 6 7 8 9 10 

99 3.3219 4.3214 3.3279 3.3276 4.3254 3.3228 4.3301 4.3386 4.3477 3.3626 

r 11 12 13 14 15 16 17 18 19 20 

99 4.3699 4.3857 3.4244 4.7424 4.8317 4.9171 4.7351 4.6902 4.6617 4.6774 

 

As indicated earlier, the desired learning-rate can be set inversely proportional to the maximum eigen-

value of the data set. From Table 3, this maximum eigenvalue, max, occurs for the ensemble, r =16 and has a 

value, max = 4.9171.  Hence, corresponding learning-rate is: (1/max) = 0.20337. 

Similarly, as discussed previously, the learning-rate changes dynamically depending on historical data fed into 

the neural network.  Data from Hurricanes Frances, Charley, and Jeanne led to learning-rates of 0.2140, 0.2126, 

and 0.2232, respectively (during the training phase of the ANN).   

As discussed earlier, the learning rate adopted in the aforesaid training schedules refer to  = 1/max. 

The efficacy of using ( = 1/max) for the learning-rate, (in lieu of traditional, arbitrarily specified value say,  = 

0.001) and changing it on trial-and-error basis towards realizing a fast-convergence, is demonstrated by 

deducing relevant learning-curves. Examples of such comparisons via learning-curves obtained for an exemplar 

training ensembles of, r = 1, 2,  are presented in Figure 2 considering training phase for predictions on Hurricane 

Wilma. 
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Figure 2.  Learning curves obtained with the set of training ensembles r = 1, 2using an arbitrary learning 

coefficient,  = 0.0010 and adopting an optimum value of = 0.2033 (as deduced by the proposed 

method) 

 

III. RESULTS 

The following Table 4 shows the predicted hurricane wind speed (output of the ANN) for Hurricane Wilma for 

Data #21 through Data #29:  

 

Table 4:  Predicted Wind Speed Compared to Actual Wind Speeds of Hurricane Wilma 
Data # Actual Wind Speed (kt) Predicted Wind Speed (kt) Percentage Error 

21 130 130.5434 0.42% 

22 130 131.0913 0.84% 

23 130 131.5663 1.20% 

24 125 126.9270 1.54% 

25 120 122.1154 1.76% 

26 130 131.4840 1.14% 

27 120 122.4217 2.02% 

28 115 117.9913 2.60% 

29 110 113.4681 3.15% 

 

These predicted results are very close to actual historical data.  The ANN has been trained with 

historical hurricane data for hurricanes in the nearby geographical regions and also trained with beginning data 

(Data #1 through Data #20) of Hurricane Wilma.  The ANN was then successfully able to predict wind speeds 

for Wilma (Data #21 to Data #29).  The data supplied to the neural network is updated at predetermined 

intervals.  The information from the output neuron represents a value of predicted hurricane wind speed several 

hours (for example, six hours) in advance of the hurricane.   

 In this study, nine inputs, nine hidden layer neurons, and one output were used.  However, the number 

of input, output, and hidden layer neurons can be varied to improve the forecasting ability of the neural network.   

 

IV. CONCLUSION 

The current study has demonstrated a promising application of ANN for predicting hurricane wind 

speed that is particularly essential so that the public can be accurately warned against life-threatening 
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conditions.  Results obtained (shown in Table 4) are very promising.  As the data verifies, the ANN is quite 

accurate in forecasting for future time intervals of wind speed.  Referring to Table 4, ANN prediction of wind 

speed is very close to measured historical values for data ensemble set #21 through data ensemble set  #29.   

Pursuant to a summary of details on the study performed as outlined above, relevant to the major 

queries posed earlier, the conclusive remarks and response can be listed as follows: 

 ANN can be used for hurricane intensity on prediction.  The ANN method has the advantage that there is 

an inherent capability to incorporate historical data in the prediction process. 

 It was found that the convergence rate can be speeded up by first calculating an appropriate value for the 

learning rate based on  ( = 1/max)where max is the maximum eigenvalue of the corresponding Hessian 

matrices of the input data.  

 The ANN also converges to slightly more accurate values when max is used.   

 In this work, the standard Backpropagation algorithm for training feedforward neural networks has been 

improved based on the concept of using efficient learning rate based on max. 

 Experimental results show that the new algorithm offers much higher speed of convergence than the 

conventional algorithm. 

 The new algorithm also causes convergence to slightly more accurate values.   

 The improvement presented here can be considered as a valuable and viable alternative to using arbitrary 

learning rate.   

 

V. APPENDIX:  ALGORITHM ON ANN COMPUTATION 

Training the neural network 

a. For this purpose, sets of normalized data taken from the historical record of Hurricanes Frances, Charley, 

Jeanne, and Wilma are input into the neural net.  The Hessian matrix is found for each data set pertaining to 

each hurricane.  Then the learning rate is computed as the inverse of max, where max is the maximum 

eigenvalue of all of the Hessian matrices.  Initially assume a set of uniformly distributed random weights (-

1 to + 1). For 9 inputs and 9 neurons one requires a total weight matrix of 9  9. Assume zero bias input. 

 

b. The output of a neuron is calculated using the following algorithmic steps: 

 Y = ΣWiXi where i ranges from 1 to 9. 

 Multiply and calculate for each of the 9 neurons. The result will then be an output vector of 9  1 matrix 

with each entry corresponding to the output of one neuron. 

 Apply the nonlinear (hyperbolic tangent) activation function  to each of the outputs thus generating another 

vector of 9  1 size. 

 Sum all elements in this vector and compare the result with the teacher value. 

 Calculate the error. 

 Adjust the weights proportional to the value of error and learning coefficient (inverse of eigmax). 

 Repeat steps above till the error reduces to less than 0.001.  

 Store the final weight values in an array 

 Repeat steps above for all the sets of inputs. Sets of weight values (9  9) arrays are obtained after this step 

 Use the weight matrix obtained after all the data sets (pertaining to Frances, Charley, Jeanne, and Wilma)  

have been used to train the neural net.   

 Plot the change of error with respect to the number of iterations for any one input. 

 

c.  Start the testing phase 

 Apply the randomized and normalized data sets 21 through 29 to the ANN.   

 Calculate the outputs of each neuron by using the final weight obtained after the training phase. 

 Apply the activation function to each of the outputs and sum the outputs. 

 Calculate the error using the desired value being the teacher value. 

 Display the output for each test as well as the error in each set. 

 

 

d.  End 
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