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ABSTRACT:A hyper triangular finite element is developed in this paper. The element has only five essential 

nodal degrees of freedom at each of the three corner node (three general external degrees of freedom and two 

rotations). The displacement fields of the element satisfy the exact requirements of rigid body modes of motion. 

Shallow shell formulation is used and the element is based on an independent strain assumption insofar as it is 

allowed by the compatibility equations. A simple shell problem for which a previous solution exists is first 

analyzed using the new element to test the efficiency of the element. Results obtained by the present element are 

compared with those available in the previous solution. These comparisons show that an efficient and accurate 

result can be obtained by using the present element. Then the new element is used to analyze a hyper shell dam. 

The distribution of various components of stresses is obtained. The new element is also applied to analysis 

cylindrical shell dam and the results show the efficiency of the element to analyze cylindrical shell problems. 

The various components of stresses of the hyper shell dam and cylindrical shell dam give the designer an insight 

to the behavior of such structures. 
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I. INTRODUCTION 
Considerable attention has been given applying the finite element method of analysis to curved 

structures. The early work on the subject was presented by Grafton and Strome (1963) who developed conical 

segments for the analysis of shells of revolution. Jones and Strome (1966) modified the method and used curved 

meridional elements which were found to lead to considerably better results for the stresses. 

Further research led to the development of curved rectangular as well as cylindrical shell elements 

(Connor et al, 1967; Bogner et al, 1967; Cantin et al, 1968 and Sabir et al, 1972). However, to model a shell of 

arbitrary or triangular shape by the finite element method, a triangular shell element is needed. Thus, many 

authors have been occupied with the development of curved triangular shell elements and consequently many 

elements (Lindberg et al, 1970 and Dawe, 1975) resulting in an improvement of the accuracy of the results. 

However, this improvement is achieved at the expense of more computer time as well as storage to assemble the 

overall structure matrix. 

Meanwhile, in the United Kingdom, a simple alternative approach   referred to as strain based approach 

has been used to the development of curved elements. This approach is based on determining the exact terms 

representing all the rigid body modes together with the displacement functions representing the straining of the 

element by assuming independent strain functions insofar as it is allowed by the compatibility equations.  

This approach has successfully employed in the development of curved shell elements (Ashwell et al, 

1971, 1972; Sabir et al, 1975, 1982, 1983, 1987; El-Erris, 1994, 1995 and Mousa, 1991, 1994, 1998, 2012,). 

These elements were found to yield faster convergence with other available finite elements 

The strain-based approach is employed in the present paper to develop a triangular   hyper shell 

element having five degrees of freedom at each corner node, the five degrees of are essential external degrees of 

freedom and no additional degree are associated with the in-plane rotation of shell. 
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The element is first tested by applying it to the analysis of the partly hyper problem showing for which 

a previous solution exists. The work is then extended to analyze a hyper shell dam.  

Results obtained by the present element are compared with those available in the previous solution. 

The distribution of various components of stresses of the hyper is obtained. Then the new element is applied to 

analysis cylindrical shell dam. The various components of stresses of the hyper shell dam and cylindrical shell 

dam give the designer an insight for the behavior of such structures. 

 

II. THEORETICAL CONSIDERATIONS 
II.I. Displacement function for the new hyper shell element 

In a system of curvilinear coordinates, the simplified strain-displacement relationship for the hyper shell element 

shown in Figure (1) can be written as: 
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Where u,v and w are the displacement in the x,y and z axes, , x , y are the in-plane direct axial and 

circumferential strains and xyis the in-plane shearing strain. AlsoKx, Ky and Kxy are the mid-surface changes of 

curvatures and twisting curvature respectively, rx, and ry are the principle radii of curvature.  

Equation (1) gives the relationships between the six components of the strain and the three displacements u,v 

and w. Hence, for such a shell there must exist three compatibility equations which can be obtained by 

eliminating u,v  and w from equation (1). 

This is done by a series of differentiations of equation (1) to yield the following compatibility equations: 
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Fig.1 Geometry and finite element mesh of roof 

 

To keep the triangular element as simple as possible, and to avoid the difficulties associated with internal and 

non-geometric degrees of freedom, the essential five degrees of freedom at each corner node are used, namely u, 

v, w, 
ywxw  /,/

. Thus, the triangular hyper element, to be developed has a total of fifteen degrees of 

freedom and 15x15 stiffness matrix. 

 

To obtain the rigid body components of the displacement field, all the strains, as given by equations (1), are set 

to zero and the resulting partial differential equations are integrated. The resulting equations for u, v and w are 

given by: 

 

u1= – a1x/rx – a2 (y
2
/2ry + x

2
/2rx) – a3xy/rx+a4+a6y 

v1= + a1y/ry + a2xy/ry + a3 (+y
2
/2ry + x

2
/2rx) + a5-a6x 

w1 = a1 +a2x + a3y 

(1) 

(2) 

(3) 
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Where u1, v1 and w1 are the rigid body components of the displacement field u, v and w, respectively, and are 

expressed in terms of the six independent constants a1, a2 … a6. 

 

Since the element has fifteen degrees of freedom, the final displacement fields should be in terms of fifteen 

constants. Having used six for the representation of the rigid body modes, the remaining nine constants are 

available for expressing the straining deformation of the element. These nine constants can be apportioned 

among the strains in several ways, for the present element we take: 
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Kx= 𝑎10 + 𝑎11𝑥𝑦 

Ky=𝑎12 + 𝑎13𝑥 + 𝑎14𝑦 

Kxy= 𝑎15 + [𝑎11𝑥
2 + 2𝑎13𝑦] 

 

In which the un bracketed independent constants terms in the above equations were first assumed. The linking 

bracketed terms are then added to satisfy the compatibility equation (2). 

 

Equations (4) are then equated to the corresponding expressions, in terms of u,v and w from equations (1) and 

the resulting equations are integrated to obtain:  
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The complete displacement functions for the element are the sum of corresponding expressions in equations (3) 

and (5). The rotation about the x and y-axes respectively, are given by: 
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The stiffness matrix [K] for the shell element is calculated in the usual manner using the equation. 
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Where B and D are the strain and rigidity matrices respectively and C the matrix relating the nodal 

displacements to the constants a1 to a15, B can be calculated from equations (1), (3) and (5) and D is given 

below. 

Substituting the matrices B and D into equation (5), the integrated within the bracketed terms of equation (4) are 

carried out explicitly and the rest of the calculations are computed to obtain the stiffness matrix [K] 
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Where E is Young’s modulus, 𝒕 is the thickness and 𝒗 is Poisson's ratio.  

 

 

III. PATCH CONVERGENCE TEST 
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This test is to be considered which is frequently used to test the performance of the hyperbolic 

paraboloid  shell elements is that of the partly hyperbolic paraboloid  problem  is a self –weighted  symmetric 

shell ,clamped in one edge ,and free in the others.edges The problem  having the geometry as shown in Fig. (2). 

The shell has the following dimensions and material properties: thickness, t= 0.001m, L = 1m, modulus of 

elasticity, E= 2x1011 N/m2, Poisson’s ratio, v= 0.3, density, ρ = 8000 kg/m3 . Considering the symmetry of the 

problem only half  of the surface needs to be considered in the analysis 

 

 
 

Fig.2 Geometry and meshes of  partly hyperbolic parabolic Problem 

 

The results obtained by the new present element for the vertical displacement at the midpoint A of the 

free edge of the roof are compared to other of shells elements ( MITC element developed by  Bathe, ( Ref.21,22) 

and MISTK elements development by  Nguyen-Thanh et al ,Ref.23) ). For this problem there is no analytical 

solution,and reference value for the vertical displacement previously obtained by Bathe et al ,  Ref.24  In Table 

1 also we have compared the displacement at point A for a regular mesh of our element to other elements in the 

literature . Convergence curve in Fig.3 show that the convergence of the present element faster convergence 

than the elements ( MITC4,MIST4 ,MIST2 ) and almost the same accuracy with MIST1 . These results gave 

confidence in applying the present triangular hyper element to the practical problem of such as hyperbolic 

parabolic dam. 

 
Mesh no. MITC4 MIST1 MIST2 MIST4 Ref.[24] Present 

 Ref.[21,21] Ref.[23] Ref.[23] Ref. [23] Solution Element 

8x4 0.004758 0.005586 0.004966 0.004847  0.005411 

16x8 0.005808 0.00619 0.005929 0.5862  0.0061115 

32x16 0.00619 0.006347 0.006249 0.006218  0.0063122 

40x20 0.006254 0.006369 0.006298 0.006275  0.006345 

48x24 0.006294 0.006383 0.006329 0.006311 0.006394 0.006357 
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Fig.3 The Convergence of deflection at point A 

 

IV. PROBLEM CONSIDERED 

II.I. Hyper Dam 

The problem considered is that of a hyperbolic paraboloid shell dam where he boundary nodes are supported by 

a rigid valley, and the external boundaries of the dam are assumed to be fixed for all the degrees of freedom at 

each nodal points the dam subtending a central angle of 106 degrees, 3m thick , 30m high and has a radius of rx= 

-ry= 43.25m , young's modulus and Poisson's ratio are 20×10
8
 kg/m

2
 and 0.15 respectively (see figure 4). 

 

 
Fig.4 General dimensions of hyperbolic paraboloid dam 
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This problem was analyzed previously in Ref.17 using hyper  rectangular element with five degrees of 

freedom at each corner node. Now the new strain based triangular hyperbolic paraboloid element developed in 

the present paper is applied to analyze the same problem, the mesh considered in the analysis   is shown in 

Figure (5). Figure 5 also shows the mesh used previously in Ref. 17. Due to symmetry only one half of the dam 

is analyzed. 

 
Fig.5 Finite element mesh in the H.P. dam 

 

The results for the normal deflection along the vertical central line (crown line) are given in Figure (6). Figures 

(7) to (10) give the results for the vertical stresses and hoop stresses on both the upstream and down-stream 

faces, respectively 

The figures show that the present element gives a very good agreement results. 

 

 

Fig.6 Radial deflection on central line of dam. 

 
Fig.7 Vertical stresses on central cantilever for dam (upstream). 
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Fig.8 Vertical stresses on central of dam (downstream). 

 

 
Fig.9 Hoop stresses on central cantilever of dam (upstream). 

 

 
Fig.10 Hoop stresses on central cantilever of dam (downtream). 
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II.I. Cylindrical shell dam structure 

 
To check the efficiency of the developed hyper element to analyze the singly curvature such as 

cylindrical shell problem, we used the same shape function of the doubly curvature element developed in this 

paper using ry = infinity (i.e. 1/ry = 0) and then applied the revised shape function on analysis of cylindrical 

shell problem. The problem considered is that of a cylindrical shape shell dam where he boundary nodes are 

supported by a rigid valley, the dam subtending a central angle of 106 degrees, 3m  thick , 30m high and has a 

radius of 43.25m, young’s modulus and Poisson’s ratio are 20 x 108 kg/m2 and 0.15 respectively. (Fig. 11) 

 

 

Fig.11 General dimensions of the cylindrical dam. 

Due to symmetry only one half of the dam is analyzed. Two meshes as shown in Fig. 12 were considered. 

 
Fig.12 Finite element meshes. 

 

The results for the radial deflection at the central line of the dam (crown line) for both meshes are 

shown in Fig.13. This figure also contains the results of the finite element solution obtained in reference [17] 

where a rectangular element with five degrees of freedom at each corner node is considered. 

These results show that the two meshes give similar results and they are in very good agreement with 

these of finite element solution obtained in reference [17]. 

The direct stress resultants Nx&Ny in the x and y directions respectively and the bending moments 

stress resultants Mx&My about y and x axes respectively are compared along the crown line. The results are 

presented in Figs. 14-17 respectively. 

It is clearly seen that the two meshes gave similar results and they are in very good agreement with 

those obtained in reference [17]. 
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Fig.13 Redial deflection at the crown line. 

 
Fig.14 Direct stress resultant (Nx) at the crown line. 

 

 

 
Fig.15 Direct stress resultant (Nx) at the crown line. 
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Fig.16 Bending stress resultant (Mx) of the crown line 

 

 
Fig.17 Bending stress resultant (My) at the crown line 

 

V. CONCLUSION 

A new triangular strain-based finite hyperbolic paraboloid shell element has five degrees of freedom at 

each corner node is developed in the present paper. The element has been applied for patch hyperbolic 

paraboloid   shell problem. The results obtained are compared with other available in the literatures and very 

good rate of agreements with other solutions were obtained. . Then the new element is used to analyze a hyper 

shell dam The distribution of various components of stresses is obtained. The developed element is also applied 

for analysis of cylindrical dam shell and results approved the efficiency of the element to analyze of the 

cylindrical problems. the distribution of various components of stresses as well obtained. These  distribution of 

stresses for both hyper dam and cylindrical dam   are to give the designer an insight for the behavior of such 

structures. 
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