
American Journal of Engineering Research (AJER) 2018

 American Journal of Engineering Research (AJER)

e-ISSN: 2320-0847 p-ISSN : 2320-0936

Volume-7, Issue-4, pp-68-77

www.ajer.org
Research Paper Open Access

w w w . a j e r . o r g

Page 68

Fast Motion and Mode Selection for Low Complexity Devices

1
kamalu U.A.,

2
deinbo-Briggs O.M.

Department of Electrical/Electronic Engineering, University of Port Harcourt.

Department of Electrical/Electronic Engineering, University of Port Harcourt

Corresponding author: kamalu U.A

ABSTRACT: The motion estimation and compensation stage in video compression is a very computationally

complex process, which can be really frustrating in low complexity devices and real – time applications such as

video conferencing. The search for the best match in a video sequence can be obtained with a computational

complexity of up to 17% of that of the full search by carrying out a combined search in both the motion and the

mode domain, with little or no difference in the Peak Signal to Noise Ratio (PSNR) of the output sequence. The

Three – Step Search and a fast mode algorithm based on the movement and detail characteristics of the video

sequence are used in this research, resulting in getting the best match in the video sequence.

Keywords: Advanced Video Coding (AVC) ; H.264; Macroblock – 16 x 16 block of pixels; Peak Signal to

Noise Ratio (PSNR); Sum of Absolute Errors (SAE); Three - Step Search (TSS) ; Mean Square Error (MSE)

--- ----------

Date of Submission: 28-03-2018 Date of acceptance: 12-04-2018

--- ----------

I. INTRODUCTION

The compression of video sequences has been standardized by the ITU-T/ISO/IEC Joint Video Team

and called the H.264/AVC standard [1]. The H.264/AVC has the advantage of producing videos of a lot better

quality (higher PSNR) when coded at the same bitrates as its predecessors and lower bitrates with the same

quality (the same PSNR) [2]. The processes involved in the standards available for the coding of a video

sequence such as H.264/ AVC are usually time consuming, the process of motion estimation and compensation

being the most time consuming of them all. A motion compensated frame usually has a smaller residual [3] than

an uncompensated frame obtained from frame differencing. This work serves to investigate into the possibility

of combining and optimizing the search in both the motion and mode domains to obtain better performance.

One previous investigation done in combining and optimizing the search in both domains has done so

by implementing the Uneven Multi-Hexagon Search (UMHexagonS) as the fast motion search algorithm of

choice in the H.264/AVC encoder reference software (JM 84) [4] and combining it with a developed fast mode

search algorithm. This reduced the processing time of the motion estimation significantly without considering

the use of multiple reference frames.

Another implemented the Predict Hexagon Search (PHS) and Edge Information Mode Decision

(EIMD) [5]. This also showed a significant speed improvement of about 2-15 times that of a popular fast search

algorithm.

This work implements the Three-Step Search (TSS) [6] algorithm as the fast search algorithm of choice

because of its simplicity in terms of being easy to understand and implement and the quality of the output,

which is relatively good and close to the quality of the full search. An advantage of the TSS is that the step size

of the search never goes beyond the edge of the search window, which could happen in some other fast motion

search algorithms. An illustration of the TSS is shown in figure 1.

http://www.ajer.org/

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 69

11

11 1

1

111

2

2

2 2 2

2 2

2

33 3

3

333

3

Figure 1: An Illustration of the Three – Step Search (TSS) [2]

The search window size for the TSS is +/- (2
3
 – 1), which is +/- 7 and the step size S is 2

3 – 1
, which is

4. In each step, eight locations +/- S pixels around and including the current best position are searched for a new

best match. After each step, the value of S is divided by 2 for the next step until S = 1, which marks the last step.

The position of the macroblock in the current frame is the origin with vector (0, 0).

The best match after the third step is the overall best match and is shown as the darkened circle 3 in the

figure. This may or may not necessarily be the actual best match obtained from a full search and so the SAE

may be higher than that of the full search but takes less time as only 27 blocks out of a total of 225 blocks are

searched. This has a computational complexity of about 12% of the full search with a tradeoff of a larger

compressed bit rate and slightly poorer picture quality.

Using MATLAB, the TSS was implemented and a fast mode search algorithm was developed and

implemented as well. Then a combination of both the fast mode and the TSS was implemented. The PSNR, SAE

and bitrate of each algorithm was compared to show the advantage of the combined search. The equation for the

PSNR is shown in equation 1 [6, 7].

MSE
PSNR

n

dB

2

10

12
log10 (1)

Where, n = number of bits representing a pixel (i.e. 8 bits); and from [8],

N

jiYjiY
MSE

i j prcref

2
,,

 (2)

The seven allowable block sizes in the H.264 standard [1, 6, 7] as shown in figure 2 are the 16 x 16, 16 x 8, 8 x

16, 8 x 8, where the 8 x 8 block size is chosen, it can further be divided into the 8 x 8, 8 x 4, 4 x 8 and 4 x 4 sub-

block modes. These blocks can be used to get a lower residual while carrying out the motion estimation and

compensation where there is a lot of detail and movement within the macroblock.

The search for the best match for all seven modes takes a lot of computational time and as such there is the need

to reduce this time by implementing a fast mode search algorithm where only some specific modes would be

searched for each macroblock, thereby reducing the computational time with little or no loss in the quality.

16x16 16x8 8x16 8x8

8x8 8x4 4x8 4x4
Figure 2: The Allowed Block Sizes in H.264/AVC [2, 6]

However, with a reasonably reduced computational complexity, there is a corresponding decrease in

the quality (in terms of PSNR) and an increase in the compressed bit rate of the video sequence. Sometimes, a

fast search algorithm can produce little or no compression of the video sequence. The resulting bit rate can even

increase in some cases. Thus the Lagrangian Cost function [6] is used to determine if the result of the full or fast

search is actually the best residual and motion vector and would result in a compression of the video sequence.

From [2], the function is given as;

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 70

J = D + λR (3)

Where D is the distortion of the coded sequence

 R is its corresponding bit rate, and

λ is a Lagrange multiplier.

The block that gives the smallest value of J in the search operation is taken as the best match and usually gives a

compressed video sequence.

II. METHODOLOGY

The full search for the best match is an exhaustive search within the search window as long as the

pixels in the search window around the current macroblock remain within the frame. The search is carried out

for each mode and the best match is selected as the mode with the least combined residual and motion vector bit

count. The Lagrange formula given in equation 3, where the value of the Lagrange multiplier is as given in

equation 4, is used in the determination of the best match. The formula used for the Lagrange multiplier is as

follows: -

λmotion = √ (λmode) (4)

Where λmode = a (2
(QP – 12)/3

) and a = 0.68, QP is an arbitrary value chosen.

The flow chart for the full search for the best match is shown in figure 3. The search is carried out in raster scan

order within the search window.

Figure 3: The Flow Chart for Finding the Best Match in all 4 Modes Using the Full Search

At the end of the search the total bit count and total SAE of the residual, the PSNR of the reconstructed

frame and the computational time used for carrying out the whole process are calculated. The motion estimation

and compensation process reduces the SAE and makes it considerably less than that of the uncompensated

residual frame obtained by simple frame differencing.

The bit counts for both the motion vectors and the residuals are calculated after they have been coded

using the Exp-Golomb code. The code is a variable length code, which assigns binary codewords to values from

a look up table as shown in table 1.

Table 1: The Exp - Golomb Table of Codewords
Code Number Signed Number Codeword Bit Count

0 0 0 1

1 1 010 3

2 -1 011 3

3 2 00100 5

4 -2 00101 5

5 3 00110 5

6 -3 00111 5

Start

Start at the first
motion vector point

within the search
window

Is the block
within the

frame?

Yes

No

Yes

Yes
Stop

No

No

Calculate the residual,
motion vector bit

count and SAE in the
16x16 mode

Is this block the
best match so

far?

Take the current
residual and motion
vector as the best

match

Repeat the process of
the search for the next

mode

Is this block the
last within the

search window?

Put the values
for the best
match in the

arrays

Move on to the next
motion vector

position

.

.

.

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 71

7 4 0001000 7

8 -4 0001001 7

… … … …

The flow chart for the fast motion search algorithm is shown in figure 4. The best match is found for

each mode one at a time and compared to the current best match and the mode which has the least cost is taken

as the best match. At the end of the search for all modes, the best match is obtained and the mode chosen. The

mode chosen for the fast search may or may not be the same as that obtained from the full search and so would

not give as much compression as the full search and consequently a slightly lower quality.

Figure 4: The Flow Chart for Finding the Best Match in all 4 Modes Using the Fast Motion Search

For the development of the fast mode algorithm, the movement and detail within each video sequence

was the determining factor for what particular modes to search with to obtain the best match. The detail

characteristics makes choice between the 16x16 mode for low detail and the 8x8 mode for high detail while the

movement characteristics remains low. With a combination of low movement and low detail, the 16x16 mode

chosen has a high probability of having motion vector combinations of (0, 0).The movement characteristics

makes choice between the 16x16 mode for low movement and the 8x8 mode for high movement while the detail

characteristics remains low. Figure 5 shows the choice of mode based on the movement and detail

characteristics for the full search on foreman.

(a)

Start

Get the best match for
the 16x16 mode using

the TSS

Get the best match for
the 16x8 mode using

the TSS

Take this as the
current best match

Leave the previous as
the current best

match

.

.

.

.

.

.

Put the values for the
best match in the

arrays

Stop

Is this best match
better then the current

best match from
previous mode(s)?

Yes

No

Repeat the process to find
the best match from the

other modes

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pixel Movement, m

P
ro

b
a
b
ili

ty

foreman.qcif m vs Probability

00

16x16

16x8

8x16

8x8

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 72

(b)

Figure 5: The Detail and Movement Characteristics for the Full Search

The foreman sequence was chosen out of the many available because it contains the most detail and

movement. The foreman sequence has a panning movement as well as the movement of the man in the picture

and there is sufficient detail as well. The thresholds were set based on these distributions. These distributions

can generally be represented as shown in Figure 6.

Detail, d

M
o

v
e

m
e

n
t,
 m

16x16 (0,0) Mode

16x16 Mode

8x8 Mode

All modes

Figure 6: The Choice of Modes for Each Detail and Movement Characteristics Combination

The movement is measured simply by taking the average value of the difference between the current

macroblock and the macroblock in its position in the reference frame. This also consists of additions and one

division operation. The detail is calculated by the following steps.

 Break the macroblock into four 8x8 blocks.

 For each block, calculate the difference in pixel values in four directions – left to right, right to left, up to

down and down to up – and take the average of the four arrays to get one array.

 Calculate the mean of the values within each of the four arrays. The order of the values is shown in figure 7.

Mean Difference

1

Mean Difference

3

Mean Difference

4

Mean Difference

2

Figure 7: The Mean Difference Values within the Macroblock

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Pixel Detail, d

P
ro

b
a
b
ili

ty

foreman.qcif d vs Probability

00

16x16

16x8

8x16

8x8

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 73

 The following calculations are then carried out to obtain the detail characteristic value, d: -

Horizontal difference 1, h1 = |mean difference 1 – mean difference 2|

Horizontal difference 2, h2 = |mean difference 3 – mean difference 4|

Vertical difference 1, v1 = |mean difference 1 – mean difference 3|

Vertical difference 2, v2 = |mean difference 2 – mean difference 4|

Detail, d = (h1 + h2 + v1 + v2)/ 4

The calculations are purely additions and only one division as opposed to the square root and many square

operations which make the variance more computationally complex than the full search.

With the thresholds set, the flow chart for the fast mode search is shown in Figure 8.

Start

Start at the first
motion vector point

within the search
window

Is the block
within the

frame?

Yes

No

Yes

Yes
Stop

No

No

Calculate the residual,
motion vector bit

count and SAE in the
16x16 (0,0) mode

Is this block the
best match so

far?

Take the current
residual and motion
vector as the best

match

Repeat the process of
the search for the next
mode with a flag set to

on

Is this block the
last within the

search window?

Put the values
for the best
match in the

arrays

Move on to the next
motion vector

position

.

.

.

Determine the detail
and motion

characteristics of the
block and set the flags

for the modes

Yes

No

Is the flag for
the 16x16 (0,0)

mode on?

Figure 8: The Flow Chart for Finding the Best Match Using the Fast Mode Search

The combined fast motion and mode search is carried out by using the TSS to search for the best match

for only specific block modes in each macroblock based on the thresholds set. These thresholds are based on the

movement and detail characteristics for the TSS fast motion search for the best match on the foreman video

sequence. With the thresholds set, the flow chart for fast motion and mode selection for the best match is shown

in Figure 9.

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 74

Start

Get the best match for
the 16x16 mode using

the TSS

Get the best match for
the 16x8 mode using

the TSS

Take this as the
current best match

Leave the previous as
the current best

match

.

.

.

.

.

.

Put the values for the
best match in the

arrays

Stop

Is this best match
better then the current

best match from
previous mode(s)?

Yes

No

Repeat the process to find
the best match from the

other modes

Get the best match for
the 16x16 mode using

the TSS

Is the flag for the 16x16
(0,0) mode on?

Yes

No

Is the flag for the 16x16
mode on?

Yes

No

Calculate the residual,
motion vector bit

count and SAE in the
16x16 (0,0) mode

Is the flag for the 16x8
mode on?

Yes

No

Figure 9: The Flow Chart for Finding the Best Match Using the Fast Motion and Mode Search

RESULTS AND ANALYSIS

It was noted that for a video sequence with a lot of detail and motion, the difference in the quality of

the output using the TSS method may be considerably much. For sequences with little to moderate detail and

motion, the quality of the output is very close to that of the output of the full search.

The reconstructed output frame from each of the four search algorithms are shown in Figure 10.

Reconstructed Frame 2:

 PSNR=3.879702e+001, Bit Count=2.734600e+001

Reconstructed Frame 2:

 PSNR=3.772445e+001, Bit Count=2.736000e+001

Reconstructed Frame 2:

 PSNR=3.861750e+001, Bit Count=2.738000e+001

a) The Full Search

b) The Fast Mode Search d) The Fast Motion and Mode Search

b) The Fast Motion Search

Reconstructed Frame 2:

 PSNR=3.451875e+001, Bit Count=2.750800e+001

Figure 10: The Outputs of the Algorithms

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 75

The qualities of the outputs from the fast search algorithms are not so much different from that of the

full search. It can be seen that with reduced computational complexities, the output shows little or no difference

in PSNR, which is good. The rate – distortion performances for four different video sequences are shown in

Figure 11.

27 28 29 30 31 32 33 34 35 36
34

36

38

40

42

44

46
Rate-Distortion Curve for foreman30.qcif

P
S

N
R

 (
d
B

)

Bitcount (Kb)

full

fastmotion

fastmode

fastmotion+mode

26 27 28 29 30 31 32 33 34
37

38

39

40

41

42

43

44

45
Rate-Distortion Curve for carphone.qcif

P
S

N
R

 (
d
B

)

Bitcount (Kb)

full

fastmotion

fastmode

fastmotion+mode

35 40 45 50 55 60 65 70 75
32

33

34

35

36

37

38

39

40

41

42
Rate-Distortion Curve for grasses.qcif

P
S

N
R

 (
d
B

)

Bitcount (Kb)

full

fastmotion

fastmode

fastmotion+mode

26 26.5 27 27.5 28 28.5 29
43

44

45

46

47

48

49
Rate-Distortion Curve for news.qcif

P
S

N
R

 (
d
B

)

Bitcount (Kb)

full

fastmotion

fastmode

fastmotion+mode

Figure 11: The Rate - Distortion Performances

The performance of the fast motion and mode search algorithm performs very well on the grasses and

news sequence, which are sequences with high and low movement respectively. The poor performance on the

foreman30 and carphone sequences is due the non-distinct distribution of the different modes as shown in figure

12.

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Pixel Detail, d

P
ro

ba
bi

lit
y

foreman.qcif d vs Probability

00

16x16

16x8

8x16

8x8

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pixel Movement, m

P
ro

ba
bi

lit
y

foreman.qcif m vs Probability

00

16x16

16x8

8x16

8x8

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Pixel Detail, d

P
ro

ba
bi

lit
y

carphone.qcif d vs Probability

00

16x16

16x8

8x16

8x8

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

Pixel Movement, m

P
ro

ba
bi

lit
y

carphone.qcif m vs Probability

00

16x16

16x8

8x16

8x8

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

Pixel Detail, d

P
ro

ba
bi

lit
y

grasses.qcif d vs Probability

00

16x16

16x8

8x16

8x8

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Pixel Movement, m

P
ro

ba
bi

lit
y

grasses.qcif m vs Probability

00

16x16

16x8

8x16

8x8

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

Pixel Detail, d

P
ro

ba
bi

lit
y

news.qcif d vs Probability

00

16x16

16x8

8x16

8x8

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

Pixel Movement, m

P
ro

ba
bi

lit
y

news.qcif m vs Probability

00

16x16

16x8

8x16

8x8

Figure 12: The Movement and Detail Characteristics of all Four Video Sequences

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 76

The time saved by the different algorithms varies and has a trade off of lower PSNR values and higher

bit count values of the coded video sequence. The PSNR, SAE, bit count and computational time savings of the

algorithms for frames 5 and 6 of the foreman30, carphone, grasses and news video sequences with a QP value of

24 are shown on tables 2 – 5.

Table 2: Results for foreman30.qcif (Uncompensated SAE = 98,785)
Algorithm PSNR (dB) ΔSAE (%) Bit Count (Kb) Complexity (%)

Full Search 38.797 -41.41 27.346 100

Fast Motion Search -1.073 -39.28 +0.014 -78

Fast Mode Search -0.179 -35.11 +0.034 -36

Fast Motion + Mode Search -4.278 -31.25 +0.162 -82

Table 3: Results for carphone.qcif (Uncompensated SAE = 54,572)
Algorithm PSNR (dB) ΔSAE (%) Bit Count (Kb) Complexity (%)

Full Search 38.898 -9.92 26.920 100

Fast Motion Search -0.032 -8.58 -0.034 -78

Fast Mode Search -0.017 -6.51 -0.032 -34

Fast Motion + Mode Search -1.335 -6.73 -0.062 -81

Table 4: Results for grasses.qcif (Uncompensated SAE = 232,695)
Algorithm PSNR (dB) ΔSAE (%) Bit Count (Kb) Complexity (%)

Full Search 32.8611 -9.06 39.356 100

Fast Motion Search -0.0006 -7.97 +0.194 -78

Fast Mode Search +0.0004 -8.53 +0.136 -47

Fast Motion + Mode Search -0.0017 -5.45 +0.284 -83

Table 5: Results for news.qcif (Uncompensated SAE = 28,892)
Algorithm PSNR (dB) ΔSAE (%) Bit Count (Kb) Complexity (%)

Full Search 43.1144 -11.97 26.480 100

Fast Motion Search +0.0266 -9.42 +0.004 -78

Fast Mode Search -0.0353 -5.34 +0.084 -12

Fast Motion + Mode Search +0.0689 -6.44 +0.006 -79

From the tables, it can be seen that the fast motion and mode search saves up to approximately 80% of

computational time with very little changes in the PSNR and compressed rate of the grasses and news video

sequences.

A comparison of the performance of the fast motion and mode search algorithm with the algorithms

developed in [9, 10] is shown on table 6. The algorithm in [9] is represented as AC while that in [10] is

represented by CLJ.

Table 6: The Comparison of the Proposed Algorithm with Other Algorithms
Video Sequence Foreman News

Algorithm ΔPSNR

(dB)

ΔBit Rate

(%)

Time Saving (%) ΔPSNR

(dB)

ΔBit Rate

(%)

Time Saving (%)

AC -0.0046 1.20 83.88 -0.0062 0.67 91.31

CLJ -0.09 1.72 55.77 -0.02 0.31 70.33

Proposed -4.278 0.59 82 +0.0689 0.02 79

The performance of the proposed algorithm when compared with the other algorithm is better in terms

of the change in bit rate. It is also better in terms of the change in PSNR in the news sequence. In terms of the

change in PSNR in the foreman sequence, the proposed algorithm has a fair performance. The time saved is

better than that of CLJ but not as good as that of AC.

III. CONCLUSION

The coding of a video can be done using the combined fast motion and mode search with a

computational complexity as low as 17% of the full search algorithm with a very little consequence to the

quality performance of the compressed video sequence. The sequences with a clear distinction between the 8x8

and 16x16 modes, based on the detail and movement characteristics used, had a very good performance but

those without a clear distinction did not have good enough performances.

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 77

REFERENCES
[1]. ITU-T. Recommendation H.264: Advanced Video Coding for Generic Audiovisual services. November 2007.

[2]. Obhuo O.M. Fast Motion and Mode Selection. [Unpublished Thesis]. Aberdeen: Robert Gordon University; 2008.
[3]. Kim H., Kamaci N., Altunbasak Y. Low-Complexity Rate-Distortion Optimal Macroblock Mode Selection and Motion Estimation

for MPEG-Like Video Coders. IEEE Transactions on Circuits and System for Video Technology. 2005; 15(7). pp. 823-834.

[4]. Choi B.D. et al. Fast Motion Estimation and Intermode Selection for H.264. EURASIP Journal on Applied Signal Processing. 2006;
pp. 122 – 129.

[5]. Pan Y.N., Tsai T.H. Fast Motion Estimatiom and Edge Information Inter-Mode Decision on H.264 Video Coding. San Antonio:

IEEE International Conference in Image Processing (ICIP). 2007; pp. II 473 – II 476.
[6]. Richardson I.E.G. Video Codec Design: Developing Image and Video Compression Systems. Chichester: John Wiley; 2002.

[7]. Richardson I.E.G. H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia. Chichester: John

Wiley; 2003.
[8]. Ghanbari M. Standard Codecs: Image Compression to Advanced Video Coding, 49. London: IEE; 2003.

[9]. Al Qaralleh E.A., Chang T.-S. Fast Variable Block Size Motion Estimation by Adaptive Early Termination. IEEE Transactions on

Circuits and Systems for Video Technology. 2006; 16(8). pp. 1021 – 1026.
[10]. Choi I., Lee J., Jeon B. Fast Coding Mode Selection with Rate – Distortion Optimization for MPEG – 4 Part 10 AVC/ H.264. IEEE

Transactions on Circuits and Systems for Video Technology. 2006; 16(12). pp. 1557 – 1561.

kamalu U.A." Fast Motion and Mode Selection for Low Complexity Devices”American

Journal of Engineering Research (AJER), vol. 7, no. 4, 2018, pp.68-77.

