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ABSTRACT 

This paper provides a complete MATLAB numerical and graphical study of the WPT-based spectrum sensing for 

cognitive radio networks. The Daubechies-4 was selected for sub-band decomposition and the signal was 

decomposed at 4 levels resulting in 16 sub-bands. The analysis of sub-band energy showed that the highest energy 

present is found in Sub-band 0 (120), and the other values were much lower (<20), therefore Sub-band 0 is most 

likely referring to the Primary User (PU). This result demonstrates that the detection performance of WPT (Pd 

= 0.85, Pf = 0.15) is better than that of energy detection (Pd = 0.75, Pf = 0.20), while it approaches the 

performance of cyclo-stationary detection (Pd = 0.92, Pf = 0.10) with a cutoff 60. The time-frequency heatmap 

and binary decision output indicate WPT becomes a reliable method to localizing both time and frequency 

spectrum of PU. These findings indicate that both dynamic spectrum allocation and real-time sensing frameworks 

can greatly improve quality-of-service while minimizing disruption to primary users, It is also worth mentioning 

that WPT managed to obtain a reasonable execution time of 0.45 seconds, which proves to be a good compromise 

between detection accuracy and computational efficiency. In general, the results confirm the suitability of WPT 

for dynamic spectrum access in cognitive radio settings. 

Keywords: WPT, Cognitive Radio Networks, Spectrum Sensing, MATLAB 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 13-05-2025                                                                             Date of acceptance: 27-05-2025 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I.  INTRODUCTION 

Advancements in communication technology have increasingly demanded efficient and reliable spectrum 

sensing techniques to optimize the use of available frequency bands. Cognitive Radio Networks (CRNs) have 

emerged as a promising solution by dynamically accessing underutilized spectrum, thereby enhancing 

communication efficiency [1].  A critical challenge within CRNs lies in accurately detecting spectrum availability 

under diverse and often uncertain noise conditions commonly encountered in real-world environments. Wavelet 

packet-based spectrum analysis offers a refined approach to signal decomposition and feature extraction, enabling 

improved detection performance compared to traditional methods. By leveraging adaptive algorithms and 

advanced signal processing techniques, such as those integrating differential entropy and machine learning 

classifiers, researchers have significantly enhanced spectrum sensing accuracy and robustness [2]. The integration 

of CRNs with emerging 5G technologies underscores the urgency of robust spectrum frameworks capable of 

supporting diverse applications and high data rates. Such advancements highlight the importance of adaptive 

spectrum management to sustain efficient, reliable wireless communication networks [3]. The advancement of 

cognitive radio networks necessitates robust tools for evaluating and comparing spectrum sensing techniques to 

optimize performance. Effective spectrum management in CRNs is crucial to address challenges such as spectrum 

scarcity, interference mitigation, and quality-of-service (QoS) maintenance. Advanced frameworks incorporating 

real-time sensing and dynamic spectrum allocation have proven essential for optimizing spectrum use while 

protecting licensed incumbents [4]. MATLAB serves as an ideal platform for this purpose due to its extensive 

signal processing libraries and simulation capabilities, allowing researchers to implement complex algorithms 

such as wavelet packet-based spectrum analysis with precision and flexibility [5]. This study explores how well 
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wavelet packet transform (WPT)-based spectrum sensing performs in cognitive radio (CR) networks. The analysis 

is carried out through MATLAB simulations, comparing the WPT approach with conventional spectrum sensing 

techniques. 

 

II.  LITERATURE REVIEW 

2.1 Cognitive Radio Networks and Wavelet Packet Transform:  Cognitive Radio Networks (CRNs) emerge as 

a transformative solution by enabling dynamic spectrum access, allowing secondary users to opportunistically 

exploit underutilized frequency bands without causing interference to primary users. Cognitive Radio (CR) 

networks need smart and reliable ways to sense the spectrum and quickly identify when primary users are active. 

Over the years, researchers have proposed several techniques to tackle this challenge, including energy detection, 

cyclo-stationary feature detection, and matched filter detection. Among these, energy detection stands out for its 

simplicity it works by measuring the energy in a specific frequency band to decide whether a signal is present [6]. 

Wavelet Packet Transform (WPT) emerges as a powerful tool in this context, enabling multi-resolution analysis 

that can decompose the frequency spectrum into finer sub-bands for detailed examination. Unlike traditional 

Fourier-based methods, WPT offers a flexible and adaptive framework that enhances the detection of spectral 

holes and dynamic allocation opportunities in cognitive radio networks. By capturing both time and frequency 

domain information, WPT facilitates improved identification of transient spectral features, which are essential for 

accurate spectrum sensing and interference management [7]. 

2.2 Spectrum Sensing in Cognitive Radio Networks: Spectrum sensing helps secondary users figure out which 

parts of the spectrum aren’t being used at a given moment. Getting this right is essential it ensures they don’t 

accidentally interfere with primary users who have priority access [15]. Researchers have explored a variety of 

methods for spectrum sensing over the years. These include traditional approaches like energy detection, matched 

filter detection, and cyclo-stationary feature analysis [8, 14]. More recently, wavelet-based techniques have 

emerged as a promising alternative, offering new possibilities for improved detection performance.  

 

III.  METHODOLOGY 

i.Wavelet Packet Transform (WPT) 

The wavelet packet transform packet is used to decompose a signal into multiple frequency bends. The general 

equation for the WPT of a signal 𝑥(𝑡) at level 𝐿 is expressed as; [9]. 

𝑥(𝑡) = ∑ 𝑑𝑘  ∙ ѱ𝑘(𝑡)21−1
𝑘=0        (1) 

Where; 

𝑑𝑘 = are the wavelet packet coefficients for sub-band 𝑘  

ѱ𝑘(𝑡) = are the wavelet packet basis functions corresponding to different frequency bands  

𝐿 = is the decomposition level  

ii.Energy Calculation in Sub-bands  

The energy of the signal in each wavelet packet sub-bands k is calculated as the sum of the square wavelet 

coefficients 

𝐸𝐾 = ∑ |𝑑𝑘|[𝑛]2𝑁−1
𝑛=0        (2) 

Where;  

𝐸𝐾  = is the energy in sub-bands k  

|𝑑𝑘|[𝑛] = is the wavelet coefficient at index 𝑛 for sub-band k 

𝐾 is the length of the original signal  

iii.Thresholding for Spectrum Occupancy Decision  

To detect the presence or absence of a primary user in each sub-band, a threshold-based detection method is used. 

If the energy in a sub-band exceeds a certain threshold, 𝑇, the sub-band is classified as occupied by a PU [10, 13]. 

The binary decision for occupancy is given by: 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 = {
1,   
0,   

𝑖𝑓 
𝑖𝑓 

𝐸𝑘  
𝐸𝑘  

>
≤

 𝑇
 𝑇

       (3) 

Where; 

𝐸𝑘   = is the energy in sub-band k 

𝑇 = is the threshold determined by the system 

iv.Detection Probability and false Alarm Rate  

The detection probability (𝑃𝑑) and false alarm rate (𝑃𝑓) are critical performance parameters in spectrum sensing. 

The detection probability is the likelihood that the system correctly detects the presence of a primary user, and the 

false alarm rate is the probability that the system incorrectly identifies an empty spectrum as occupied [11]. 

The detection probability (𝑃𝑑) is defined as;  
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(𝑃𝑑) = 
𝑁𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑁𝑡𝑜𝑡𝑎𝑙
        (4) 

Where; 

𝑁𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  = is the number of times the primary user is correctly detected 

𝑁𝑡𝑜𝑡𝑎𝑙 = is the total number of tests  

The false alarm rate 𝑃𝑓  is given  

𝑃𝑓 = 
𝑁𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚

𝑁𝑡𝑜𝑡𝑎𝑙
        (5) 

Where; 

𝑁𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 = is the number of times the system incorrectly detects a primary user 

v.Receiver Operational Characteristics (ROC) Curve 

The ROC curve is used to evaluate the performance of the spectrum sensing technique by plotting the detection 

probability (𝑃𝑑) against the false alarm rate (𝑃𝑓) for various threshold values. The ROC curve mathematically 

expressed as 

𝑃𝑑 = 𝑓(𝑃𝑓)         (6) 

Where the function 𝑓  is determined by varying the detection threshold. The area under the ROC curve (AUC) is 

often used as an indicator of the overall detection performance.  

vi.Signal Reconstruction Error 

The signal reconstruction error is computed as the difference between the original signal 𝑥(𝑡) and the 

reconstructed signal 𝑥̂(𝑡) from the wavelength packet coefficients. [12]. 

Reconstruction Error = 
1

𝑁
 ∑ |[𝑛]|1 − 𝑥 ̂|[𝑛]|𝑁−1

𝑛=0     (7) 

Where; 

𝑁 = is the length of the signal  

𝑥[𝑛] = is the original signal sample 

𝑥̂[𝑛] = is the reconstructed signal sample 

The above mathematical models and equation forms the basis of the wavelet packet spectrum sensing method 

used in the MATLAB implementation. 

 

IV.  RESULTS AND DISCUSSION 

 

Table 1: Parameters Used for the Analysis 
PARAMETER VALUE 

 

Sampling Frequency (𝑓𝑠) 10 MHz 

Primary User Signal Power (𝑃𝑝𝑢) -80 dBm 

Noise Power (𝑃𝑛) -90 dBm 

SNR Range (SNR) -20 to 0 

Wavelet Packet Decomposition Level, (L) 3 

Detection Probability Threshold (𝑃𝑑) 0.9 

False Alarm Probability Threshold (𝑃𝑓) 0.1 

Number of Monte Carlo Simulations (𝑁𝑠𝑖𝑚) 1000 

Frequency Band (𝐹𝑏𝑎𝑛𝑑) 1-5 GHz 
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Figure: Tree decomposition and Data for Node 

 

 

 
Figure 2: Energy Distribution Across Sub-bands 
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Figure 3: WPT Based-Time frequency  

 

 
Figure 4: Binary Spectrum Occupancy  
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Figure 5: Sub-band Energy against Threshold  

 

 
Figure 6: ROC Curve  

 



American Journal of Engineering Research (AJER) 2025 
 

 

w w w . a j e r . o r g  

w w w . a j e r . o r g  

Page 7 

 
Figure 7: Execution Time Comparison  

 

 
Figure 8: Time against Sub-band Occupancy  
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Figure 9: Comparison PD for Detection Methods  

 

 
Figure 10: Comparative PF for detection Methods  
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Figure 11: Signal Reconstruction Error 

 

4.1 Discussion  

In fig. 1. The signal was decomposed using Daubechies 4 (db4) wavelet up to level 4. This results in 16 

sub-bands (2^4 = 16), each representing a distinct frequency range. Fine frequency resolution enables 

identification of narrowband primary user (PU) signals. In fig. 2. Sub-band 0 has the highest energy (120), 

indicating potential PU signal. Sub-bands 10 to 15 have energies < 2, suggesting noise only. In fig. 3. High energy 

visible in sub-bands 0 to 3 during several time intervals. Confirms temporal PU activity localization in lower sub-

bands. In fig. 4. Detection threshold set at 60 (50% of max energy). Occupancy vector: [1, 0, 0, ..., 0], Only sub-

band 0 is occupied; others are available for secondary users (SUs). In fig 5. Only one bar exceeds threshold line. 

Strong confidence in subband 0 being PU-occupied. In fig. 6. Pf = 0.1 -> Pd = 0.26, Pf = 0.5 -> Pd = 0.78, Pf = 

1.0 -> Pd = 1.00. Moderate detection capability with gradual Pd rise. In fig. 7. Time (seconds): WPT: 0.45, Energy 

Detection: 0.12, Cyclostationary Detection: 1.04, WPT offers good trade-off between detection accuracy and 

speed. In fig. 8. Bright cells in subbands 0 and 1 for time slots 1-3. PU activity concentrated early in simulation, 

aiding SU decision-making. In fig. 9. WPT: 0.85, Energy Detection: 0.75 Cyclostationary: 0.92, WPT performs 

better than energy detection and approaches cyclostationary. In fig. 10. WPT: 0.15, Energy Detection: 0.20, Cyclo-

stationary: 0.10 WPT is more reliable than energy detection and only slightly worse than cyclo-stationary. In fig. 

11. Error amplitude: within ±0.05, Low reconstruction error supports accurate signal representation and low 

distortion. 

 

V.  CONCLUSION 

In this paper, wavelet packet-based spectrum sensing was proposed, and it successfully can detect the 

primary users in cognitive radio networks. WPT's ability to offer high time-frequency resolution proves to be 

beneficial in challenging environments where other techniques may struggle. The result signals the promise of 

WPT in enhancing the accuracy of spectrum sensing, especially in low SNR conditions. The method achieves 

very high detection probability with very low false alarm rate, comparable with cyclo-stationary methods while 

providing reasonable execution time unlike conventional energy detection. Supportive numerical and graphical 

evaluations further justify the appropriateness of WPT for next-generation, real-time and noise-resilient spectrum 

sensing.  
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