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ABSTRACT: Uncertain regression analysis holds a significant position in the field of statistics, enabling in-
depth analysis of the intrinsic relationships between variables. In the study of uncertain growth models, how to
estimate the unknown parameters and the uncertain disturbance term in the models is a key issue. This paper
constructs a statistical invariant by combining the uncertain distributions of observed values and disturbance
terms, which is a normal uncertain variable. The least squares principle is applied to estimate the parameters of
the statistical invariant to determine the unknown parameters and the uncertain disturbance terms in the
uncertain growth model. This improves the traditional least squares method, which only takes into account the
reduction the deviation between predicted and observed values, without fully considering the relationship
between observed values and disturbance terms under the uncertain framework. In addition, a numerical
algorithm was designed to calculate the corresponding estimators, and an uncertain hypothesis test is proposed
to determine whether the estimated uncertain growth model is reasonable. Meanwhile, point prediction and
interval prediction are also conducted. Finally, an empirical study on the death toll of COVID-19 in China as
an example is given to illustrate the effectiveness of the proposed method in solving practical problems.
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I. INTRODUCTION

Regression analysis is one of the core methods in the field of statistics. Although stochastic regression
analysis has been developed for a long time, it has always been considered within the framework of probability
theory. Its premise is that the estimated probability distribution function needs to be sufficiently close to the true
frequency. However, the real world is complex and changeable, and this assumption is difficult to meet in many
situations, especially when dealing with unpredictable events, where the limitations of traditional methods
become increasingly evident.

To this end, Liu first proposed the uncertainty theory in 2007 and further improve and perfect it in 2009
[1][2]. uncertain regression analysis is a mathematical method that utilizes uncertainty theory to model the
inherent relationships between variables. To achieve this, Yao and Liu initiated research on uncertain regression
analysis in 2018, with its core innovation lying in redefining the disturbance term in the regression model from a
random variable to an uncertain variable, thus adapting to the uncertainty modeling needs within a non-
probabilistic framework[3].Since then, uncertain regression models have been continuously developed and
refined. For instance, Ye and Liu designed a multivariate uncertain regression model to handle complex
situations involving multivariate response variables[4]. Jiang and Ye innovatively constructed an uncertain
panel regression model, which spans the two dimensions of time and space and thoroughly reveals the complex
interactive relationships hidden in panel data [5]. Fang and Hong propose the uncertain revised regression model
[6].

In addition, it is necessary to estimate the unknown parameters and disturbance terms in the uncertain
regression model. To estimate uncertainty disturbance terms, Liu proposed the least squares estimation [7]. Lio
and Liu initially tried the moment estimation method [8]. Subsequently, Lio and Liu further introduced the
uncertain maximum likelihood estimation [9]. To test the goodness of fit estimated in uncertain regression
models, Ye and Liu introduced uncertain hypothesis testing [10]. Additionally, uncertainty regression analysis
has been applied to describe epidemic transmission. Liu utilized an uncertainty growth model to describe the
cumulative number of COVID-19 infections in China [11].
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Currently, scholars have conducted research on the least squares estimation of unknown parameters
and disturbance terms for uncertain regression models, but they have not simultaneously considered the
estimation of both unknown parameters and disturbance terms, nor have they fully considered the relationship
between observed values and disturbance terms. Therefore, based on the uncertain distribution of observed data
and disturbance terms, this paper constructs corresponding statistical invariant and applies the least squares
principle to the parameter estimation process of statistical invariant, in order to compensate for the deficiencies
of existing methods.

II. UNCERTAIN GROWTH MODEL
When exploring growth patterns in complex environments, constructing a logistic growth model can

capture the trend of gradual acceleration in early growth, acceleration in the middle stage, and deceleration in
the late stage. The uncertain logistic growth model is given by:
Ty n

1+ ﬂ1 exp(—,th)
where S, , f,, and S, represent unknown parameters, and € denotes the uncertain disturbance term. Assuming ¢
follows a normal uncertain distribution N(0, ¢?), i.e.,
yo— L No). @

1+ /3 exp(=f3,1)
Based on the normality assumption of the uncertain disturbance term, equation (2) can be rewritten as:

By

YT plexp(— )
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Equation (3) fully considers the correlation between unknown parameters f,, B,, and B, and the uncertain
disturbance term €. Assuming we have a series of observed values (¢,y,) ,t =1,2,---,n, let

B
Y=
h,(ﬂ,O') — 1+ﬂ1 GXp(—ﬂzt) , (4)
(o2

where h,( 3,0) are real functions of the parameter vectors B =(,,,,5,) and o, while 4 (8,0 , h,( B,0) -+,
h,(B,0) can be regarded as the n samples of the standard normal uncertain distribution. That is,
h(B,0)0 N(0,1),t=1,---,n. where the standard normal uncertain distribution N(0,1) is a statistical invariant

that we want to construct.

2.1 Parameter Estimation

Based on the principle of least squares, this study investigates the estimation of unknown parameters
and disturbance terms in an uncertain logistic growth model. Liu estimates the unknown parameter vector @ by
minimizing the sum of squared deviations between the empirical distribution of observations and the population
distribution [7], as given in

min Y (@, (x)~ F(x))" . (5)
Where
F(x)= lil(xi <Xx)

n i

is the empirical distribution function of observations x, and the indicative function denoted as
1, X; <x

I(x, <x)= .
0, X; > X

Because the expression of the uncertainty distribution of N(0,1) is

D(x) = (1 + exp(_Ting]
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and the empirical distribution function of the sample #(f,0)is F (x):lZI(ht( B,0)<x), so equation (5)
n=

leads to the optimization problem

;1}711})2 {1+exp[%j}q - %gl(hs(ﬂ,a)ﬁh,(ﬂ,a))jz. ©)

Because there is a nonlinear relationship in the objective function, it is difficult to directly find the optimal
solution by using the traditional method. In order to solve this problem, numerical algorithm 1 is designed to
effectively process and approximate the solution in equation (6).

Algorithm 1 Numerical algorithms for least squares estimation

Step 0: Input observational data (¢,y,), t=1,---,n.

Step 1: Determine the feasible regions ® of unknown parameters vector f§ = ( B> Bys ﬂz) .
Step 2: For each p € ® and o >0, compute #( 8,0, h,(B,0) -+, h (B,0) by
P T
ht(,B,O') — 1+ ﬁ1 exp(_ﬂzt) ,
o
Step 3: Set ¢ =t+1land E(f3,,53,,,,0)=0.
Step 4: Set ¢ =t+1and

t=1--,n.

—7h s P1s Paos B
E(By. o) = E(Bos o o)+ (Hexp( x ,(ﬂ%’ B G)D

_%il(hs (ﬂO’ﬂl’ﬁZ’O_) < ht (ﬂo’ﬂpﬂzaa))j

Step 5: If ¢ <n, then go to Step 4.

Step 6: Find f3,, 3, 3, and 6 such that E (S, B, By, o) reaches its minimum value.
Step 7: Output /3, 3, 3, and 6 .

Thus, the estimated uncertain logistic growth model is obtained as

ﬂAO A
=2 1+ N(,5). 7
' 1+ 4, exp(—ﬁzt)+ ©.5) 2

2.2 Uncertain Hypothesis Testing
To test the rationality of model (7), we can test whether a set of residual sequences follows a normal uncertainty
distribution N(0,6). Let

ok
Yt
1+ f exp(=1,1)

That is, assuming
H,:0c=6 vs H:0#¢ ®)

Given a significance level @ , we use the rejection region constructed by Ye [10] to test hypothesis (8), and
obtain the corresponding rejection region as

W= {2z, ) B mxa+1 [, 150 < n, iz, < @ (%jjzz - (1_%} ©)

Where @' () = N3Oy, @

T l-a
Through this test, if the observed value ¢, falls into the rejection region /¥ , it indicates that the model (7) can not
fit the observed values well. Conversely, If it does not fall into the rejection region W , it indicates that the

model (7) can fit the observed values well, which means that the model (7) is reasonable.




American Journal of Engineering Research (AJER) 2025

2.3 Point Prediction and Interval Prediction
Based on model (7), we can derive the point prediction value and prediction interval for the response variable
y . According to the research results of Yao [3], the predicted uncertain variable y is defined as

by
1+ ﬁ1 exp(—,ézt)
which follows a normal uncertain distribution, and its expectation is
b,
1+ 5 exp(-fut)
Thus, we can infer that the uncertainty distribution of the forecast uncertain variable j is

b(x)- 1

$= +N(0,6), (10)

T

Leexp( 7 (G, (14§, (=) ) ’

and inverse uncertainty distribution is

b (a)=—s P 36, a (11)
1+181 exp(—ﬁzt) 4 l-a
Then, we can choose the expected value of y as its the point prediction value / , i.e.,
Ji8

I+ :‘% exp(—ﬁzt) .

Given a confidence level & (e.g., 95%), since

(S (S passo (5wl (5]

The above formula means that

S

is a reasonable fluctuation range of the value of y at the & confidence level. Therefore, we can choose the above

= .[01 O (a)da = (12)

interval, i.e.,
{ . «/56' l+a . «/56' 1+ a}
- In i+ In

T l-a’ 4 l-a

as the forecast interval ( & confidence interval) of the response variable.

III. Empirical research
COVID-19 has become an epidemic and a public health emergency. As of April 15,2020, China had
reported 82,341 confirmed cases and 3,342 deaths. Therefore, analyzing the evolution of the cumulative death
toll of COVID-19 is of great significance. The following section uses an uncertain Logistic growth model to
model the death toll of COVID-19 in China. The data collected from the National Health Commission's website
are shown in Table 1.

Table. 1. The death toll of COVID-19 in China from January 20 to April 15,2020

6 9 17 25 41 56 80 106

32 170 213 259 304 361 425 490

563 636 722 811 908 1016 1113 1367
1380 1523 1665 1770 1868 2004 2118 2236
2345 2442 2592 2663 2715 2744 2788 2835
2870 2912 2943 2981 3012 3042 3070 3097
3119 3136 3158 3169 3176 3189 3199 3213
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3226 3237 3245 3248 3255 3261 3270 3277
3281 3287 3292 3295 3300 3304 3305 3312
3318 3322 3326 3329 3331 3331 3333 3335
3336 3339 3339 3341 3341 3342 3342

According to the observational data of the death toll of COVID-19 in China from January 20 to April
15,2020, the 87 samples of the standard normal uncertain distribution obtained from Equation (4) are 4(S,0),

-+, hy,( 3,00 . Using equation (6), we can obtain the following optimization problem:

2

/5‘33‘%8271 [1+exp[%jjl —%il(hx (B.o)<h (ﬂ,cr))] (13)

By solving the above optimization problem, we can obtain the least squares estimations of S, 5,, 5, and o,
which are
B, =3302.558, 3, = 69.666, 3, =0.157, & =48.943
Therefore, the fitted Logistic growth model is given by
3302.558

— , 14

Y 1569.666exp(—0.1577) (14)

and the uncertain Logistic growth model is expressed as
3302.558 + N(0,48.943) (15)

Y 1569.666exp(—0.1577)

The fitting results of the Logistic growth model (14) and the observational data in Table 1 are shown in
Figure 1. which shows a good fit between the fitted Logistic growth model and the observational data.
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Fig. 1. Fitted Logistic growth model and observational data

To validate the rationality of model (15), by using
3302.558

C T T 169,666 exp(~0.1571)

for t=1,2,---,87, we can generate 87 residuals &,¢,,*+,&; as shown in Figure 2.
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Fig. 2. Residual plot of the estimated uncertain Logistic growth model (15)

we need to test whether the above 87 residuals, ¢,,&,,"-,&;, is set of samples of the population. Suppose the
significance level is set to & = 0.05. Then, it follows from o x87 = 4.35 and Equation (9) that the test is

W ={(z2,2y, 2, ) : B4 1 <1 <87, 1§13z, < -98.8565z, > 98.856)

As shown in Figure 2, it is evident that only ¢,, ¢[-98.856,98.856].

Consequently, we have (&,,&,,"*+,&,) € W and the estimated uncertain Logistic growth model (15) is a good fit

for observational data.
Based on model (15), the predicted value of the death toll from COVID-19 in China on April 16, 2020

is obtained, that is
P = 3302.558 + N(0,48.943) 0 N(3302,48.943) .
1+69.666 exp(—0.157 x 88)

Therefore, the predicted death toll from COVID-19 in China on April 16, 2020 is 3,302, and the 95% prediction
48.943\3  1+0.95

In , thatis 3302+£99 = [3203,3401] .
T 1-0.95

interval is 3302+

IV. CONCLUSION

To address the limitations of traditional least squares methods in studying uncertain growth models,
this paper is the construction of a statistical invariant for uncertain growth models based on the observed data
and uncertainty distribution of disturbance terms, and applying the least squares method to the parameter
estimation of this statistical invariant. A dedicated numerical algorithm is developed to compute the
corresponding estimators. Subsequently, this paper applies the hypothesis test for uncertainty to validate the
applicability of the estimated uncertainty logistic growth model, while its effectiveness is demonstrated by
successfully predicting China's COVID-19 death toll.
Funding: This work was supported by Shanxi Datong University Project (No. 2022Q15).
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