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ABSTRACT: Uncertain regression analysis holds a significant position in the field of statistics, enabling in-

depth analysis of the intrinsic relationships between variables. In the study of uncertain growth models, how to 

estimate the unknown parameters and the uncertain disturbance term in the models is a key issue. This paper 

constructs a statistical invariant by combining the uncertain distributions of observed values and disturbance 

terms, which is a normal uncertain variable. The least squares principle is applied to estimate the parameters of 

the statistical invariant to determine the unknown parameters and the uncertain disturbance terms in the 

uncertain growth model. This improves the traditional least squares method, which only takes into account the 

reduction the deviation between predicted and observed values, without fully considering the relationship 

between observed values and disturbance terms under the uncertain framework. In addition, a numerical 

algorithm was designed to calculate the corresponding estimators, and an uncertain hypothesis test is proposed 

to determine whether the estimated uncertain growth model is reasonable. Meanwhile, point prediction and 

interval prediction are also conducted. Finally, an empirical study on the death toll of COVID-19 in China as 

an example is given to illustrate the effectiveness of the proposed method in solving practical problems. 
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I. INTRODUCTION 

Regression analysis is one of the core methods in the field of statistics. Although stochastic regression 

analysis has been developed for a long time, it has always been considered within the framework of probability 

theory. Its premise is that the estimated probability distribution function needs to be sufficiently close to the true 

frequency. However, the real world is complex and changeable, and this assumption is difficult to meet in many 

situations, especially when dealing with unpredictable events, where the limitations of traditional methods 

become increasingly evident. 

To this end, Liu first proposed the uncertainty theory in 2007 and further improve and perfect it in 2009 

[1][2]. uncertain regression analysis is a mathematical method that utilizes uncertainty theory to model the 

inherent relationships between variables. To achieve this, Yao and Liu initiated research on uncertain regression 

analysis in 2018, with its core innovation lying in redefining the disturbance term in the regression model from a 

random variable to an uncertain variable, thus adapting to the uncertainty modeling needs within a non-

probabilistic framework[3].Since then, uncertain regression models have been continuously developed and 

refined. For instance, Ye and Liu designed a multivariate uncertain regression model to handle complex 

situations involving multivariate response variables[4]. Jiang and Ye innovatively constructed an uncertain 

panel regression model, which spans the two dimensions of time and space and thoroughly reveals the complex 

interactive relationships hidden in panel data [5]. Fang and Hong propose the uncertain revised regression model 

[6]. 

In addition, it is necessary to estimate the unknown parameters and disturbance terms in the uncertain 

regression model. To estimate uncertainty disturbance terms, Liu proposed the least squares estimation [7]. Lio 

and Liu initially tried the moment estimation method [8]. Subsequently, Lio and Liu further introduced the 

uncertain maximum likelihood estimation [9]. To test the goodness of fit estimated in uncertain regression 

models, Ye and Liu introduced uncertain hypothesis testing [10]. Additionally, uncertainty regression analysis 

has been applied to describe epidemic transmission. Liu utilized an uncertainty growth model to describe the 

cumulative number of COVID-19 infections in China [11]. 

http://www.ajer.org/
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Currently, scholars have conducted research on the least squares estimation of unknown parameters 

and disturbance terms for uncertain regression models, but they have not simultaneously considered the 

estimation of both unknown parameters and disturbance terms, nor have they fully considered the relationship 

between observed values and disturbance terms. Therefore, based on the uncertain distribution of observed data 

and disturbance terms, this paper constructs corresponding statistical invariant and applies the least squares 

principle to the parameter estimation process of statistical invariant, in order to compensate for the deficiencies 

of existing methods. 

 

II. UNCERTAIN GROWTH MODEL 

When exploring growth patterns in complex environments, constructing a logistic growth model can 

capture the trend of gradual acceleration in early growth, acceleration in the middle stage, and deceleration in 

the late stage. The uncertain logistic growth model is given by: 

0

1 21 exp( )
y
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


 
= +

+ −
                       (1) 

where 0 , 1 , and 2 represent unknown parameters, and ε denotes the uncertain disturbance term. Assuming ε 

follows a normal uncertain distribution N(0, σ²), i.e., 
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Based on the normality assumption of the uncertain disturbance term, equation (2) can be rewritten as: 
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Equation (3) fully considers the correlation between unknown parameters 0 , 1 , and 2 and the uncertain 

disturbance term ε. Assuming we have a series of observed values ( , )tt y , 1,2, ,t n= , let  

0

1 21 exp( )
,

t

t

y
t

h



 
 



−
+ −

（ ）= ,                 (4) 

where ,th  （ ）are real functions of the parameter vectors ( )0 1 2, ,β   = and , while 1 ,h  （ ）, 2 ,h  （ ）, , 

,nh  （ ）can be regarded as the n samples of the standard normal uncertain distribution. That is, 

, (0,1)th N （ ） , 1, ,t n= . where the standard normal uncertain distribution (0,1)N is a statistical invariant 

that we want to construct. 

 

2.1 Parameter Estimation 

Based on the principle of least squares, this study investigates the estimation of unknown parameters 

and disturbance terms in an uncertain logistic growth model. Liu estimates the unknown parameter vector  by 

minimizing the sum of squared deviations between the empirical distribution of observations and the population 

distribution [7], as given in 
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Because the expression of the uncertainty distribution of (0,1)N is 
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and the empirical distribution function of the sample ,th  （ ）is
1
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=  （ ） , so equation (5) 

leads to the optimization problem 
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Because there is a nonlinear relationship in the objective function, it is difficult to directly find the optimal 

solution by using the traditional method. In order to solve this problem, numerical algorithm 1 is designed to 

effectively process and approximate the solution in equation (6). 

Algorithm 1 Numerical algorithms for least squares estimation  

Step 0: Input observational data ( , )tt y , 1, ,t n= . 

Step 1: Determine the feasible regions of unknown parameters vector ( )0 1 2, ,β   = . 

Step 2: For each β and 0  , compute 1 ,h  （ ）, 2 ,h  （ ）, , ,nh  （ ）by 
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Step 5: If t n , then go to Step 4.  

Step 6: Find 0 1 2
ˆ ˆ ˆ, ,   and ̂ such that ( )0 1 2, , ,E     reaches its minimum value. 

Step 7: Output 0 1 2
ˆ ˆ ˆ, ,   and ̂ . 

Thus, the estimated uncertain logistic growth model is obtained as 
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2.2 Uncertain Hypothesis Testing 

To test the rationality of model (7), we can test whether a set of residual sequences follows a normal uncertainty 

distribution ˆ(0, )N  . Let 
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That is, assuming 

0 1
ˆ ˆ: :H vs H   =                  (8) 

Given a significance level , we use the rejection region constructed by Ye [10] to test hypothesis (8), and 

obtain the corresponding rejection region as 
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Where ( )1 ˆ3
ln

1
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
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− =
−

. 

Through this test, if the observed value t falls into the rejection regionW , it indicates that the model (7) can not 

fit the observed values well. Conversely, If it does not fall into the rejection regionW , it indicates that the 

model (7) can fit the observed values well, which means that the model (7) is reasonable. 
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2.3 Point Prediction and Interval Prediction  

Based on model (7), we can derive the point prediction value and prediction interval for the response variable 

y . According to the research results of Yao [3], the predicted uncertain variable y is defined as 
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which follows a normal uncertain distribution, and its expectation is 
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Thus, we can infer that the uncertainty distribution of the forecast uncertain variable ŷ is 
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Then, we can choose the expected value of ŷ as its the point prediction value ̂ , i.e., 
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Given a confidence level (e.g., 95%), since 
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as the forecast interval ( confidence interval) of the response variable. 

 

III. Empirical research 

COVID-19 has become an epidemic and a public health emergency. As of April 15,2020, China had 

reported 82,341 confirmed cases and 3,342 deaths. Therefore, analyzing the evolution of the cumulative death 

toll of COVID-19 is of great significance. The following section uses an uncertain Logistic growth model to 

model the death toll of COVID-19 in China. The data collected from the National Health Commission's website 

are shown in Table 1. 

 

Table. 1. The death toll of COVID-19 in China from January 20 to April 15,2020 

6 9 17 25 41 56 80 106 

32 170 213 259 304 361 425 490 

563 636 722 811 908 1016 1113 1367 

1380 1523 1665 1770 1868 2004 2118 2236 

2345 2442 2592 2663 2715 2744 2788 2835 

2870 2912 2943 2981 3012 3042 3070 3097 

3119 3136 3158 3169 3176 3189 3199 3213 
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3226 3237 3245 3248 3255 3261 3270 3277 

3281 3287 3292 3295 3300 3304 3305 3312 

3318 3322 3326 3329 3331 3331 3333 3335 

3336 3339 3339 3341 3341 3342 3342  

 

According to the observational data of the death toll of COVID-19 in China from January 20 to April 

15,2020, the 87 samples of the standard normal uncertain distribution obtained from Equation (4) are 1 ,h  （ ）,

 , 87 ,h  （ ）. Using equation (6), we can obtain the following optimization problem: 
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By solving the above optimization problem, we can obtain the least squares estimations of 0 1 2, ,   and , 

which are  

0 1 2
ˆ ˆ ˆ ˆ3302.558 69.666,  0.157,  48.943   = = = =,  

Therefore, the fitted Logistic growth model is given by 

3302.558

1 69.666exp( 0.157 )
y

t
=

+ −
,                        (14) 

and the uncertain Logistic growth model is expressed as 

3302.558
(0,48.943)

1 69.666exp( 0.157 )
y N

t
= +

+ −
             (15) 

The fitting results of the Logistic growth model (14) and the observational data in Table 1 are shown in 

Figure 1. which shows a good fit between the fitted Logistic growth model and the observational data. 

 

 
Fig. 1. Fitted Logistic growth model and observational data 

To validate the rationality of model (15), by using 

3302.558

1 69.666exp( 0.157 )
t ty

t
 = −

+ −
 

for 1, 2, ,87t = , we can generate 87 residuals 1 2 87, , ,   , as shown in Figure 2.  
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Fig. 2. Residual plot of the estimated uncertain Logistic growth model (15) 

we need to test whether the above 87 residuals, 1 2 87, , ,    is set of samples of the population. Suppose the 

significance level is set to 0.05 = . Then, it follows from 87 4.35 = and Equation (9) that the test is 

( ) 1 2 87, , , : 4 1 87, 98.856 98.856) t tW z z z t t z z=    − 至少 个 , 使得 或  

As shown in Figure 2, it is evident that only 24 [ 98.856,98.856]  − . 

Consequently, we have 1 2 87( , , , ) W    and the estimated uncertain Logistic growth model (15) is a good fit 

for observational data. 

Based on model (15), the predicted value of the death toll from COVID-19 in China on April 16, 2020 

is obtained, that is 

88

3302.558
ˆ (0,48.943) (3302,48.943)

1 69.666exp( 0.157 88)
y N N= +

+ − 
. 

Therefore, the predicted death toll from COVID-19 in China on April 16, 2020 is 3,302, and the 95% prediction 

interval is 
48.943 3 1 0.95

3302 ln
1 0.95

+


−
, that is  3302 99 3203,3401 = . 

IV. CONCLUSION 

To address the limitations of traditional least squares methods in studying uncertain growth models, 

this paper is the construction of a statistical invariant for uncertain growth models based on the observed data 

and uncertainty distribution of disturbance terms, and applying the least squares method to the parameter 

estimation of this statistical invariant. A dedicated numerical algorithm is developed to compute the 

corresponding estimators. Subsequently, this paper applies the hypothesis test for uncertainty to validate the 

applicability of the estimated uncertainty logistic growth model, while its effectiveness is demonstrated by 

successfully predicting China's COVID-19 death toll. 
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